xref: /freebsd/contrib/llvm-project/llvm/lib/DebugInfo/DWARF/DWARFUnit.cpp (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 //===- DWARFUnit.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
10 #include "llvm/ADT/SmallString.h"
11 #include "llvm/ADT/StringRef.h"
12 #include "llvm/BinaryFormat/Dwarf.h"
13 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
14 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
15 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
16 #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
17 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
18 #include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
19 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
20 #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
21 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
22 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
23 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
24 #include "llvm/DebugInfo/DWARF/DWARFListTable.h"
25 #include "llvm/DebugInfo/DWARF/DWARFObject.h"
26 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
27 #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
28 #include "llvm/Object/ObjectFile.h"
29 #include "llvm/Support/DataExtractor.h"
30 #include "llvm/Support/Errc.h"
31 #include "llvm/Support/Path.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstddef>
35 #include <cstdint>
36 #include <utility>
37 #include <vector>
38 
39 using namespace llvm;
40 using namespace dwarf;
41 
42 void DWARFUnitVector::addUnitsForSection(DWARFContext &C,
43                                          const DWARFSection &Section,
44                                          DWARFSectionKind SectionKind) {
45   const DWARFObject &D = C.getDWARFObj();
46   addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangesSection(),
47                &D.getLocSection(), D.getStrSection(),
48                D.getStrOffsetsSection(), &D.getAddrSection(),
49                D.getLineSection(), D.isLittleEndian(), false, false,
50                SectionKind);
51 }
52 
53 void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C,
54                                             const DWARFSection &DWOSection,
55                                             DWARFSectionKind SectionKind,
56                                             bool Lazy) {
57   const DWARFObject &D = C.getDWARFObj();
58   addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangesDWOSection(),
59                &D.getLocDWOSection(), D.getStrDWOSection(),
60                D.getStrOffsetsDWOSection(), &D.getAddrSection(),
61                D.getLineDWOSection(), C.isLittleEndian(), true, Lazy,
62                SectionKind);
63 }
64 
65 void DWARFUnitVector::addUnitsImpl(
66     DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section,
67     const DWARFDebugAbbrev *DA, const DWARFSection *RS,
68     const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS,
69     const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO,
70     bool Lazy, DWARFSectionKind SectionKind) {
71   DWARFDataExtractor Data(Obj, Section, LE, 0);
72   // Lazy initialization of Parser, now that we have all section info.
73   if (!Parser) {
74     Parser = [=, &Context, &Obj, &Section, &SOS,
75               &LS](uint64_t Offset, DWARFSectionKind SectionKind,
76                    const DWARFSection *CurSection,
77                    const DWARFUnitIndex::Entry *IndexEntry)
78         -> std::unique_ptr<DWARFUnit> {
79       const DWARFSection &InfoSection = CurSection ? *CurSection : Section;
80       DWARFDataExtractor Data(Obj, InfoSection, LE, 0);
81       if (!Data.isValidOffset(Offset))
82         return nullptr;
83       DWARFUnitHeader Header;
84       if (!Header.extract(Context, Data, &Offset, SectionKind))
85         return nullptr;
86       if (!IndexEntry && IsDWO) {
87         const DWARFUnitIndex &Index = getDWARFUnitIndex(
88             Context, Header.isTypeUnit() ? DW_SECT_EXT_TYPES : DW_SECT_INFO);
89         if (Index) {
90           if (Header.isTypeUnit())
91             IndexEntry = Index.getFromHash(Header.getTypeHash());
92           else if (auto DWOId = Header.getDWOId())
93             IndexEntry = Index.getFromHash(*DWOId);
94         }
95         if (!IndexEntry)
96           IndexEntry = Index.getFromOffset(Header.getOffset());
97       }
98       if (IndexEntry && !Header.applyIndexEntry(IndexEntry))
99         return nullptr;
100       std::unique_ptr<DWARFUnit> U;
101       if (Header.isTypeUnit())
102         U = std::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA,
103                                              RS, LocSection, SS, SOS, AOS, LS,
104                                              LE, IsDWO, *this);
105       else
106         U = std::make_unique<DWARFCompileUnit>(Context, InfoSection, Header,
107                                                 DA, RS, LocSection, SS, SOS,
108                                                 AOS, LS, LE, IsDWO, *this);
109       return U;
110     };
111   }
112   if (Lazy)
113     return;
114   // Find a reasonable insertion point within the vector.  We skip over
115   // (a) units from a different section, (b) units from the same section
116   // but with lower offset-within-section.  This keeps units in order
117   // within a section, although not necessarily within the object file,
118   // even if we do lazy parsing.
