1 //===- DWARFUnit.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 10 #include "llvm/ADT/SmallString.h" 11 #include "llvm/ADT/StringRef.h" 12 #include "llvm/BinaryFormat/Dwarf.h" 13 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" 14 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 15 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 16 #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" 17 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" 18 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h" 19 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h" 20 #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h" 21 #include "llvm/DebugInfo/DWARF/DWARFDie.h" 22 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 23 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 24 #include "llvm/DebugInfo/DWARF/DWARFListTable.h" 25 #include "llvm/DebugInfo/DWARF/DWARFObject.h" 26 #include "llvm/DebugInfo/DWARF/DWARFSection.h" 27 #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h" 28 #include "llvm/Object/ObjectFile.h" 29 #include "llvm/Support/DataExtractor.h" 30 #include "llvm/Support/Errc.h" 31 #include "llvm/Support/Path.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstddef> 35 #include <cstdint> 36 #include <utility> 37 #include <vector> 38 39 using namespace llvm; 40 using namespace dwarf; 41 42 void DWARFUnitVector::addUnitsForSection(DWARFContext &C, 43 const DWARFSection &Section, 44 DWARFSectionKind SectionKind) { 45 const DWARFObject &D = C.getDWARFObj(); 46 addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(), 47 &D.getLocSection(), D.getStrSection(), 48 D.getStrOffsetsSection(), &D.getAddrSection(), 49 D.getLineSection(), D.isLittleEndian(), false, false, 50 SectionKind); 51 } 52 53 void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C, 54 const DWARFSection &DWOSection, 55 DWARFSectionKind SectionKind, 56 bool Lazy) { 57 const DWARFObject &D = C.getDWARFObj(); 58 addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(), 59 &D.getLocDWOSection(), D.getStrDWOSection(), 60 D.getStrOffsetsDWOSection(), &D.getAddrSection(), 61 D.getLineDWOSection(), C.isLittleEndian(), true, Lazy, 62 SectionKind); 63 } 64 65 void DWARFUnitVector::addUnitsImpl( 66 DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section, 67 const DWARFDebugAbbrev *DA, const DWARFSection *RS, 68 const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS, 69 const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, 70 bool Lazy, DWARFSectionKind SectionKind) { 71 DWARFDataExtractor Data(Obj, Section, LE, 0); 72 // Lazy initialization of Parser, now that we have all section info. 73 if (!Parser) { 74 Parser = [=, &Context, &Obj, &Section, &SOS, 75 &LS](uint64_t Offset, DWARFSectionKind SectionKind, 76 const DWARFSection *CurSection, 77 const DWARFUnitIndex::Entry *IndexEntry) 78 -> std::unique_ptr<DWARFUnit> { 79 const DWARFSection &InfoSection = CurSection ? *CurSection : Section; 80 DWARFDataExtractor Data(Obj, InfoSection, LE, 0); 81 if (!Data.isValidOffset(Offset)) 82 return nullptr; 83 DWARFUnitHeader Header; 84 if (Error ExtractErr = 85 Header.extract(Context, Data, &Offset, SectionKind)) { 86 Context.getWarningHandler()(std::move(ExtractErr)); 87 return nullptr; 88 } 89 if (!IndexEntry && IsDWO) { 90 const DWARFUnitIndex &Index = getDWARFUnitIndex( 91 Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO); 92 if (Index) { 93 if (Header.isTypeUnit()) 94 IndexEntry = Index.getFromHash(Header.getTypeHash()); 95 else if (auto DWOId = Header.getDWOId()) 96 IndexEntry = Index.getFromHash(*DWOId); 97 } 98 if (!IndexEntry) 99 IndexEntry = Index.getFromOffset(Header.getOffset()); 100 } 101 if (IndexEntry) { 102 if (Error ApplicationErr = Header.applyIndexEntry(IndexEntry)) { 103 Context.getWarningHandler()(std::move(ApplicationErr)); 104 return nullptr; 105 } 106 } 107 std::unique_ptr<DWARFUnit> U; 108 if (Header.isTypeUnit()) 109 U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA, 110 RS, LocSection, SS, SOS, AOS, LS, 111 LE, IsDWO, *this); 112 else 113 U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header, 114 DA, RS, LocSection, SS, SOS, 115 AOS, LS, LE, IsDWO, *this); 116 return U; 117 }; 118 } 119 if (Lazy) 120 return; 121 // Find a reasonable insertion point within the vector. We skip over 122 // (a) units from a different section, (b) units from the same section 123 // but with lower offset-within-section. This keeps units in order 124 // within a section, although not necessarily within the object file, 125 // even if we do lazy parsing. 126 auto I = this->begin(); 127 uint64_t Offset = 0; 128 while (Data.isValidOffset(Offset)) { 129 if (I != this->end() && 130 (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) { 131 ++I; 132 continue; 133 } 134 auto U = Parser(Offset, SectionKind, &Section, nullptr); 135 // If parsing failed, we're done with this section. 