xref: /freebsd/contrib/llvm-project/llvm/lib/DebugInfo/MSF/MappedBlockStream.cpp (revision c9539b89010900499a200cdd6c0265ea5d950875)
1 //===- MappedBlockStream.cpp - Reads stream data from an MSF file ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/DebugInfo/MSF/MappedBlockStream.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/DebugInfo/MSF/MSFCommon.h"
12 #include "llvm/Support/BinaryStreamWriter.h"
13 #include "llvm/Support/Endian.h"
14 #include "llvm/Support/Error.h"
15 #include "llvm/Support/MathExtras.h"
16 #include <algorithm>
17 #include <cassert>
18 #include <cstdint>
19 #include <cstring>
20 #include <utility>
21 #include <vector>
22 
23 using namespace llvm;
24 using namespace llvm::msf;
25 
26 namespace {
27 
28 template <typename Base> class MappedBlockStreamImpl : public Base {
29 public:
30   template <typename... Args>
31   MappedBlockStreamImpl(Args &&... Params)
32       : Base(std::forward<Args>(Params)...) {}
33 };
34 
35 } // end anonymous namespace
36 
37 using Interval = std::pair<uint64_t, uint64_t>;
38 
39 static Interval intersect(const Interval &I1, const Interval &I2) {
40   return std::make_pair(std::max(I1.first, I2.first),
41                         std::min(I1.second, I2.second));
42 }
43 
44 MappedBlockStream::MappedBlockStream(uint32_t BlockSize,
45                                      const MSFStreamLayout &Layout,
46                                      BinaryStreamRef MsfData,
47                                      BumpPtrAllocator &Allocator)
48     : BlockSize(BlockSize), StreamLayout(Layout), MsfData(MsfData),
49       Allocator(Allocator) {}
50 
51 std::unique_ptr<MappedBlockStream> MappedBlockStream::createStream(
52     uint32_t BlockSize, const MSFStreamLayout &Layout, BinaryStreamRef MsfData,
53     BumpPtrAllocator &Allocator) {
54   return std::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
55       BlockSize, Layout, MsfData, Allocator);
56 }
57 
58 std::unique_ptr<MappedBlockStream> MappedBlockStream::createIndexedStream(
59     const MSFLayout &Layout, BinaryStreamRef MsfData, uint32_t StreamIndex,
60     BumpPtrAllocator &Allocator) {
61   assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
62   MSFStreamLayout SL;
63   SL.Blocks = Layout.StreamMap[StreamIndex];
64   SL.Length = Layout.StreamSizes[StreamIndex];
65   return std::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
66       Layout.SB->BlockSize, SL, MsfData, Allocator);
67 }
68 
69 std::unique_ptr<MappedBlockStream>
70 MappedBlockStream::createDirectoryStream(const MSFLayout &Layout,
71                                          BinaryStreamRef MsfData,
72                                          BumpPtrAllocator &Allocator) {
73   MSFStreamLayout SL;
74   SL.Blocks = Layout.DirectoryBlocks;
75   SL.Length = Layout.SB->NumDirectoryBytes;
76   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
77 }
78 
79 std::unique_ptr<MappedBlockStream>
80 MappedBlockStream::createFpmStream(const MSFLayout &Layout,
81                                    BinaryStreamRef MsfData,
82                                    BumpPtrAllocator &Allocator) {
83   MSFStreamLayout SL(getFpmStreamLayout(Layout));
84   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
85 }
86 
87 Error MappedBlockStream::readBytes(uint64_t Offset, uint64_t Size,
88                                    ArrayRef<uint8_t> &Buffer) {
89   // Make sure we aren't trying to read beyond the end of the stream.
90   if (auto EC = checkOffsetForRead(Offset, Size))
91     return EC;
92 
93   if (tryReadContiguously(Offset, Size, Buffer))
94     return Error::success();
95 
96   auto CacheIter = CacheMap.find(Offset);
97   if (CacheIter != CacheMap.end()) {
98     // Try to find an alloc that was large enough for this request.
99     for (auto &Entry : CacheIter->second) {
100       if (Entry.size() >= Size) {
101         Buffer = Entry.slice(0, Size);
102         return Error::success();
103       }
104     }
105   }
106 
107   // We couldn't find a buffer that started at the correct offset (the most
108   // common scenario).  Try to see if there is a buffer that starts at some
109   // other offset but overlaps the desired range.
110   for (auto &CacheItem : CacheMap) {
111     Interval RequestExtent = std::make_pair(Offset, Offset + Size);
112 
113     // We already checked this one on the fast path above.
114     if (CacheItem.first == Offset)
115       continue;
116     // If the initial extent of the cached item is beyond the ending extent
117     // of the request, there is no overlap.