119   auto I = this->begin();
120   uint64_t Offset = 0;
121   while (Data.isValidOffset(Offset)) {
122     if (I != this->end() &&
123         (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) {
124       ++I;
125       continue;
126     }
127     auto U = Parser(Offset, SectionKind, &Section, nullptr);
128     // If parsing failed, we're done with this section.
129     if (!U)
130       break;
131     Offset = U->getNextUnitOffset();
132     I = std::next(this->insert(I, std::move(U)));
133   }
134 }
135 
136 DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) {
137   auto I = llvm::upper_bound(*this, Unit,
138                              [](const std::unique_ptr<DWARFUnit> &LHS,
139                                 const std::unique_ptr<DWARFUnit> &RHS) {
140                                return LHS->getOffset() < RHS->getOffset();
141                              });
142   return this->insert(I, std::move(Unit))->get();
143 }
144 
145 DWARFUnit *DWARFUnitVector::getUnitForOffset(uint64_t Offset) const {
146   auto end = begin() + getNumInfoUnits();
147   auto *CU =
148       std::upper_bound(begin(), end, Offset,
149                        [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
150                          return LHS < RHS->getNextUnitOffset();
151                        });
152   if (CU != end && (*CU)->getOffset() <= Offset)
153     return CU->get();
154   return nullptr;
155 }
156 
157 DWARFUnit *
158 DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) {
159   const auto *CUOff = E.getContribution(DW_SECT_INFO);
160   if (!CUOff)
161     return nullptr;
162 
163   uint64_t Offset = CUOff->getOffset();
164   auto end = begin() + getNumInfoUnits();
165 
166   auto *CU =
167       std::upper_bound(begin(), end, CUOff->getOffset(),
168                        [](uint64_t LHS, const std::unique_ptr<DWARFUnit> &RHS) {
169                          return LHS < RHS->getNextUnitOffset();
170                        });
171   if (CU != end && (*CU)->getOffset() <= Offset)
172     return CU->get();
173 
174   if (!Parser)
175     return nullptr;
176 
177   auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E);
178   if (!U)
179     return nullptr;
180 
181   auto *NewCU = U.get();
182   this->insert(CU, std::move(U));
183   ++NumInfoUnits;
184   return NewCU;
185 }
186 
187 DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
188                      const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA,
189                      const DWARFSection *RS, const DWARFSection *LocSection,
190                      StringRef SS, const DWARFSection &SOS,
191                      const DWARFSection *AOS, const DWARFSection &LS, bool LE,
192                      bool IsDWO, const DWARFUnitVector &UnitVector)
193     : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA),
194       RangeSection(RS), LineSection(LS), StringSection(SS),
195       StringOffsetSection(SOS), AddrOffsetSection(AOS), IsLittleEndian(LE),
196       IsDWO(IsDWO), UnitVector(UnitVector) {
197   clear();
198 }
199 
200 DWARFUnit::~DWARFUnit() = default;
201 
202 DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const {
203   return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, IsLittleEndian,
204                             getAddressByteSize());
205 }
206 
207 std::optional<object::SectionedAddress>
208 DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const {
209   if (!AddrOffsetSectionBase) {
210     auto R = Context.info_section_units();
211     // Surprising if a DWO file has more than one skeleton unit in it - this
212     // probably shouldn't be valid, but if a use case is found, here's where to
213     // support it (probably have to linearly search for the matching skeleton CU
214     // here)
215     if (IsDWO && hasSingleElement(R))
216       return (*R.begin())->getAddrOffsetSectionItem(Index);
217 
218     return std::nullopt;
219   }
220 
221   uint64_t Offset = *AddrOffsetSectionBase + Index * getAddressByteSize();
222   if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
223     return std::nullopt;
224   DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
225                         IsLittleEndian, getAddressByteSize());
226   uint64_t Section;
227   uint64_t Address = DA.getRelocatedAddress(&Offset, &Section);
228   return {{Address, Section}};
229 }
230 
231 Expected<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const {
232   if (!StringOffsetsTableContribution)
233     return make_error<StringError>(
234         "DW_FORM_strx used without a valid string offsets table",
235         inconvertibleErrorCode());
236   unsigned ItemSize = getDwarfStringOffsetsByteSize();
237   uint64_t Offset = getStringOffsetsBase() + Index * ItemSize;
238   if (StringOffsetSection.Data.size() < Offset + ItemSize)
239     return make_error<StringError>("DW_FORM_strx uses index " + Twine(Index) +
240                                        ", which is too large",
241                                    inconvertibleErrorCode());
242   DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
243                         IsLittleEndian, 0);
244   return DA.getRelocatedValue(ItemSize, &Offset);
245 }
246 
247 bool DWARFUnitHeader::extract(DWARFContext &Context,
248                               const DWARFDataExtractor &debug_info,
249                               uint64_t *offset_ptr,
250                               DWARFSectionKind SectionKind) {
251   Offset = *offset_ptr;
252   Error Err = Error::success();
253   IndexEntry = nullptr;
254   std::tie(Length, FormParams.Format) =
255       debug_info.getInitialLength(offset_ptr, &Err);
256   FormParams.Version = debug_info.getU16(offset_ptr, &Err);
257   if (FormParams.Version >= 5) {
258     UnitType = debug_info.getU8(offset_ptr, &Err);
259     FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
260     AbbrOffset = debug_info.getRelocatedValue(
261         FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
262   } else {
263     AbbrOffset = debug_info.getRelocatedValue(
264         FormParams.getDwarfOffsetByteSize(), offset_ptr, nullptr, &Err);
265     FormParams.AddrSize = debug_info.getU8(offset_ptr, &Err);
266     // Fake a unit type based on the section type.  This isn't perfect,
267     // but distinguishing compile and type units is generally enough.