136 if (!U) 137 break; 138 Offset = U->getNextUnitOffset(); 139 I = std::next(this->insert(I, std::move(U))); 140 } 141 } 142 143 DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) { 144 auto I = llvm::upper_bound(*this, Unit, 145 [](const std::unique_ptr<DWARFUnit> &LHS, 146 const std::unique_ptr<DWARFUnit> &RHS) { 147 return LHS->getOffset() < RHS->getOffset(); 148 }); 149 return this->insert(I, std::move(Unit))->get(); 150 } 151 152 DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const { 153 auto end = begin() + getNumInfoUnits(); 154 auto *CU = 155 std::upper_bound(begin(), end, Offset, 156 [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { 157 return LHS < RHS->getNextUnitOffset(); 158 }); 159 if (CU != end && (*CU)->getOffset() <= Offset) 160 return CU->get(); 161 return nullptr; 162 } 163 164 DWARFUnit * 165 DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) { 166 const auto *CUOff = E.getContribution(DW_SECT_INFO); 167 if (!CUOff) 168 return nullptr; 169 170 uint64_t Offset = CUOff->getOffset(); 171 auto end = begin() + getNumInfoUnits(); 172 173 auto *CU = 174 std::upper_bound(begin(), end, CUOff->getOffset(), 175 [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { 176 return LHS < RHS->getNextUnitOffset(); 177 }); 178 if (CU != end && (*CU)->getOffset() <= Offset) 179 return CU->get(); 180 181 if (!Parser) 182 return nullptr; 183 184 auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E); 185 if (!U) 186 return nullptr; 187 188 auto *NewCU = U.get(); 189 this->insert(CU, std::move(U)); 190 ++NumInfoUnits; 191 return NewCU; 192 } 193 194 DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, 195 const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA, 196 const DWARFSection *RS, const DWARFSection *LocSection, 197 StringRef SS, const DWARFSection &SOS, 198 const DWARFSection *AOS, const DWARFSection &LS, bool LE, 199 bool IsDWO, const DWARFUnitVector &UnitVector) 200 : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA), 201 RangeSection(RS), LineSection(LS), StringSection(SS), 202 StringOffsetSection(SOS), AddrOffsetSection(AOS), IsLittleEndian(LE), 203 IsDWO(IsDWO), UnitVector(UnitVector) { 204 clear(); 205 } 206 207 DWARFUnit::~DWARFUnit() = default; 208 209 DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const { 210 return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, IsLittleEndian, 211 getAddressByteSize()); 212 } 213 214 std::optional<object::SectionedAddress> 215 DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const { 216 if (!AddrOffsetSectionBase) { 217 auto R = Context.info_section_units(); 218 // Surprising if a DWO file has more than one skeleton unit in it - this 219 // probably shouldn't be valid, but if a use case is found, here's where to 220 // support it (probably have to linearly search for the matching skeleton CU 221 // here) 222 if (IsDWO && hasSingleElement(R)) 223 return (*R.begin())->getAddrOffsetSectionItem(Index); 224 225 return std::nullopt; 226 } 227 228 uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize(); 229 if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize()) 230 return std::nullopt; 231 DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection, 232 IsLittleEndian, getAddressByteSize()); 233 uint64_t Section; 234 uint64_t Address = DA.getRelocatedAddress(&Offset, &Section); 235 return {{Address, Section}}; 236 } 237 238 Expected<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const { 239 if (!StringOffsetsTableContribution) 240 return make_error<StringError>( 241 "DW_FORM_strx used without a valid string offsets table", 242 inconvertibleErrorCode()); 243 unsigned ItemSize = getDwarfStringOffsetsByteSize(); 244 uint64_t Offset = getStringOffsetsBase() + Index * ItemSize; 245 if (StringOffsetSection.Data.size() < Offset + ItemSize) 246 return make_error<StringError>("DW_FORM_strx uses index " + Twine(Index) + 247 ", which is too large", 248 inconvertibleErrorCode()); 249 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, 250 IsLittleEndian, 0); 251 return DA.getRelocatedValue(ItemSize, &Offset); 252 } 253 254 Error DWARFUnitHeader::extract(DWARFContext &Context, 255 const DWARFDataExtractor &debug_info, 256 uint64_t *offset_ptr, 257 DWARFSectionKind SectionKind) { 258 Offset = *offset_ptr; 259 Error Err = Error::success(); 260 IndexEntry = nullptr; 261 std::tie(Length, FormParams.Format) = 262 debug_info.getInitialLength(offset_ptr, &Err); 263 FormParams.Version = debug_info.getU16(offset_ptr, &Err); 264 if (FormParams.Version >= 5) { 265 UnitType = debug_info.getU8(offset_ptr, &Err); 266 FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err); 267 AbbrOffset = debug_info.getRelocatedValue( 268 FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err); 269 } else { 270 AbbrOffset = debug_info.getRelocatedValue( 271 FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err); 272 FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err); 273 // Fake a unit type based on the section type. This isn't perfect, 274 // but distinguishing compile and type units is generally enough. 275 if (SectionKind == DW_SECT_EXT_TYPES) 276 UnitType = DW_UT_type; 277 else 278 UnitType = DW_UT_compile; 279 } 280 if (isTypeUnit()) { 281 TypeHash = debug_info.getU64(offset_ptr, &Err); 282 TypeOffset = debug_info.getUnsigned( 283 offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err); 284 } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton) 285 DWOId = debug_info.getU64(offset_ptr, &Err); 286 287 if (Err) 288 return joinErrors( 289 createStringError( 290 errc::invalid_argument, 291 "DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset), 292 std::move(Err)); 293 294 // Header fields all parsed, capture the size of this unit header. 