xref: /freebsd/contrib/llvm-project/llvm/lib/DebugInfo/MSF/MappedBlockStream.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- MappedBlockStream.cpp - Reads stream data from an MSF file ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/DebugInfo/MSF/MappedBlockStream.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/DebugInfo/MSF/MSFCommon.h"
12 #include "llvm/Support/BinaryStreamWriter.h"
13 #include "llvm/Support/Error.h"
14 #include "llvm/Support/MathExtras.h"
15 #include <algorithm>
16 #include <cassert>
17 #include <cstdint>
18 #include <cstring>
19 #include <utility>
20 #include <vector>
21 
22 using namespace llvm;
23 using namespace llvm::msf;
24 
25 namespace {
26 
27 template <typename Base> class MappedBlockStreamImpl : public Base {
28 public:
29   template <typename... Args>
30   MappedBlockStreamImpl(Args &&... Params)
31       : Base(std::forward<Args>(Params)...) {}
32 };
33 
34 } // end anonymous namespace
35 
36 using Interval = std::pair<uint64_t, uint64_t>;
37 
38 static Interval intersect(const Interval &I1, const Interval &I2) {
39   return std::make_pair(std::max(I1.first, I2.first),
40                         std::min(I1.second, I2.second));
41 }
42 
43 MappedBlockStream::MappedBlockStream(uint32_t BlockSize,
44                                      const MSFStreamLayout &Layout,
45                                      BinaryStreamRef MsfData,
46                                      BumpPtrAllocator &Allocator)
47     : BlockSize(BlockSize), StreamLayout(Layout), MsfData(MsfData),
48       Allocator(Allocator) {}
49 
50 std::unique_ptr<MappedBlockStream> MappedBlockStream::createStream(
51     uint32_t BlockSize, const MSFStreamLayout &Layout, BinaryStreamRef MsfData,
52     BumpPtrAllocator &Allocator) {
53   return std::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
54       BlockSize, Layout, MsfData, Allocator);
55 }
56 
57 std::unique_ptr<MappedBlockStream> MappedBlockStream::createIndexedStream(
58     const MSFLayout &Layout, BinaryStreamRef MsfData, uint32_t StreamIndex,
59     BumpPtrAllocator &Allocator) {
60   assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
61   MSFStreamLayout SL;
62   SL.Blocks = Layout.StreamMap[StreamIndex];
63   SL.Length = Layout.StreamSizes[StreamIndex];
64   return std::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
65       Layout.SB->BlockSize, SL, MsfData, Allocator);
66 }
67 
68 std::unique_ptr<MappedBlockStream>
69 MappedBlockStream::createDirectoryStream(const MSFLayout &Layout,
70                                          BinaryStreamRef MsfData,
71                                          BumpPtrAllocator &Allocator) {
72   MSFStreamLayout SL;
73   SL.Blocks = Layout.DirectoryBlocks;
74   SL.Length = Layout.SB->NumDirectoryBytes;
75   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
76 }
77 
78 std::unique_ptr<MappedBlockStream>
79 MappedBlockStream::createFpmStream(const MSFLayout &Layout,
80                                    BinaryStreamRef MsfData,
81                                    BumpPtrAllocator &Allocator) {
82   MSFStreamLayout SL(getFpmStreamLayout(Layout));
83   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
84 }
85 
86 Error MappedBlockStream::readBytes(uint64_t Offset, uint64_t Size,
87                                    ArrayRef<uint8_t> &Buffer) {
88   // Make sure we aren't trying to read beyond the end of the stream.
89   if (auto EC = checkOffsetForRead(Offset, Size))
90     return EC;
91 
92   if (tryReadContiguously(Offset, Size, Buffer))
93     return Error::success();
94 
95   auto CacheIter = CacheMap.find(Offset);
96   if (CacheIter != CacheMap.end()) {
97     // Try to find an alloc that was large enough for this request.
98     for (auto &Entry : CacheIter->second) {
99       if (Entry.size() >= Size) {
100         Buffer = Entry.slice(0, Size);
101         return Error::success();
102       }
103     }
104   }
105 
106   // We couldn't find a buffer that started at the correct offset (the most
107   // common scenario).  Try to see if there is a buffer that starts at some
108   // other offset but overlaps the desired range.
109   for (auto &CacheItem : CacheMap) {
110     Interval RequestExtent = std::make_pair(Offset, Offset + Size);
111 
112     // We already checked this one on the fast path above.
113     if (CacheItem.first == Offset)
114       continue;
115     // If the initial extent of the cached item is beyond the ending extent
116     // of the request, there is no overlap.
117     if (CacheItem.first >= Offset + Size)
118       continue;
119 
120     // We really only have to check the last item in the list, since we append
121     // in order of increasing length.