268     if (SectionKind == DW_SECT_EXT_TYPES)
269       UnitType = DW_UT_type;
270     else
271       UnitType = DW_UT_compile;
272   }
273   if (isTypeUnit()) {
274     TypeHash = debug_info.getU64(offset_ptr, &Err);
275     TypeOffset = debug_info.getUnsigned(
276         offset_ptr, FormParams.getDwarfOffsetByteSize(), &Err);
277   } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton)
278     DWOId = debug_info.getU64(offset_ptr, &Err);
279 
280   if (Err) {
281     Context.getWarningHandler()(joinErrors(
282         createStringError(
283             errc::invalid_argument,
284             "DWARF unit at 0x%8.8" PRIx64 " cannot be parsed:", Offset),
285         std::move(Err)));
286     return false;
287   }
288 
289   // Header fields all parsed, capture the size of this unit header.
290   assert(*offset_ptr - Offset <= 255 && "unexpected header size");
291   Size = uint8_t(*offset_ptr - Offset);
292   uint64_t NextCUOffset = Offset + getUnitLengthFieldByteSize() + getLength();
293 
294   if (!debug_info.isValidOffset(getNextUnitOffset() - 1)) {
295     Context.getWarningHandler()(
296         createStringError(errc::invalid_argument,
297                           "DWARF unit from offset 0x%8.8" PRIx64 " incl. "
298                           "to offset  0x%8.8" PRIx64 " excl. "
299                           "extends past section size 0x%8.8zx",
300                           Offset, NextCUOffset, debug_info.size()));
301     return false;
302   }
303 
304   if (!DWARFContext::isSupportedVersion(getVersion())) {
305     Context.getWarningHandler()(createStringError(
306         errc::invalid_argument,
307         "DWARF unit at offset 0x%8.8" PRIx64 " "
308         "has unsupported version %" PRIu16 ", supported are 2-%u",
309         Offset, getVersion(), DWARFContext::getMaxSupportedVersion()));
310     return false;
311   }
312 
313   // Type offset is unit-relative; should be after the header and before
314   // the end of the current unit.
315   if (isTypeUnit() && TypeOffset < Size) {
316     Context.getWarningHandler()(
317         createStringError(errc::invalid_argument,
318                           "DWARF type unit at offset "
319                           "0x%8.8" PRIx64 " "
320                           "has its relocated type_offset 0x%8.8" PRIx64 " "
321                           "pointing inside the header",
322                           Offset, Offset + TypeOffset));
323     return false;
324   }
325   if (isTypeUnit() &&
326       TypeOffset >= getUnitLengthFieldByteSize() + getLength()) {
327     Context.getWarningHandler()(createStringError(
328         errc::invalid_argument,
329         "DWARF type unit from offset 0x%8.8" PRIx64 " incl. "
330         "to offset 0x%8.8" PRIx64 " excl. has its "
331         "relocated type_offset 0x%8.8" PRIx64 " pointing past the unit end",
332         Offset, NextCUOffset, Offset + TypeOffset));
333     return false;
334   }
335 
336   if (Error SizeErr = DWARFContext::checkAddressSizeSupported(
337           getAddressByteSize(), errc::invalid_argument,
338           "DWARF unit at offset 0x%8.8" PRIx64, Offset)) {
339     Context.getWarningHandler()(std::move(SizeErr));
340     return false;
341   }
342 
343   // Keep track of the highest DWARF version we encounter across all units.