295 assert(*offset_ptr - Offset <= 255 && "unexpected header size"); 296 Size = uint8_t(*offset_ptr - Offset); 297 uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength(); 298 299 if (!debug_info.isValidOffset(getNextUnitOffset() - 1)) 300 return createStringError(errc::invalid_argument, 301 "DWARF unit from offset 0x%8.8" PRIx64 " incl. " 302 "to offset 0x%8.8" PRIx64 " excl. " 303 "extends past section size 0x%8.8zx", 304 Offset, NextCUOffset, debug_info.size()); 305 306 if (!DWARFContext::isSupportedVersion(getVersion())) 307 return createStringError( 308 errc::invalid_argument, 309 "DWARF unit at offset 0x%8.8" PRIx64 " " 310 "has unsupported version %" PRIu16 ", supported are 2-%u", 311 Offset, getVersion(), DWARFContext::getMaxSupportedVersion()); 312 313 // Type offset is unit-relative; should be after the header and before 314 // the end of the current unit. 315 if (isTypeUnit() && TypeOffset < Size) 316 return createStringError(errc::invalid_argument, 317 "DWARF type unit at offset " 318 "0x%8.8" PRIx64 " " 319 "has its relocated type_offset 0x%8.8" PRIx64 " " 320 "pointing inside the header", 321 Offset, Offset + TypeOffset); 322 323 if (isTypeUnit() && TypeOffset >= getUnitLengthFieldByteSize() + getLength()) 324 return createStringError( 325 errc::invalid_argument, 326 "DWARF type unit from offset 0x%8.8" PRIx64 " incl. " 327 "to offset 0x%8.8" PRIx64 " excl. has its " 328 "relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end", 329 Offset, NextCUOffset, Offset + TypeOffset); 330 331 if (Error SizeErr = DWARFContext::checkAddressSizeSupported( 332 getAddressByteSize(), errc::invalid_argument, 333 "DWARF unit at offset 0x%8.8" PRIx64, Offset)) 334 return SizeErr; 335 336 // Keep track of the highest DWARF version we encounter across all units. 337 Context.setMaxVersionIfGreater(getVersion()); 338 return Error::success(); 339 } 340 341 Error DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) { 342 assert(Entry); 343 assert(!IndexEntry); 344 IndexEntry = Entry; 345 if (AbbrOffset) 346 return createStringError(errc::invalid_argument, 347 "DWARF package unit at offset 0x%8.8" PRIx64 348 " has a non-zero abbreviation offset", 349 Offset); 350 351 auto *UnitContrib = IndexEntry->getContribution(); 352 if (!UnitContrib) 353 return createStringError(errc::invalid_argument, 354 "DWARF package unit at offset 0x%8.8" PRIx64 355 " has no contribution index", 356 Offset); 357 358 uint64_t IndexLength = getLength() + getUnitLengthFieldByteSize(); 359 if (UnitContrib->getLength() != IndexLength) 360 return createStringError(errc::invalid_argument, 361 "DWARF package unit at offset 0x%8.8" PRIx64 362 " has an inconsistent index (expected: %" PRIu64 363 ", actual: %" PRIu64 ")", 364 Offset, UnitContrib->getLength(), IndexLength); 365 366 auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV); 367 if (!AbbrEntry) 368 return createStringError(errc::invalid_argument, 369 "DWARF package unit at offset 0x%8.8" PRIx64 370 " missing abbreviation column", 371 Offset); 372 373 AbbrOffset = AbbrEntry->getOffset(); 374 return Error::success(); 375 } 376 377 Error DWARFUnit::extractRangeList(uint64_t RangeListOffset, 378 DWARFDebugRangeList &RangeList) const { 379 // Require that compile unit is extracted. 380 assert(!DieArray.empty()); 381 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, 382 IsLittleEndian, getAddressByteSize()); 383 uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; 384 return RangeList.extract(RangesData, &ActualRangeListOffset); 385 } 386 387 void DWARFUnit::clear() { 388 Abbrevs = nullptr; 389 BaseAddr.reset(); 390 RangeSectionBase = 0; 391 LocSectionBase = 0; 392 AddrOffsetSectionBase = std::nullopt; 393 SU = nullptr; 394 clearDIEs(false); 395 AddrDieMap.clear(); 396 if (DWO) 397 DWO->clear(); 398 DWO.reset(); 399 } 400 401 const char *DWARFUnit::getCompilationDir() { 402 return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr); 403 } 404 405 void DWARFUnit::extractDIEsToVector( 406 bool AppendCUDie, bool AppendNonCUDies, 407 std::vector<DWARFDebugInfoEntry> &Dies) const { 408 if (!AppendCUDie && !AppendNonCUDies) 409 return; 410 411 // Set the offset to that of the first DIE and calculate the start of the 412 // next compilation unit header. 413 uint64_t DIEOffset = getOffset() + getHeaderSize(); 414 uint64_t NextCUOffset = getNextUnitOffset(); 415 DWARFDebugInfoEntry DIE; 416 DWARFDataExtractor DebugInfoData = getDebugInfoExtractor(); 417 // The end offset has been already checked by DWARFUnitHeader::extract. 418 assert(DebugInfoData.isValidOffset(NextCUOffset - 1)); 419 std::vector<uint32_t> Parents; 420 std::vector<uint32_t> PrevSiblings; 421 bool IsCUDie = true; 422 423 assert( 424 ((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) && 425 "Dies array is not empty"); 426 427 // Fill Parents and Siblings stacks with initial value. 428 Parents.push_back(UINT32_MAX); 429 if (!AppendCUDie) 430 Parents.push_back(0); 431 PrevSiblings.push_back(0); 432 433 // Start to extract dies. 434 do { 435 assert(Parents.size() > 0 && "Empty parents stack"); 436 assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) && 437 "Wrong parent index"); 438 439 // Extract die. Stop if any error occurred. 440 if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, 441 Parents.back())) 442 break; 443 444 // If previous sibling is remembered then update it`s SiblingIdx field. 445 if (PrevSiblings.back() > 0) { 446 assert(PrevSiblings.back() < Dies.size() && 447 "Previous sibling index is out of Dies boundaries"); 448 Dies[PrevSiblings.back()].setSiblingIdx(Dies.size()); 449 } 450 451 // Store die into the Dies vector. 452 if (IsCUDie) { 453 if (AppendCUDie) 454 Dies.push_back(DIE); 455 if (!AppendNonCUDies) 456 break; 457 // The average bytes per DIE entry has been seen to be 458 // around 14-20 so let's pre-reserve the needed memory for 459 // our DIE entries accordingly. 