118     if (CacheItem.first >= Offset + Size)
119       continue;
120 
121     // We really only have to check the last item in the list, since we append
122     // in order of increasing length.
123     if (CacheItem.second.empty())
124       continue;
125 
126     auto CachedAlloc = CacheItem.second.back();
127     // If the initial extent of the request is beyond the ending extent of
128     // the cached item, there is no overlap.
129     Interval CachedExtent =
130         std::make_pair(CacheItem.first, CacheItem.first + CachedAlloc.size());
131     if (RequestExtent.first >= CachedExtent.first + CachedExtent.second)
132       continue;
133 
134     Interval Intersection = intersect(CachedExtent, RequestExtent);
135     // Only use this if the entire request extent is contained in the cached
136     // extent.
137     if (Intersection != RequestExtent)
138       continue;
139 
140     uint64_t CacheRangeOffset =
141         AbsoluteDifference(CachedExtent.first, Intersection.first);
142     Buffer = CachedAlloc.slice(CacheRangeOffset, Size);
143     return Error::success();
144   }
145 
146   // Otherwise allocate a large enough buffer in the pool, memcpy the data
147   // into it, and return an ArrayRef to that.  Do not touch existing pool
148   // allocations, as existing clients may be holding a pointer which must
149   // not be invalidated.
150   uint8_t *WriteBuffer = static_cast<uint8_t *>(Allocator.Allocate(Size, 8));
151   if (auto EC = readBytes(Offset, MutableArrayRef<uint8_t>(WriteBuffer, Size)))
152     return EC;
153 
154   if (CacheIter != CacheMap.end()) {
155     CacheIter->second.emplace_back(WriteBuffer, Size);
156   } else {
157     std::vector<CacheEntry> List;
158     List.emplace_back(WriteBuffer, Size);
159     CacheMap.insert(std::make_pair(Offset, List));
160   }
161   Buffer = ArrayRef<uint8_t>(WriteBuffer, Size);
162   return Error::success();
163 }
164 
165 Error MappedBlockStream::readLongestContiguousChunk(uint64_t Offset,
166                                                     ArrayRef<uint8_t> &Buffer) {
167   // Make sure we aren't trying to read beyond the end of the stream.
168   if (auto EC = checkOffsetForRead(Offset, 1))
169     return EC;
170 
171   uint64_t First = Offset / BlockSize;
172   uint64_t Last = First;
173 
174   while (Last < getNumBlocks() - 1) {
175     if (StreamLayout.Blocks[Last] != StreamLayout.Blocks[Last + 1] - 1)
176       break;
177     ++Last;
178   }
179 
180   uint64_t OffsetInFirstBlock = Offset % BlockSize;
181   uint64_t BytesFromFirstBlock = BlockSize - OffsetInFirstBlock;
182   uint64_t BlockSpan = Last - First + 1;
183   uint64_t ByteSpan = BytesFromFirstBlock + (BlockSpan - 1) * BlockSize;
184 
185   ArrayRef<uint8_t> BlockData;
186   uint64_t MsfOffset = blockToOffset(StreamLayout.Blocks[First], BlockSize);
187   if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData))
188     return EC;
189 
190   BlockData = BlockData.drop_front(OffsetInFirstBlock);
191   Buffer = ArrayRef<uint8_t>(BlockData.data(), ByteSpan);
192   return Error::success();
193 }
194 
195 uint64_t MappedBlockStream::getLength() { return StreamLayout.Length; }
196 
197 bool MappedBlockStream::tryReadContiguously(uint64_t Offset, uint64_t Size,
198                                             ArrayRef<uint8_t> &Buffer) {
199   if (Size == 0) {
200     Buffer = ArrayRef<uint8_t>();
201     return true;
202   }
203   // Attempt to fulfill the request with a reference directly into the stream.
204   // This can work even if the request crosses a block boundary, provided that
205   // all subsequent blocks are contiguous.  For example, a 10k read with a 4k
206   // block size can be filled with a reference if, from the starting offset,
207   // 3 blocks in a row are contiguous.
208   uint64_t BlockNum = Offset / BlockSize;
209   uint64_t OffsetInBlock = Offset % BlockSize;
210   uint64_t BytesFromFirstBlock = std::min(Size, BlockSize - OffsetInBlock);
211   uint64_t NumAdditionalBlocks =
212       alignTo(Size - BytesFromFirstBlock, BlockSize) / BlockSize;
213 
214   uint64_t RequiredContiguousBlocks = NumAdditionalBlocks + 1;
215   uint64_t E = StreamLayout.Blocks[BlockNum];
216   for (uint64_t I = 0; I < RequiredContiguousBlocks; ++I, ++E) {
217     if (StreamLayout.Blocks[I + BlockNum] != E)
218       return false;
219   }
220 
221   // Read out the entire block where the requested offset starts.  Then drop
222   // bytes from the beginning so that the actual starting byte lines up with
223   // the requested starting byte.  Then, since we know this is a contiguous
224   // cross-block span, explicitly resize the ArrayRef to cover the entire
225   // request length.