344   Context.setMaxVersionIfGreater(getVersion());
345   return true;
346 }
347 
348 bool DWARFUnitHeader::applyIndexEntry(const DWARFUnitIndex::Entry *Entry) {
349   assert(Entry);
350   assert(!IndexEntry);
351   IndexEntry = Entry;
352   if (AbbrOffset)
353     return false;
354   auto *UnitContrib = IndexEntry->getContribution();
355   if (!UnitContrib ||
356       UnitContrib->getLength() != (getLength() + getUnitLengthFieldByteSize()))
357     return false;
358   auto *AbbrEntry = IndexEntry->getContribution(DW_SECT_ABBREV);
359   if (!AbbrEntry)
360     return false;
361   AbbrOffset = AbbrEntry->getOffset();
362   return true;
363 }
364 
365 Error DWARFUnit::extractRangeList(uint64_t RangeListOffset,
366                                   DWARFDebugRangeList &RangeList) const {
367   // Require that compile unit is extracted.
368   assert(!DieArray.empty());
369   DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
370                                 IsLittleEndian, getAddressByteSize());
371   uint64_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
372   return RangeList.extract(RangesData, &ActualRangeListOffset);
373 }
374 
375 void DWARFUnit::clear() {
376   Abbrevs = nullptr;
377   BaseAddr.reset();
378   RangeSectionBase = 0;
379   LocSectionBase = 0;
380   AddrOffsetSectionBase = std::nullopt;
381   SU = nullptr;
382   clearDIEs(false);
383   AddrDieMap.clear();
384   if (DWO)
385     DWO->clear();
386   DWO.reset();
387 }
388 
389 const char *DWARFUnit::getCompilationDir() {
390   return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
391 }
392 
393 void DWARFUnit::extractDIEsToVector(
394     bool AppendCUDie, bool AppendNonCUDies,
395     std::vector<DWARFDebugInfoEntry> &Dies) const {
396   if (!AppendCUDie && !AppendNonCUDies)
397     return;
398 
399   // Set the offset to that of the first DIE and calculate the start of the
400   // next compilation unit header.
401   uint64_t DIEOffset = getOffset() + getHeaderSize();
402   uint64_t NextCUOffset = getNextUnitOffset();
403   DWARFDebugInfoEntry DIE;
404   DWARFDataExtractor DebugInfoData = getDebugInfoExtractor();
405   // The end offset has been already checked by DWARFUnitHeader::extract.
406   assert(DebugInfoData.isValidOffset(NextCUOffset - 1));
407   std::vector<uint32_t> Parents;
408   std::vector<uint32_t> PrevSiblings;
409   bool IsCUDie = true;
410 
411   assert(
412       ((AppendCUDie && Dies.empty()) || (!AppendCUDie && Dies.size() == 1)) &&
413       "Dies array is not empty");
414 
415   // Fill Parents and Siblings stacks with initial value.
416   Parents.push_back(UINT32_MAX);
417   if (!AppendCUDie)
418     Parents.push_back(0);
419   PrevSiblings.push_back(0);
420 
421   // Start to extract dies.
422   do {
423     assert(Parents.size() > 0 && "Empty parents stack");
424     assert((Parents.back() == UINT32_MAX || Parents.back() <= Dies.size()) &&
425            "Wrong parent index");
426 
427     // Extract die. Stop if any error occurred.
428     if (!DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
429                          Parents.back()))
430       break;
431 
432     // If previous sibling is remembered then update it`s SiblingIdx field.
433     if (PrevSiblings.back() > 0) {
434       assert(PrevSiblings.back() < Dies.size() &&
435              "Previous sibling index is out of Dies boundaries");
436       Dies[PrevSiblings.back()].setSiblingIdx(Dies.size());
437     }
438 
439     // Store die into the Dies vector.
440     if (IsCUDie) {
441       if (AppendCUDie)
442         Dies.push_back(DIE);
443       if (!AppendNonCUDies)
444         break;
445       // The average bytes per DIE entry has been seen to be
446       // around 14-20 so let's pre-reserve the needed memory for
447       // our DIE entries accordingly.
448       Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
449     } else {
450       // Remember last previous sibling.
451       PrevSiblings.back() = Dies.size();
452 
453       Dies.push_back(DIE);
454     }
455 
456     // Check for new children scope.