460 Dies.reserve(Dies.size() + getDebugInfoSize() / 14); 461 } else { 462 // Remember last previous sibling. 463 PrevSiblings.back() = Dies.size(); 464 465 Dies.push_back(DIE); 466 } 467 468 // Check for new children scope. 469 if (const DWARFAbbreviationDeclaration *AbbrDecl = 470 DIE.getAbbreviationDeclarationPtr()) { 471 if (AbbrDecl->hasChildren()) { 472 if (AppendCUDie || !IsCUDie) { 473 assert(Dies.size() > 0 && "Dies does not contain any die"); 474 Parents.push_back(Dies.size() - 1); 475 PrevSiblings.push_back(0); 476 } 477 } else if (IsCUDie) 478 // Stop if we have single compile unit die w/o children. 479 break; 480 } else { 481 // NULL DIE: finishes current children scope. 482 Parents.pop_back(); 483 PrevSiblings.pop_back(); 484 } 485 486 if (IsCUDie) 487 IsCUDie = false; 488 489 // Stop when compile unit die is removed from the parents stack. 490 } while (Parents.size() > 1); 491 } 492 493 void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { 494 if (Error e = tryExtractDIEsIfNeeded(CUDieOnly)) 495 Context.getRecoverableErrorHandler()(std::move(e)); 496 } 497 498 Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) { 499 if ((CUDieOnly && !DieArray.empty()) || 500 DieArray.size() > 1) 501 return Error::success(); // Already parsed. 502 503 bool HasCUDie = !DieArray.empty(); 504 extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); 505 506 if (DieArray.empty()) 507 return Error::success(); 508 509 // If CU DIE was just parsed, copy several attribute values from it. 510 if (HasCUDie) 511 return Error::success(); 512 513 DWARFDie UnitDie(this, &DieArray[0]); 514 if (std::optional<uint64_t> DWOId = 515 toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id))) 516 Header.setDWOId(*DWOId); 517 if (!IsDWO) { 518 assert(AddrOffsetSectionBase == std::nullopt); 519 assert(RangeSectionBase == 0); 520 assert(LocSectionBase == 0); 521 AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base)); 522 if (!AddrOffsetSectionBase) 523 AddrOffsetSectionBase = 524 toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base)); 525 RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0); 526 LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0); 527 } 528 529 // In general, in DWARF v5 and beyond we derive the start of the unit's 530 // contribution to the string offsets table from the unit DIE's 531 // DW_AT_str_offsets_base attribute. Split DWARF units do not use this 532 // attribute, so we assume that there is a contribution to the string 533 // offsets table starting at offset 0 of the debug_str_offsets.dwo section. 534 // In both cases we need to determine the format of the contribution, 535 // which may differ from the unit's format. 536 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, 537 IsLittleEndian, 0); 538 if (IsDWO || getVersion() >= 5) { 539 auto StringOffsetOrError = 540 IsDWO ? determineStringOffsetsTableContributionDWO(DA) 541 : determineStringOffsetsTableContribution(DA); 542 if (!StringOffsetOrError) 543 return createStringError(errc::invalid_argument, 544 "invalid reference to or invalid content in " 545 ".debug_str_offsets[.dwo]: " + 546 toString(StringOffsetOrError.takeError())); 547 548 StringOffsetsTableContribution = *StringOffsetOrError; 549 } 550 551 // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to 552 // describe address ranges. 553 if (getVersion() >= 5) { 554 // In case of DWP, the base offset from the index has to be added. 555 if (IsDWO) { 556 uint64_t ContributionBaseOffset = 0; 557 if (auto *IndexEntry = Header.getIndexEntry()) 558 if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS)) 559 ContributionBaseOffset = Contrib->getOffset(); 560 setRangesSection( 561 &Context.getDWARFObj().getRnglistsDWOSection(), 562 ContributionBaseOffset + 563 DWARFListTableHeader::getHeaderSize(Header.getFormat())); 564 } else 565 setRangesSection(&Context.getDWARFObj().getRnglistsSection(), 566 toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 567 DWARFListTableHeader::getHeaderSize( 568 Header.getFormat()))); 569 } 570 571 if (IsDWO) { 572 // If we are reading a package file, we need to adjust the location list 573 // data based on the index entries. 574 StringRef Data = Header.getVersion() >= 5 575 ? Context.getDWARFObj().getLoclistsDWOSection().Data 576 : Context.getDWARFObj().getLocDWOSection().Data; 577 if (auto *IndexEntry = Header.getIndexEntry()) 578 if (const auto *C = IndexEntry->getContribution( 579 Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC)) 580 Data = Data.substr(C->getOffset(), C->getLength()); 581 582 DWARFDataExtractor DWARFData(Data, IsLittleEndian, getAddressByteSize()); 583 LocTable = 584 std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion()); 585 LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat()); 586 } else if (getVersion() >= 5) { 587 LocTable = std::make_unique<DWARFDebugLoclists>( 588 DWARFDataExtractor(Context.getDWARFObj(), 589 Context.getDWARFObj().getLoclistsSection(), 590 IsLittleEndian, getAddressByteSize()), 591 getVersion()); 592 } else { 593 LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor( 594 Context.getDWARFObj(), Context.getDWARFObj().getLocSection(), 595 IsLittleEndian, getAddressByteSize())); 596 } 597 598 // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for 599 // skeleton CU DIE, so that DWARF users not aware of it are not broken. 