122     if (CacheItem.second.empty())
123       continue;
124 
125     auto CachedAlloc = CacheItem.second.back();
126     // If the initial extent of the request is beyond the ending extent of
127     // the cached item, there is no overlap.
128     Interval CachedExtent =
129         std::make_pair(CacheItem.first, CacheItem.first + CachedAlloc.size());
130     if (RequestExtent.first >= CachedExtent.first + CachedExtent.second)
131       continue;
132 
133     Interval Intersection = intersect(CachedExtent, RequestExtent);
134     // Only use this if the entire request extent is contained in the cached
135     // extent.
136     if (Intersection != RequestExtent)
137       continue;
138 
139     uint64_t CacheRangeOffset =
140         AbsoluteDifference(CachedExtent.first, Intersection.first);
141     Buffer = CachedAlloc.slice(CacheRangeOffset, Size);
142     return Error::success();
143   }
144 
145   // Otherwise allocate a large enough buffer in the pool, memcpy the data
146   // into it, and return an ArrayRef to that.  Do not touch existing pool
147   // allocations, as existing clients may be holding a pointer which must
148   // not be invalidated.
149   uint8_t *WriteBuffer = static_cast<uint8_t *>(Allocator.Allocate(Size, 8));
150   if (auto EC = readBytes(Offset, MutableArrayRef<uint8_t>(WriteBuffer, Size)))
151     return EC;
152 
153   if (CacheIter != CacheMap.end()) {
154     CacheIter->second.emplace_back(WriteBuffer, Size);
155   } else {
156     std::vector<CacheEntry> List;
157     List.emplace_back(WriteBuffer, Size);
158     CacheMap.insert(std::make_pair(Offset, List));
159   }
160   Buffer = ArrayRef<uint8_t>(WriteBuffer, Size);
161   return Error::success();
162 }
163 
164 Error MappedBlockStream::readLongestContiguousChunk(uint64_t Offset,
165                                                     ArrayRef<uint8_t> &Buffer) {
166   // Make sure we aren't trying to read beyond the end of the stream.
167   if (auto EC = checkOffsetForRead(Offset, 1))
168     return EC;
169 
170   uint64_t First = Offset / BlockSize;
171   uint64_t Last = First;
172 
173   while (Last < getNumBlocks() - 1) {
174     if (StreamLayout.Blocks[Last] != StreamLayout.Blocks[Last + 1] - 1)
175       break;
176     ++Last;
177   }
178 
179   uint64_t OffsetInFirstBlock = Offset % BlockSize;
180   uint64_t BytesFromFirstBlock = BlockSize - OffsetInFirstBlock;
181   uint64_t BlockSpan = Last - First + 1;
182   uint64_t ByteSpan = BytesFromFirstBlock + (BlockSpan - 1) * BlockSize;
183 
184   ArrayRef<uint8_t> BlockData;
185   uint64_t MsfOffset = blockToOffset(StreamLayout.Blocks[First], BlockSize);
186   if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData))
187     return EC;
188 
189   BlockData = BlockData.drop_front(OffsetInFirstBlock);
190   Buffer = ArrayRef<uint8_t>(BlockData.data(), ByteSpan);
191   return Error::success();
192 }
193 
194 uint64_t MappedBlockStream::getLength() { return StreamLayout.Length; }
195 
196 bool MappedBlockStream::tryReadContiguously(uint64_t Offset, uint64_t Size,
197                                             ArrayRef<uint8_t> &Buffer) {
198   if (Size == 0) {
199     Buffer = ArrayRef<uint8_t>();
200     return true;
201   }
202   // Attempt to fulfill the request with a reference directly into the stream.
203   // This can work even if the request crosses a block boundary, provided that
204   // all subsequent blocks are contiguous.  For example, a 10k read with a 4k
205   // block size can be filled with a reference if, from the starting offset,
206   // 3 blocks in a row are contiguous.
207   uint64_t BlockNum = Offset / BlockSize;
208   uint64_t OffsetInBlock = Offset % BlockSize;
209   uint64_t BytesFromFirstBlock = std::min(Size, BlockSize - OffsetInBlock);
210   uint64_t NumAdditionalBlocks =
211       alignTo(Size - BytesFromFirstBlock, BlockSize) / BlockSize;
212 
213   uint64_t RequiredContiguousBlocks = NumAdditionalBlocks + 1;
214   uint64_t E = StreamLayout.Blocks[BlockNum];
215   for (uint64_t I = 0; I < RequiredContiguousBlocks; ++I, ++E) {
216     if (StreamLayout.Blocks[I + BlockNum] != E)
217       return false;
218   }
219 
220   // Read out the entire block where the requested offset starts.  Then drop
221   // bytes from the beginning so that the actual starting byte lines up with
222   // the requested starting byte.  Then, since we know this is a contiguous
223   // cross-block span, explicitly resize the ArrayRef to cover the entire
224   // request length.