457     if (const DWARFAbbreviationDeclaration *AbbrDecl =
458             DIE.getAbbreviationDeclarationPtr()) {
459       if (AbbrDecl->hasChildren()) {
460         if (AppendCUDie || !IsCUDie) {
461           assert(Dies.size() > 0 && "Dies does not contain any die");
462           Parents.push_back(Dies.size() - 1);
463           PrevSiblings.push_back(0);
464         }
465       } else if (IsCUDie)
466         // Stop if we have single compile unit die w/o children.
467         break;
468     } else {
469       // NULL DIE: finishes current children scope.
470       Parents.pop_back();
471       PrevSiblings.pop_back();
472     }
473 
474     if (IsCUDie)
475       IsCUDie = false;
476 
477     // Stop when compile unit die is removed from the parents stack.
478   } while (Parents.size() > 1);
479 }
480 
481 void DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
482   if (Error e = tryExtractDIEsIfNeeded(CUDieOnly))
483     Context.getRecoverableErrorHandler()(std::move(e));
484 }
485 
486 Error DWARFUnit::tryExtractDIEsIfNeeded(bool CUDieOnly) {
487   if ((CUDieOnly && !DieArray.empty()) ||
488       DieArray.size() > 1)
489     return Error::success(); // Already parsed.
490 
491   bool HasCUDie = !DieArray.empty();
492   extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
493 
494   if (DieArray.empty())
495     return Error::success();
496 
497   // If CU DIE was just parsed, copy several attribute values from it.
498   if (HasCUDie)
499     return Error::success();
500 
501   DWARFDie UnitDie(this, &DieArray[0]);
502   if (std::optional<uint64_t> DWOId =
503           toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id)))
504     Header.setDWOId(*DWOId);
505   if (!IsDWO) {
506     assert(AddrOffsetSectionBase == std::nullopt);
507     assert(RangeSectionBase == 0);
508     assert(LocSectionBase == 0);
509     AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base));
510     if (!AddrOffsetSectionBase)
511       AddrOffsetSectionBase =
512           toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base));
513     RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
514     LocSectionBase = toSectionOffset(UnitDie.find(DW_AT_loclists_base), 0);
515   }
516 
517   // In general, in DWARF v5 and beyond we derive the start of the unit's
518   // contribution to the string offsets table from the unit DIE's
519   // DW_AT_str_offsets_base attribute. Split DWARF units do not use this
520   // attribute, so we assume that there is a contribution to the string
521   // offsets table starting at offset 0 of the debug_str_offsets.dwo section.
522   // In both cases we need to determine the format of the contribution,
523   // which may differ from the unit's format.
524   DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
525                         IsLittleEndian, 0);
526   if (IsDWO || getVersion() >= 5) {
527     auto StringOffsetOrError =
528         IsDWO ? determineStringOffsetsTableContributionDWO(DA)
529               : determineStringOffsetsTableContribution(DA);
530     if (!StringOffsetOrError)
531       return createStringError(errc::invalid_argument,
532                                "invalid reference to or invalid content in "
533                                ".debug_str_offsets[.dwo]: " +
534                                    toString(StringOffsetOrError.takeError()));
535 
536     StringOffsetsTableContribution = *StringOffsetOrError;
537   }
538 
539   // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to
540   // describe address ranges.
541   if (getVersion() >= 5) {
542     // In case of DWP, the base offset from the index has to be added.
543     if (IsDWO) {
544       uint64_t ContributionBaseOffset = 0;
545       if (auto *IndexEntry = Header.getIndexEntry())
546         if (auto *Contrib = IndexEntry->getContribution(DW_SECT_RNGLISTS))
547           ContributionBaseOffset = Contrib->getOffset();
548       setRangesSection(
549           &Context.getDWARFObj().getRnglistsDWOSection(),
550           ContributionBaseOffset +
551               DWARFListTableHeader::getHeaderSize(Header.getFormat()));
552     } else
553       setRangesSection(&Context.getDWARFObj().getRnglistsSection(),
554                        toSectionOffset(UnitDie.find(DW_AT_rnglists_base),
555                                        DWARFListTableHeader::getHeaderSize(
556                                            Header.getFormat())));
557   }
558 
559   if (IsDWO) {
560     // If we are reading a package file, we need to adjust the location list
561     // data based on the index entries.