600 return Error::success(); 601 } 602 603 bool DWARFUnit::parseDWO(StringRef DWOAlternativeLocation) { 604 if (IsDWO) 605 return false; 606 if (DWO) 607 return false; 608 DWARFDie UnitDie = getUnitDIE(); 609 if (!UnitDie) 610 return false; 611 auto DWOFileName = getVersion() >= 5 612 ? dwarf::toString(UnitDie.find(DW_AT_dwo_name)) 613 : dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name)); 614 if (!DWOFileName) 615 return false; 616 auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir)); 617 SmallString<16> AbsolutePath; 618 if (sys::path::is_relative(*DWOFileName) && CompilationDir && 619 *CompilationDir) { 620 sys::path::append(AbsolutePath, *CompilationDir); 621 } 622 sys::path::append(AbsolutePath, *DWOFileName); 623 auto DWOId = getDWOId(); 624 if (!DWOId) 625 return false; 626 auto DWOContext = Context.getDWOContext(AbsolutePath); 627 if (!DWOContext) { 628 // Use the alternative location to get the DWARF context for the DWO object. 629 if (DWOAlternativeLocation.empty()) 630 return false; 631 // If the alternative context does not correspond to the original DWO object 632 // (different hashes), the below 'getDWOCompileUnitForHash' call will catch 633 // the issue, with a returned null context. 634 DWOContext = Context.getDWOContext(DWOAlternativeLocation); 635 if (!DWOContext) 636 return false; 637 } 638 639 DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId); 640 if (!DWOCU) 641 return false; 642 DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU); 643 DWO->setSkeletonUnit(this); 644 // Share .debug_addr and .debug_ranges section with compile unit in .dwo 645 if (AddrOffsetSectionBase) 646 DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase); 647 if (getVersion() == 4) { 648 auto DWORangesBase = UnitDie.getRangesBaseAttribute(); 649 DWO->setRangesSection(RangeSection, DWORangesBase.value_or(0)); 650 } 651 652 return true; 653 } 654 655 void DWARFUnit::clearDIEs(bool KeepCUDie) { 656 // Do not use resize() + shrink_to_fit() to free memory occupied by dies. 657 // shrink_to_fit() is a *non-binding* request to reduce capacity() to size(). 658 // It depends on the implementation whether the request is fulfilled. 659 // Create a new vector with a small capacity and assign it to the DieArray to 660 // have previous contents freed. 661 DieArray = (KeepCUDie && !DieArray.empty()) 662 ? std::vector<DWARFDebugInfoEntry>({DieArray[0]}) 663 : std::vector<DWARFDebugInfoEntry>(); 664 } 665 666 Expected<DWARFAddressRangesVector> 667 DWARFUnit::findRnglistFromOffset(uint64_t Offset) { 668 if (getVersion() <= 4) { 669 DWARFDebugRangeList RangeList; 670 if (Error E = extractRangeList(Offset, RangeList)) 671 return std::move(E); 672 return RangeList.getAbsoluteRanges(getBaseAddress()); 673 } 674 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, 675 IsLittleEndian, Header.getAddressByteSize()); 676 DWARFDebugRnglistTable RnglistTable; 677 auto RangeListOrError = RnglistTable.findList(RangesData, Offset); 678 if (RangeListOrError) 679 return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this); 680 return RangeListOrError.takeError(); 681 } 682 683 Expected<DWARFAddressRangesVector> 684 DWARFUnit::findRnglistFromIndex(uint32_t Index) { 685 if (auto Offset = getRnglistOffset(Index)) 686 return findRnglistFromOffset(*Offset); 687 688 return createStringError(errc::invalid_argument, 689 "invalid range list table index %d (possibly " 690 "missing the entire range list table)", 691 Index); 692 } 693 694 Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() { 695 DWARFDie UnitDie = getUnitDIE(); 696 if (!UnitDie) 697 return createStringError(errc::invalid_argument, "No unit DIE"); 698 699 // First, check if unit DIE describes address ranges for the whole unit. 700 auto CUDIERangesOrError = UnitDie.getAddressRanges(); 701 if (!CUDIERangesOrError) 702 return createStringError(errc::invalid_argument, 703 "decoding address ranges: %s", 704 toString(CUDIERangesOrError.takeError()).c_str()); 705 return *CUDIERangesOrError; 706 } 707 708 Expected<DWARFLocationExpressionsVector> 709 DWARFUnit::findLoclistFromOffset(uint64_t Offset) { 710 DWARFLocationExpressionsVector Result; 711 712 Error InterpretationError = Error::success(); 713 714 Error ParseError = getLocationTable().visitAbsoluteLocationList( 715 Offset, getBaseAddress(), 716 [this](uint32_t Index) { return getAddrOffsetSectionItem(Index); }, 717 [&](Expected<DWARFLocationExpression> L) { 718 if (L) 719 Result.push_back(std::move(*L)); 720 else 721 InterpretationError = 722 joinErrors(L.takeError(), std::move(InterpretationError)); 723 return !InterpretationError; 724 }); 725 726 if (ParseError || InterpretationError) 727 return joinErrors(std::move(ParseError), std::move(InterpretationError)); 728 729 return Result; 730 } 731 732 void DWARFUnit::updateAddressDieMap(DWARFDie Die) { 733 if (Die.isSubroutineDIE()) { 734 auto DIERangesOrError = Die.getAddressRanges(); 735 if (DIERangesOrError) { 736 for (const auto &R : DIERangesOrError.get()) { 737 // Ignore 0-sized ranges. 738 if (R.LowPC == R.HighPC) 739 continue; 740 auto B = AddrDieMap.upper_bound(R.LowPC); 741 if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) { 742 // The range is a sub-range of existing ranges, we need to split the 743 // existing range. 744 if (R.HighPC < B->second.first) 745 AddrDieMap[R.HighPC] = B->second; 746 if (R.LowPC > B->first) 747 AddrDieMap[B->first].first = R.LowPC; 748 } 749 AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die); 750 } 751 } else 752 llvm::consumeError(DIERangesOrError.takeError()); 753 } 754 // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to 755 // simplify the logic to update AddrDieMap. The child's range will always 756 // be equal or smaller than the parent's range. With this assumption, when 757 // adding one range into the map, it will at most split a range into 3 758 // sub-ranges. 