225   ArrayRef<uint8_t> BlockData;
226   uint64_t FirstBlockAddr = StreamLayout.Blocks[BlockNum];
227   uint64_t MsfOffset = blockToOffset(FirstBlockAddr, BlockSize);
228   if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData)) {
229     consumeError(std::move(EC));
230     return false;
231   }
232   BlockData = BlockData.drop_front(OffsetInBlock);
233   Buffer = ArrayRef<uint8_t>(BlockData.data(), Size);
234   return true;
235 }
236 
237 Error MappedBlockStream::readBytes(uint64_t Offset,
238                                    MutableArrayRef<uint8_t> Buffer) {
239   uint64_t BlockNum = Offset / BlockSize;
240   uint64_t OffsetInBlock = Offset % BlockSize;
241 
242   // Make sure we aren't trying to read beyond the end of the stream.
243   if (auto EC = checkOffsetForRead(Offset, Buffer.size()))
244     return EC;
245 
246   uint64_t BytesLeft = Buffer.size();
247   uint64_t BytesWritten = 0;
248   uint8_t *WriteBuffer = Buffer.data();
249   while (BytesLeft > 0) {
250     uint64_t StreamBlockAddr = StreamLayout.Blocks[BlockNum];
251 
252     ArrayRef<uint8_t> BlockData;
253     uint64_t Offset = blockToOffset(StreamBlockAddr, BlockSize);
254     if (auto EC = MsfData.readBytes(Offset, BlockSize, BlockData))
255       return EC;
256 
257     const uint8_t *ChunkStart = BlockData.data() + OffsetInBlock;
258     uint64_t BytesInChunk = std::min(BytesLeft, BlockSize - OffsetInBlock);
259     ::memcpy(WriteBuffer + BytesWritten, ChunkStart, BytesInChunk);
260 
261     BytesWritten += BytesInChunk;
262     BytesLeft -= BytesInChunk;
263     ++BlockNum;
264     OffsetInBlock = 0;
265   }
266 
267   return Error::success();
268 }
269 
270 void MappedBlockStream::invalidateCache() { CacheMap.shrink_and_clear(); }
271 
272 void MappedBlockStream::fixCacheAfterWrite(uint64_t Offset,
273                                            ArrayRef<uint8_t> Data) const {
274   // If this write overlapped a read which previously came from the pool,
275   // someone may still be holding a pointer to that alloc which is now invalid.
276   // Compute the overlapping range and update the cache entry, so any
277   // outstanding buffers are automatically updated.
278   for (const auto &MapEntry : CacheMap) {
279     // If the end of the written extent precedes the beginning of the cached
280     // extent, ignore this map entry.
281     if (Offset + Data.size() < MapEntry.first)
282       continue;
283     for (const auto &Alloc : MapEntry.second) {
284       // If the end of the cached extent precedes the beginning of the written
285       // extent, ignore this alloc.
286       if (MapEntry.first + Alloc.size() < Offset)
287         continue;
288 
289       // If we get here, they are guaranteed to overlap.
290       Interval WriteInterval = std::make_pair(Offset, Offset + Data.size());
291       Interval CachedInterval =
292           std::make_pair(MapEntry.first, MapEntry.first + Alloc.size());
293       // If they overlap, we need to write the new data into the overlapping
294       // range.