562     StringRef Data = Header.getVersion() >= 5
563                          ? Context.getDWARFObj().getLoclistsDWOSection().Data
564                          : Context.getDWARFObj().getLocDWOSection().Data;
565     if (auto *IndexEntry = Header.getIndexEntry())
566       if (const auto *C = IndexEntry->getContribution(
567               Header.getVersion() >= 5 ? DW_SECT_LOCLISTS : DW_SECT_EXT_LOC))
568         Data = Data.substr(C->getOffset(), C->getLength());
569 
570     DWARFDataExtractor DWARFData(Data, IsLittleEndian, getAddressByteSize());
571     LocTable =
572         std::make_unique<DWARFDebugLoclists>(DWARFData, Header.getVersion());
573     LocSectionBase = DWARFListTableHeader::getHeaderSize(Header.getFormat());
574   } else if (getVersion() >= 5) {
575     LocTable = std::make_unique<DWARFDebugLoclists>(
576         DWARFDataExtractor(Context.getDWARFObj(),
577                            Context.getDWARFObj().getLoclistsSection(),
578                            IsLittleEndian, getAddressByteSize()),
579         getVersion());
580   } else {
581     LocTable = std::make_unique<DWARFDebugLoc>(DWARFDataExtractor(
582         Context.getDWARFObj(), Context.getDWARFObj().getLocSection(),
583         IsLittleEndian, getAddressByteSize()));
584   }
585 
586   // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
587   // skeleton CU DIE, so that DWARF users not aware of it are not broken.
588   return Error::success();
589 }
590 
591 bool DWARFUnit::parseDWO(StringRef DWOAlternativeLocation) {
592   if (IsDWO)
593     return false;
594   if (DWO)
595     return false;
596   DWARFDie UnitDie = getUnitDIE();
597   if (!UnitDie)
598     return false;
599   auto DWOFileName = getVersion() >= 5
600                          ? dwarf::toString(UnitDie.find(DW_AT_dwo_name))
601                          : dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
602   if (!DWOFileName)
603     return false;
604   auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
605   SmallString<16> AbsolutePath;
606   if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
607       *CompilationDir) {
608     sys::path::append(AbsolutePath, *CompilationDir);
609   }
610   sys::path::append(AbsolutePath, *DWOFileName);
611   auto DWOId = getDWOId();
612   if (!DWOId)
613     return false;
614   auto DWOContext = Context.getDWOContext(AbsolutePath);
615   if (!DWOContext) {
616     // Use the alternative location to get the DWARF context for the DWO object.
617     if (DWOAlternativeLocation.empty())
618       return false;
619     // If the alternative context does not correspond to the original DWO object
620     // (different hashes), the below 'getDWOCompileUnitForHash' call will catch
621     // the issue, with a returned null context.
622     DWOContext = Context.getDWOContext(DWOAlternativeLocation);
623     if (!DWOContext)
624       return false;
625   }
626 
627   DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
628   if (!DWOCU)
629     return false;
630   DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
631   DWO->setSkeletonUnit(this);
632   // Share .debug_addr and .debug_ranges section with compile unit in .dwo
633   if (AddrOffsetSectionBase)
634     DWO->setAddrOffsetSection(AddrOffsetSection, *AddrOffsetSectionBase);
635   if (getVersion() == 4) {
636     auto DWORangesBase = UnitDie.getRangesBaseAttribute();
637     DWO->setRangesSection(RangeSection, DWORangesBase.value_or(0));
638   }
639 
640   return true;
641 }
642 
643 void DWARFUnit::clearDIEs(bool KeepCUDie) {
644   // Do not use resize() + shrink_to_fit() to free memory occupied by dies.
645   // shrink_to_fit() is a *non-binding* request to reduce capacity() to size().
646   // It depends on the implementation whether the request is fulfilled.
647   // Create a new vector with a small capacity and assign it to the DieArray to
648   // have previous contents freed.
649   DieArray = (KeepCUDie && !DieArray.empty())
650                  ? std::vector<DWARFDebugInfoEntry>({DieArray[0]})
651                  : std::vector<DWARFDebugInfoEntry>();
652 }
653 
654 Expected<DWARFAddressRangesVector>
655 DWARFUnit::findRnglistFromOffset(uint64_t Offset) {
656   if (getVersion() <= 4) {
657     DWARFDebugRangeList RangeList;
658     if (Error E = extractRangeList(Offset, RangeList))
659       return std::move(E);
660     return RangeList.getAbsoluteRanges(getBaseAddress());
661   }
662   DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
663                                 IsLittleEndian, Header.getAddressByteSize());
664   DWARFDebugRnglistTable RnglistTable;
665   auto RangeListOrError = RnglistTable.findList(RangesData, Offset);
666   if (RangeListOrError)
667     return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this);
668   return RangeListOrError.takeError();
669 }
670 
671 Expected<DWARFAddressRangesVector>
672 DWARFUnit::findRnglistFromIndex(uint32_t Index) {
673   if (auto Offset = getRnglistOffset(Index))
674     return findRnglistFromOffset(*Offset);
675 
676   return createStringError(errc::invalid_argument,
677                            "invalid range list table index %d (possibly "
678                            "missing the entire range list table)",
679                            Index);
680 }
681 
682 Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() {
683   DWARFDie UnitDie = getUnitDIE();
684   if (!UnitDie)
685     return createStringError(errc::invalid_argument, "No unit DIE");
686 
687   // First, check if unit DIE describes address ranges for the whole unit.