226   ArrayRef<uint8_t> BlockData;
227   uint64_t FirstBlockAddr = StreamLayout.Blocks[BlockNum];
228   uint64_t MsfOffset = blockToOffset(FirstBlockAddr, BlockSize);
229   if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData)) {
230     consumeError(std::move(EC));
231     return false;
232   }
233   BlockData = BlockData.drop_front(OffsetInBlock);
234   Buffer = ArrayRef<uint8_t>(BlockData.data(), Size);
235   return true;
236 }
237 
238 Error MappedBlockStream::readBytes(uint64_t Offset,
239                                    MutableArrayRef<uint8_t> Buffer) {
240   uint64_t BlockNum = Offset / BlockSize;
241   uint64_t OffsetInBlock = Offset % BlockSize;
242 
243   // Make sure we aren't trying to read beyond the end of the stream.
244   if (auto EC = checkOffsetForRead(Offset, Buffer.size()))
245     return EC;
246 
247   uint64_t BytesLeft = Buffer.size();
248   uint64_t BytesWritten = 0;
249   uint8_t *WriteBuffer = Buffer.data();
250   while (BytesLeft > 0) {
251     uint64_t StreamBlockAddr = StreamLayout.Blocks[BlockNum];
252 
253     ArrayRef<uint8_t> BlockData;
254     uint64_t Offset = blockToOffset(StreamBlockAddr, BlockSize);
255     if (auto EC = MsfData.readBytes(Offset, BlockSize, BlockData))
256       return EC;
257 
258     const uint8_t *ChunkStart = BlockData.data() + OffsetInBlock;
259     uint64_t BytesInChunk = std::min(BytesLeft, BlockSize - OffsetInBlock);
260     ::memcpy(WriteBuffer + BytesWritten, ChunkStart, BytesInChunk);
261 
262     BytesWritten += BytesInChunk;
263     BytesLeft -= BytesInChunk;
264     ++BlockNum;
265     OffsetInBlock = 0;
266   }
267 
268   return Error::success();
269 }
270 
271 void MappedBlockStream::invalidateCache() { CacheMap.shrink_and_clear(); }
272 
273 void MappedBlockStream::fixCacheAfterWrite(uint64_t Offset,
274                                            ArrayRef<uint8_t> Data) const {
275   // If this write overlapped a read which previously came from the pool,
276   // someone may still be holding a pointer to that alloc which is now invalid.
277   // Compute the overlapping range and update the cache entry, so any
278   // outstanding buffers are automatically updated.
279   for (const auto &MapEntry : CacheMap) {
280     // If the end of the written extent precedes the beginning of the cached
281     // extent, ignore this map entry.
282     if (Offset + Data.size() < MapEntry.first)
283       continue;
284     for (const auto &Alloc : MapEntry.second) {
285       // If the end of the cached extent precedes the beginning of the written
286       // extent, ignore this alloc.
287       if (MapEntry.first + Alloc.size() < Offset)
288         continue;
289 
290       // If we get here, they are guaranteed to overlap.
291       Interval WriteInterval = std::make_pair(Offset, Offset + Data.size());
292       Interval CachedInterval =
293           std::make_pair(MapEntry.first, MapEntry.first + Alloc.size());
294       // If they overlap, we need to write the new data into the overlapping
295       // range.