759 for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling()) 760 updateAddressDieMap(Child); 761 } 762 763 DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) { 764 extractDIEsIfNeeded(false); 765 if (AddrDieMap.empty()) 766 updateAddressDieMap(getUnitDIE()); 767 auto R = AddrDieMap.upper_bound(Address); 768 if (R == AddrDieMap.begin()) 769 return DWARFDie(); 770 // upper_bound's previous item contains Address. 771 --R; 772 if (Address >= R->second.first) 773 return DWARFDie(); 774 return R->second.second; 775 } 776 777 void DWARFUnit::updateVariableDieMap(DWARFDie Die) { 778 for (DWARFDie Child : Die) { 779 if (isType(Child.getTag())) 780 continue; 781 updateVariableDieMap(Child); 782 } 783 784 if (Die.getTag() != DW_TAG_variable) 785 return; 786 787 Expected<DWARFLocationExpressionsVector> Locations = 788 Die.getLocations(DW_AT_location); 789 if (!Locations) { 790 // Missing DW_AT_location is fine here. 791 consumeError(Locations.takeError()); 792 return; 793 } 794 795 uint64_t Address = UINT64_MAX; 796 797 for (const DWARFLocationExpression &Location : *Locations) { 798 uint8_t AddressSize = getAddressByteSize(); 799 DataExtractor Data(Location.Expr, isLittleEndian(), AddressSize); 800 DWARFExpression Expr(Data, AddressSize); 801 auto It = Expr.begin(); 802 if (It == Expr.end()) 803 continue; 804 805 // Match exactly the main sequence used to describe global variables: 806 // `DW_OP_addr[x] [+ DW_OP_plus_uconst]`. Currently, this is the sequence 807 // that LLVM produces for DILocalVariables and DIGlobalVariables. If, in 808 // future, the DWARF producer (`DwarfCompileUnit::addLocationAttribute()` is 809 // a good starting point) is extended to use further expressions, this code 810 // needs to be updated. 811 uint64_t LocationAddr; 812 if (It->getCode() == dwarf::DW_OP_addr) { 813 LocationAddr = It->getRawOperand(0); 814 } else if (It->getCode() == dwarf::DW_OP_addrx) { 815 uint64_t DebugAddrOffset = It->getRawOperand(0); 816 if (auto Pointer = getAddrOffsetSectionItem(DebugAddrOffset)) { 817 LocationAddr = Pointer->Address; 818 } 819 } else { 820 continue; 821 } 822 823 // Read the optional 2nd operand, a DW_OP_plus_uconst. 824 if (++It != Expr.end()) { 825 if (It->getCode() != dwarf::DW_OP_plus_uconst) 826 continue; 827 828 LocationAddr += It->getRawOperand(0); 829 830 // Probe for a 3rd operand, if it exists, bail. 831 if (++It != Expr.end()) 832 continue; 833 } 834 835 Address = LocationAddr; 836 break; 837 } 838 839 // Get the size of the global variable. If all else fails (i.e. the global has 840 // no type), then we use a size of one to still allow symbolization of the 841 // exact address. 842 uint64_t GVSize = 1; 843 if (Die.getAttributeValueAsReferencedDie(DW_AT_type)) 844 if (std::optional<uint64_t> Size = Die.getTypeSize(getAddressByteSize())) 845 GVSize = *Size; 846 847 if (Address != UINT64_MAX) 848 VariableDieMap[Address] = {Address + GVSize, Die}; 849 } 850 851 DWARFDie DWARFUnit::getVariableForAddress(uint64_t Address) { 852 extractDIEsIfNeeded(false); 853 854 auto RootDie = getUnitDIE(); 855 856 auto RootLookup = RootsParsedForVariables.insert(RootDie.getOffset()); 857 if (RootLookup.second) 858 updateVariableDieMap(RootDie); 859 860 auto R = VariableDieMap.upper_bound(Address); 861 if (R == VariableDieMap.begin()) 862 return DWARFDie(); 863 864 // upper_bound's previous item contains Address. 865 --R; 866 if (Address >= R->second.first) 867 return DWARFDie(); 868 return R->second.second; 869 } 870 871 void 872 DWARFUnit::getInlinedChainForAddress(uint64_t Address, 873 SmallVectorImpl<DWARFDie> &InlinedChain) { 874 assert(InlinedChain.empty()); 875 // Try to look for subprogram DIEs in the DWO file. 876 parseDWO(); 877 // First, find the subroutine that contains the given address (the leaf 878 // of inlined chain). 879 DWARFDie SubroutineDIE = 880 (DWO ? *DWO : *this).getSubroutineForAddress(Address); 881 882 while (SubroutineDIE) { 883 if (SubroutineDIE.isSubprogramDIE()) { 884 InlinedChain.push_back(SubroutineDIE); 885 return; 886 } 887 if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine) 888 InlinedChain.push_back(SubroutineDIE); 889 SubroutineDIE = SubroutineDIE.getParent(); 890 } 891 } 892 893 const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context, 894 DWARFSectionKind Kind) { 895 if (Kind == DW_SECT_INFO) 896 return Context.getCUIndex(); 897 assert(Kind == DW_SECT_EXT_TYPES); 898 return Context.getTUIndex(); 899 } 900 901 DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { 902 if (const DWARFDebugInfoEntry *Entry = getParentEntry(Die)) 903 return DWARFDie(this, Entry); 904 905 return DWARFDie(); 906 } 907 908 const DWARFDebugInfoEntry * 909 DWARFUnit::getParentEntry(const DWARFDebugInfoEntry *Die) const { 910 if (!Die) 911 return nullptr; 912 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); 913 914 if (std::optional<uint32_t> ParentIdx = Die->getParentIdx()) { 915 assert(*ParentIdx < DieArray.size() && 916 "ParentIdx is out of DieArray boundaries"); 917 return getDebugInfoEntry(*ParentIdx); 918 } 919 920 return nullptr; 921 } 922 923 DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { 924 if (const DWARFDebugInfoEntry *Sibling = getSiblingEntry(Die)) 925 return DWARFDie(this, Sibling); 926 927 return DWARFDie(); 928 } 929 930 const DWARFDebugInfoEntry * 931 