688   auto CUDIERangesOrError = UnitDie.getAddressRanges();
689   if (!CUDIERangesOrError)
690     return createStringError(errc::invalid_argument,
691                              "decoding address ranges: %s",
692                              toString(CUDIERangesOrError.takeError()).c_str());
693   return *CUDIERangesOrError;
694 }
695 
696 Expected<DWARFLocationExpressionsVector>
697 DWARFUnit::findLoclistFromOffset(uint64_t Offset) {
698   DWARFLocationExpressionsVector Result;
699 
700   Error InterpretationError = Error::success();
701 
702   Error ParseError = getLocationTable().visitAbsoluteLocationList(
703       Offset, getBaseAddress(),
704       [this](uint32_t Index) { return getAddrOffsetSectionItem(Index); },
705       [&](Expected<DWARFLocationExpression> L) {
706         if (L)
707           Result.push_back(std::move(*L));
708         else
709           InterpretationError =
710               joinErrors(L.takeError(), std::move(InterpretationError));
711         return !InterpretationError;
712       });
713 
714   if (ParseError || InterpretationError)
715     return joinErrors(std::move(ParseError), std::move(InterpretationError));
716 
717   return Result;
718 }
719 
720 void DWARFUnit::updateAddressDieMap(DWARFDie Die) {
721   if (Die.isSubroutineDIE()) {
722     auto DIERangesOrError = Die.getAddressRanges();
723     if (DIERangesOrError) {
724       for (const auto &R : DIERangesOrError.get()) {
725         // Ignore 0-sized ranges.
726         if (R.LowPC == R.HighPC)
727           continue;
728         auto B = AddrDieMap.upper_bound(R.LowPC);
729         if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) {
730           // The range is a sub-range of existing ranges, we need to split the
731           // existing range.
732           if (R.HighPC < B->second.first)
733             AddrDieMap[R.HighPC] = B->second;
734           if (R.LowPC > B->first)
735             AddrDieMap[B->first].first = R.LowPC;
736         }
737         AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die);
738       }
739     } else
740       llvm::consumeError(DIERangesOrError.takeError());
741   }
742   // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to
743   // simplify the logic to update AddrDieMap. The child's range will always
744   // be equal or smaller than the parent's range. With this assumption, when
745   // adding one range into the map, it will at most split a range into 3
746   // sub-ranges.
747   for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling())
748     updateAddressDieMap(Child);
749 }
750 
751 DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
752   extractDIEsIfNeeded(false);
753   if (AddrDieMap.empty())
754     updateAddressDieMap(getUnitDIE());
755   auto R = AddrDieMap.upper_bound(Address);
756   if (R == AddrDieMap.begin())
757     return DWARFDie();
758   // upper_bound's previous item contains Address.
759   --R;
760   if (Address >= R->second.first)
761     return DWARFDie();
762   return R->second.second;
763 }
764 
765 void DWARFUnit::updateVariableDieMap(DWARFDie Die) {
766   for (DWARFDie Child : Die) {
767     if (isType(Child.getTag()))
768       continue;
769     updateVariableDieMap(Child);
770   }
771 
772   if (Die.getTag() != DW_TAG_variable)
773     return;
774 
775   Expected<DWARFLocationExpressionsVector> Locations =
776       Die.getLocations(DW_AT_location);
777   if (!Locations) {
778     // Missing DW_AT_location is fine here.