296       auto Intersection = intersect(WriteInterval, CachedInterval);
297       assert(Intersection.first <= Intersection.second);
298 
299       uint64_t Length = Intersection.second - Intersection.first;
300       uint64_t SrcOffset =
301           AbsoluteDifference(WriteInterval.first, Intersection.first);
302       uint64_t DestOffset =
303           AbsoluteDifference(CachedInterval.first, Intersection.first);
304       ::memcpy(Alloc.data() + DestOffset, Data.data() + SrcOffset, Length);
305     }
306   }
307 }
308 
309 WritableMappedBlockStream::WritableMappedBlockStream(
310     uint32_t BlockSize, const MSFStreamLayout &Layout,
311     WritableBinaryStreamRef MsfData, BumpPtrAllocator &Allocator)
312     : ReadInterface(BlockSize, Layout, MsfData, Allocator),
313       WriteInterface(MsfData) {}
314 
315 std::unique_ptr<WritableMappedBlockStream>
316 WritableMappedBlockStream::createStream(uint32_t BlockSize,
317                                         const MSFStreamLayout &Layout,
318                                         WritableBinaryStreamRef MsfData,
319                                         BumpPtrAllocator &Allocator) {
320   return std::make_unique<MappedBlockStreamImpl<WritableMappedBlockStream>>(
321       BlockSize, Layout, MsfData, Allocator);
322 }
323 
324 std::unique_ptr<WritableMappedBlockStream>
325 WritableMappedBlockStream::createIndexedStream(const MSFLayout &Layout,
326                                                WritableBinaryStreamRef MsfData,
327                                                uint32_t StreamIndex,
328                                                BumpPtrAllocator &Allocator) {
329   assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
330   MSFStreamLayout SL;
331   SL.Blocks = Layout.StreamMap[StreamIndex];
332   SL.Length = Layout.StreamSizes[StreamIndex];
333   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
334 }
335 
336 std::unique_ptr<WritableMappedBlockStream>
337 WritableMappedBlockStream::createDirectoryStream(
338     const MSFLayout &Layout, WritableBinaryStreamRef MsfData,
339     BumpPtrAllocator &Allocator) {
340   MSFStreamLayout SL;
341   SL.Blocks = Layout.DirectoryBlocks;
342   SL.Length = Layout.SB->NumDirectoryBytes;
343   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
344 }
345 
346 std::unique_ptr<WritableMappedBlockStream>
347 WritableMappedBlockStream::createFpmStream(const MSFLayout &Layout,
348                                            WritableBinaryStreamRef MsfData,
349                                            BumpPtrAllocator &Allocator,
350                                            bool AltFpm) {
351   // We only want to give the user a stream containing the bytes of the FPM that
352   // are actually valid, but we want to initialize all of the bytes, even those
353   // that come from reserved FPM blocks where the entire block is unused.  To do
354   // this, we first create the full layout, which gives us a stream with all
355   // bytes and all blocks, and initialize everything to 0xFF (all blocks in the
356   // file are unused).  Then we create the minimal layout (which contains only a
357   // subset of the bytes previously initialized), and return that to the user.
358   MSFStreamLayout MinLayout(getFpmStreamLayout(Layout, false, AltFpm));
359 
360   MSFStreamLayout FullLayout(getFpmStreamLayout(Layout, true, AltFpm));
361   auto Result =
362       createStream(Layout.SB->BlockSize, FullLayout, MsfData, Allocator);
363   if (!Result)
364     return Result;
365   std::vector<uint8_t> InitData(Layout.SB->BlockSize, 0xFF);
366   BinaryStreamWriter Initializer(*Result);
367   while (Initializer.bytesRemaining() > 0)
368     cantFail(Initializer.writeBytes(InitData));
369   return createStream(Layout.SB->BlockSize, MinLayout, MsfData, Allocator);
370 }
371 
372 Error WritableMappedBlockStream::readBytes(uint64_t Offset, uint64_t Size,
373                                            ArrayRef<uint8_t> &Buffer) {
374   return ReadInterface.readBytes(Offset, Size, Buffer);
375 }
376 
377 Error WritableMappedBlockStream::readLongestContiguousChunk(
378     uint64_t Offset, ArrayRef<uint8_t> &Buffer) {
379   return ReadInterface.readLongestContiguousChunk(Offset, Buffer);
380 }
381 
382 uint64_t WritableMappedBlockStream::getLength() {
383   return ReadInterface.getLength();
384 }
385 
386 Error WritableMappedBlockStream::writeBytes(uint64_t Offset,
387                                             ArrayRef<uint8_t> Buffer) {
388   // Make sure we aren't trying to write beyond the end of the stream.
389   if (auto EC = checkOffsetForWrite(Offset, Buffer.size()))
390     return EC;
391 
392   uint64_t BlockNum = Offset / getBlockSize();
393   uint64_t OffsetInBlock = Offset % getBlockSize();
394 
395   uint64_t BytesLeft = Buffer.size();
396   uint64_t BytesWritten = 0;
397   while (BytesLeft > 0) {
398     uint64_t StreamBlockAddr = getStreamLayout().Blocks[BlockNum];
399     uint64_t BytesToWriteInChunk =
400         std::min(BytesLeft, getBlockSize() - OffsetInBlock);
401 
402     const uint8_t *Chunk = Buffer.data() + BytesWritten;
403     ArrayRef<uint8_t> ChunkData(Chunk, BytesToWriteInChunk);
404     uint64_t MsfOffset = blockToOffset(StreamBlockAddr, getBlockSize());
405     MsfOffset += OffsetInBlock;
406     if (auto EC = WriteInterface.writeBytes(MsfOffset, ChunkData))
407       return EC;
408 
409     BytesLeft -= BytesToWriteInChunk;
410     BytesWritten += BytesToWriteInChunk;
411     ++BlockNum;
412     OffsetInBlock = 0;
413   }
414 
415   ReadInterface.fixCacheAfterWrite(Offset, Buffer);
416 
417   return Error::success();
418 }
419 
420 Error WritableMappedBlockStream::commit() { return WriteInterface.commit(); }
421