295       auto Intersection = intersect(WriteInterval, CachedInterval);
296       assert(Intersection.first <= Intersection.second);
297 
298       uint64_t Length = Intersection.second - Intersection.first;
299       uint64_t SrcOffset =
300           AbsoluteDifference(WriteInterval.first, Intersection.first);
301       uint64_t DestOffset =
302           AbsoluteDifference(CachedInterval.first, Intersection.first);
303       ::memcpy(Alloc.data() + DestOffset, Data.data() + SrcOffset, Length);
304     }
305   }
306 }
307 
308 WritableMappedBlockStream::WritableMappedBlockStream(
309     uint32_t BlockSize, const MSFStreamLayout &Layout,
310     WritableBinaryStreamRef MsfData, BumpPtrAllocator &Allocator)
311     : ReadInterface(BlockSize, Layout, MsfData, Allocator),
312       WriteInterface(MsfData) {}
313 
314 std::unique_ptr<WritableMappedBlockStream>
315 WritableMappedBlockStream::createStream(uint32_t BlockSize,
316                                         const MSFStreamLayout &Layout,
317                                         WritableBinaryStreamRef MsfData,
318                                         BumpPtrAllocator &Allocator) {
319   return std::make_unique<MappedBlockStreamImpl<WritableMappedBlockStream>>(
320       BlockSize, Layout, MsfData, Allocator);
321 }
322 
323 std::unique_ptr<WritableMappedBlockStream>
324 WritableMappedBlockStream::createIndexedStream(const MSFLayout &Layout,
325                                                WritableBinaryStreamRef MsfData,
326                                                uint32_t StreamIndex,
327                                                BumpPtrAllocator &Allocator) {
328   assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
329   MSFStreamLayout SL;
330   SL.Blocks = Layout.StreamMap[StreamIndex];
331   SL.Length = Layout.StreamSizes[StreamIndex];
332   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
333 }
334 
335 std::unique_ptr<WritableMappedBlockStream>
336 WritableMappedBlockStream::createDirectoryStream(
337     const MSFLayout &Layout, WritableBinaryStreamRef MsfData,
338     BumpPtrAllocator &Allocator) {
339   MSFStreamLayout SL;
340   SL.Blocks = Layout.DirectoryBlocks;
341   SL.Length = Layout.SB->NumDirectoryBytes;
342   return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
343 }
344 
345 std::unique_ptr<WritableMappedBlockStream>
346 WritableMappedBlockStream::createFpmStream(const MSFLayout &Layout,
347                                            WritableBinaryStreamRef MsfData,
348                                            BumpPtrAllocator &Allocator,
349                                            bool AltFpm) {
350   // We only want to give the user a stream containing the bytes of the FPM that
351   // are actually valid, but we want to initialize all of the bytes, even those
352   // that come from reserved FPM blocks where the entire block is unused.  To do
353   // this, we first create the full layout, which gives us a stream with all
354   // bytes and all blocks, and initialize everything to 0xFF (all blocks in the
355   // file are unused).  Then we create the minimal layout (which contains only a
356   // subset of the bytes previously initialized), and return that to the user.
357   MSFStreamLayout MinLayout(getFpmStreamLayout(Layout, false, AltFpm));
358 
359   MSFStreamLayout FullLayout(getFpmStreamLayout(Layout, true, AltFpm));
360   auto Result =
361       createStream(Layout.SB->BlockSize, FullLayout, MsfData, Allocator);
362   if (!Result)
363     return Result;
364   std::vector<uint8_t> InitData(Layout.SB->BlockSize, 0xFF);
365   BinaryStreamWriter Initializer(*Result);
366   while (Initializer.bytesRemaining() > 0)
367     cantFail(Initializer.writeBytes(InitData));
368   return createStream(Layout.SB->BlockSize, MinLayout, MsfData, Allocator);
369 }
370 
371 Error WritableMappedBlockStream::readBytes(uint64_t Offset, uint64_t Size,
372                                            ArrayRef<uint8_t> &Buffer) {
373   return ReadInterface.readBytes(Offset, Size, Buffer);
374 }
375 
376 Error WritableMappedBlockStream::readLongestContiguousChunk(
377     uint64_t Offset, ArrayRef<uint8_t> &Buffer) {
378   return ReadInterface.readLongestContiguousChunk(Offset, Buffer);
379 }
380 
381 uint64_t WritableMappedBlockStream::getLength() {
382   return ReadInterface.getLength();
383 }
384 
385 Error WritableMappedBlockStream::writeBytes(uint64_t Offset,
386                                             ArrayRef<uint8_t> Buffer) {
387   // Make sure we aren't trying to write beyond the end of the stream.
388   if (auto EC = checkOffsetForWrite(Offset, Buffer.size()))
389     return EC;
390 
391   uint64_t BlockNum = Offset / getBlockSize();
392   uint64_t OffsetInBlock = Offset % getBlockSize();
393 
394   uint64_t BytesLeft = Buffer.size();
395   uint64_t BytesWritten = 0;
396   while (BytesLeft > 0) {
397     uint64_t StreamBlockAddr = getStreamLayout().Blocks[BlockNum];
398     uint64_t BytesToWriteInChunk =
399         std::min(BytesLeft, getBlockSize() - OffsetInBlock);
400 
401     const uint8_t *Chunk = Buffer.data() + BytesWritten;
402     ArrayRef<uint8_t> ChunkData(Chunk, BytesToWriteInChunk);
403     uint64_t MsfOffset = blockToOffset(StreamBlockAddr, getBlockSize());
404     MsfOffset += OffsetInBlock;
405     if (auto EC = WriteInterface.writeBytes(MsfOffset, ChunkData))
406       return EC;
407 
408     BytesLeft -= BytesToWriteInChunk;
409     BytesWritten += BytesToWriteInChunk;
410     ++BlockNum;
411     OffsetInBlock = 0;
412   }
413 
414   ReadInterface.fixCacheAfterWrite(Offset, Buffer);
415 
416   return Error::success();
417 }
418 
419 Error WritableMappedBlockStream::commit() { return WriteInterface.commit(); }
420