DWARFUnit::getSiblingEntry(const DWARFDebugInfoEntry *Die) const { 932 if (!Die) 933 return nullptr; 934 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); 935 936 if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) { 937 assert(*SiblingIdx < DieArray.size() && 938 "SiblingIdx is out of DieArray boundaries"); 939 return &DieArray[*SiblingIdx]; 940 } 941 942 return nullptr; 943 } 944 945 DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) { 946 if (const DWARFDebugInfoEntry *Sibling = getPreviousSiblingEntry(Die)) 947 return DWARFDie(this, Sibling); 948 949 return DWARFDie(); 950 } 951 952 const DWARFDebugInfoEntry * 953 DWARFUnit::getPreviousSiblingEntry(const DWARFDebugInfoEntry *Die) const { 954 if (!Die) 955 return nullptr; 956 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); 957 958 std::optional<uint32_t> ParentIdx = Die->getParentIdx(); 959 if (!ParentIdx) 960 // Die is a root die, there is no previous sibling. 961 return nullptr; 962 963 assert(*ParentIdx < DieArray.size() && 964 "ParentIdx is out of DieArray boundaries"); 965 assert(getDIEIndex(Die) > 0 && "Die is a root die"); 966 967 uint32_t PrevDieIdx = getDIEIndex(Die) - 1; 968 if (PrevDieIdx == *ParentIdx) 969 // Immediately previous node is parent, there is no previous sibling. 970 return nullptr; 971 972 while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) { 973 PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx(); 974 975 assert(PrevDieIdx < DieArray.size() && 976 "PrevDieIdx is out of DieArray boundaries"); 977 assert(PrevDieIdx >= *ParentIdx && 978 "PrevDieIdx is not a child of parent of Die"); 979 } 980 981 return &DieArray[PrevDieIdx]; 982 } 983 984 DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) { 985 if (const DWARFDebugInfoEntry *Child = getFirstChildEntry(Die)) 986 return DWARFDie(this, Child); 987 988 return DWARFDie(); 989 } 990 991 const DWARFDebugInfoEntry * 992 DWARFUnit::getFirstChildEntry(const DWARFDebugInfoEntry *Die) const { 993 if (!Die) 994 return nullptr; 995 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); 996 997 if (!Die->hasChildren()) 998 return nullptr; 999 1000 // TODO: Instead of checking here for invalid die we might reject 1001 // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector). 1002 // We do not want access out of bounds when parsing corrupted debug data. 1003 size_t I = getDIEIndex(Die) + 1; 1004 if (I >= DieArray.size()) 1005 return nullptr; 1006 return &DieArray[I]; 1007 } 1008 1009 DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) { 1010 if (const DWARFDebugInfoEntry *Child = getLastChildEntry(Die)) 1011 return DWARFDie(this, Child); 1012 1013 return DWARFDie(); 1014 } 1015 1016 const DWARFDebugInfoEntry * 1017 DWARFUnit::getLastChildEntry(const DWARFDebugInfoEntry *Die) const { 1018 if (!Die) 1019 return nullptr; 1020 assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size()); 1021 1022 if (!Die->hasChildren()) 1023 return nullptr; 1024 1025 if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) { 1026 assert(*SiblingIdx < DieArray.size() && 1027 "SiblingIdx is out of DieArray boundaries"); 1028 assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null && 1029 "Bad end of children marker"); 1030 return &DieArray[*SiblingIdx - 1]; 1031 } 1032 1033 // If SiblingIdx is set for non-root dies we could be sure that DWARF is 1034 // correct and "end of children marker" must be found. For root die we do not 1035 // have such a guarantee(parsing root die might be stopped if "end of children 1036 // marker" is missing, SiblingIdx is always zero for root die). That is why we 1037 // do not use assertion for checking for "end of children marker" for root 1038 // die. 1039 1040 // TODO: Instead of checking here for invalid die we might reject 1041 // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector). 1042 if (getDIEIndex(Die) == 0 && DieArray.size() > 1 && 1043 DieArray.back().getTag() == dwarf::DW_TAG_null) { 1044 // For the unit die we might take last item from DieArray. 1045 assert(getDIEIndex(Die) == 1046 getDIEIndex(const_cast<DWARFUnit *>(this)->getUnitDIE()) && 1047 "Bad unit die"); 1048 return &DieArray.back(); 1049 } 1050 1051 return nullptr; 1052 } 1053 1054 const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const { 1055 if (!Abbrevs) { 1056 Expected<const DWARFAbbreviationDeclarationSet *> AbbrevsOrError = 1057 Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset()); 1058 if (!AbbrevsOrError) { 1059 // FIXME: We should propagate this error upwards. 1060 consumeError(AbbrevsOrError.takeError()); 1061 return nullptr; 1062 } 1063 Abbrevs = *AbbrevsOrError; 1064 } 1065 return Abbrevs; 1066 } 1067 1068 std::optional<object::SectionedAddress> DWARFUnit::getBaseAddress() { 1069 if (BaseAddr) 1070 return BaseAddr; 1071 1072 DWARFDie UnitDie = (SU ? SU : this)->getUnitDIE(); 1073 std::optional<DWARFFormValue> PC = 1074 UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc}); 1075 BaseAddr = toSectionedAddress(PC); 1076 return BaseAddr; 1077 } 1078 1079 Expected<StrOffsetsContributionDescriptor> 1080 StrOffsetsContributionDescriptor::validateContributionSize( 1081 DWARFDataExtractor &DA) { 1082 uint8_t EntrySize = getDwarfOffsetByteSize(); 1083 // In order to ensure that we don't read a partial record at the end of 1084 // the section we validate for a multiple of the entry size. 1085 uint64_t ValidationSize = alignTo(Size, EntrySize); 1086 // Guard against overflow. 1087 if (ValidationSize >= Size) 1088 if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize)) 1089 return *this; 1090 return createStringError(errc::invalid_argument, "length exceeds section size"); 1091 } 1092 1093 // Look for a DWARF64-formatted contribution to the string offsets table 1094 // starting at a given offset and record it in a descriptor. 1095 static Expected<StrOffsetsContributionDescriptor> 1096 parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) { 1097 if (!DA.isValidOffsetForDataOfSize(Offset, 16)) 1098 return createStringError(errc::invalid_argument, "section offset exceeds section size"); 1099 1100 if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64) 1101 return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit"); 1102 1103 uint64_t Size = DA.getU64(&Offset); 1104 uint8_t Version = DA.getU16(&Offset); 1105 (void)DA.getU16(&Offset); // padding 1106 // The encoded length includes the 2-byte version field and the 2-byte 1107 // padding, so we need to subtract them out when we populate the descriptor. 1108 return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64); 1109 } 1110 1111 // Look for a DWARF32-formatted contribution to the string offsets table 1112 // starting at a given offset and record it in a descriptor. 1113 static Expected<StrOffsetsContributionDescriptor> 1114 parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) { 1115 if (!DA.isValidOffsetForDataOfSize(Offset, 8)) 1116 return createStringError(errc::invalid_argument, "section offset exceeds section size"); 1117 1118 uint32_t ContributionSize = DA.getU32(&Offset); 1119 if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved) 1120 return createStringError(errc::invalid_argument, "invalid length"); 1121 1122 uint8_t Version = DA.getU16(&Offset); 1123 (void)DA.getU16(&Offset); // padding 1124 // The encoded length includes the 2-byte version field and the 2-byte 1125 // padding, so we need to subtract them out when we populate the descriptor. 1126 return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version, 1127 DWARF32); 1128 } 1129 1130 static Expected<StrOffsetsContributionDescriptor> 1131 parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA, 1132 llvm::dwarf::DwarfFormat Format, 1133 uint64_t Offset) { 1134 StrOffsetsContributionDescriptor Desc; 1135 switch (Format) { 1136 case dwarf::DwarfFormat::DWARF64: { 1137 if (Offset < 16) 1138 return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix"); 1139 auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16); 1140 if (!DescOrError) 1141 return DescOrError.takeError(); 1142 Desc = *DescOrError; 1143 break; 1144 } 1145 case dwarf::DwarfFormat::DWARF32: { 1146 if (Offset < 8) 1147 return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix"); 1148 auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8); 1149 if (!DescOrError) 1150 return DescOrError.takeError(); 1151 Desc = *DescOrError; 1152 break; 1153 } 1154 } 1155 return Desc.validateContributionSize(DA); 1156 } 1157 1158 Expected<std::optional<StrOffsetsContributionDescriptor>> 1159 DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) { 1160 assert(!IsDWO); 1161 auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base)); 1162 if (!OptOffset) 1163 return std::nullopt; 1164 auto DescOrError = 1165 parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset); 1166 if (!DescOrError) 1167 return DescOrError.takeError(); 1168 return *DescOrError; 1169 } 1170 1171 Expected<std::optional<StrOffsetsContributionDescriptor>> 1172 DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA) { 1173 assert(IsDWO); 1174 uint64_t Offset = 0; 1175 auto IndexEntry = Header.getIndexEntry(); 1176 const auto *C = 1177 IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr; 1178 if (C) 1179 Offset = C->getOffset(); 1180 if (getVersion() >= 5) { 1181 if (DA.getData().data() == nullptr) 1182 return std::nullopt; 1183 Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16; 1184 // Look for a valid contribution at the given offset. 1185 auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset); 1186 if (!DescOrError) 1187 return DescOrError.takeError(); 1188 return *DescOrError; 1189 } 1190 // Prior to DWARF v5, we derive the contribution size from the 1191 // index table (in a package file). In a .dwo file it is simply 1192 // the length of the string offsets section. 1193 StrOffsetsContributionDescriptor Desc; 1194 if (C) 1195 Desc = StrOffsetsContributionDescriptor(C->getOffset(), C->getLength(), 4, 1196 Header.getFormat()); 1197 else if (!IndexEntry && !StringOffsetSection.Data.empty()) 1198 Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(), 1199 4, Header.getFormat()); 1200 else 1201 return std::nullopt; 1202 auto DescOrError = Desc.validateContributionSize(DA); 1203 if (!DescOrError) 1204 return DescOrError.takeError(); 1205 return *DescOrError; 1206 } 1207 1208 std::optional<uint64_t> DWARFUnit::getRnglistOffset(uint32_t Index) { 1209 DataExtractor RangesData(RangeSection->Data, IsLittleEndian, 1210 getAddressByteSize()); 1211 DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection, 1212 IsLittleEndian, 0); 1213 if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry( 1214 RangesData, RangeSectionBase, getFormat(), Index)) 1215 return *Off + RangeSectionBase; 1216 return std::nullopt; 1217 } 1218 1219 std::optional<uint64_t> DWARFUnit::getLoclistOffset(uint32_t Index) { 1220 if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry( 1221 LocTable->getData(), LocSectionBase, getFormat(), Index)) 1222 return *Off + LocSectionBase; 1223 return std::nullopt; 1224 } 1225