779     consumeError(Locations.takeError());
780     return;
781   }
782 
783   uint64_t Address = UINT64_MAX;
784 
785   for (const DWARFLocationExpression &Location : *Locations) {
786     uint8_t AddressSize = getAddressByteSize();
787     DataExtractor Data(Location.Expr, /*IsLittleEndian=*/true, AddressSize);
788     DWARFExpression Expr(Data, AddressSize);
789     auto It = Expr.begin();
790     if (It == Expr.end())
791       continue;
792 
793     // Match exactly the main sequence used to describe global variables:
794     // `DW_OP_addr[x] [+ DW_OP_plus_uconst]`. Currently, this is the sequence
795     // that LLVM produces for DILocalVariables and DIGlobalVariables. If, in
796     // future, the DWARF producer (`DwarfCompileUnit::addLocationAttribute()` is
797     // a good starting point) is extended to use further expressions, this code
798     // needs to be updated.
799     uint64_t LocationAddr;
800     if (It->getCode() == dwarf::DW_OP_addr) {
801       LocationAddr = It->getRawOperand(0);
802     } else if (It->getCode() == dwarf::DW_OP_addrx) {
803       uint64_t DebugAddrOffset = It->getRawOperand(0);
804       if (auto Pointer = getAddrOffsetSectionItem(DebugAddrOffset)) {
805         LocationAddr = Pointer->Address;
806       }
807     } else {
808       continue;
809     }
810 
811     // Read the optional 2nd operand, a DW_OP_plus_uconst.
812     if (++It != Expr.end()) {
813       if (It->getCode() != dwarf::DW_OP_plus_uconst)
814         continue;
815 
816       LocationAddr += It->getRawOperand(0);
817 
818       // Probe for a 3rd operand, if it exists, bail.
819       if (++It != Expr.end())
820         continue;
821     }
822 
823     Address = LocationAddr;
824     break;
825   }
826 
827   // Get the size of the global variable. If all else fails (i.e. the global has
828   // no type), then we use a size of one to still allow symbolization of the
829   // exact address.
830   uint64_t GVSize = 1;
831   if (DWARFDie BaseType = Die.getAttributeValueAsReferencedDie(DW_AT_type))
832     if (std::optional<uint64_t> Size = Die.getTypeSize(getAddressByteSize()))
833       GVSize = *Size;
834 
835   if (Address != UINT64_MAX)
836     VariableDieMap[Address] = {Address + GVSize, Die};
837 }
838 
839 DWARFDie DWARFUnit::getVariableForAddress(uint64_t Address) {
840   extractDIEsIfNeeded(false);
841 
842   auto RootDie = getUnitDIE();
843 
844   auto RootLookup = RootsParsedForVariables.insert(RootDie.getOffset());
845   if (RootLookup.second)
846     updateVariableDieMap(RootDie);
847 
848   auto R = VariableDieMap.upper_bound(Address);
849   if (R == VariableDieMap.begin())
850     return DWARFDie();
851 
852   // upper_bound's previous item contains Address.
853   --R;
854   if (Address >= R->second.first)
855     return DWARFDie();
856   return R->second.second;
857 }
858 
859 void
860 DWARFUnit::getInlinedChainForAddress(uint64_t Address,
861                                      SmallVectorImpl<DWARFDie> &InlinedChain) {
862   assert(InlinedChain.empty());
863   // Try to look for subprogram DIEs in the DWO file.
864   parseDWO();
865   // First, find the subroutine that contains the given address (the leaf
866   // of inlined chain).
867   DWARFDie SubroutineDIE =
868       (DWO ? *DWO : *this).getSubroutineForAddress(Address);
869 
870   while (SubroutineDIE) {
871     if (SubroutineDIE.isSubprogramDIE()) {
872       InlinedChain.push_back(SubroutineDIE);
873       return;
874     }
875     if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine)
876       InlinedChain.push_back(SubroutineDIE);
877     SubroutineDIE  = SubroutineDIE.getParent();
878   }
879 }
880 
881 const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context,
882                                               DWARFSectionKind Kind) {
883   if (Kind == DW_SECT_INFO)
884     return Context.getCUIndex();
885   assert(Kind == DW_SECT_EXT_TYPES);
886   return Context.getTUIndex();
887 }
888 
889 DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) {
890   if (const DWARFDebugInfoEntry *Entry = getParentEntry(Die))
891     return DWARFDie(this, Entry);
892 
893   return DWARFDie();
894 }
895 
896 const DWARFDebugInfoEntry *
897 DWARFUnit::getParentEntry(const DWARFDebugInfoEntry *Die) const {
898   if (!Die)
899     return nullptr;
900   assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
901 
902   if (std::optional<uint32_t> ParentIdx = Die->getParentIdx()) {
903     assert(*ParentIdx < DieArray.size() &&
904            "ParentIdx is out of DieArray boundaries");
905     return getDebugInfoEntry(*ParentIdx);
906   }
907 
908   return nullptr;
909 }
910 
911 DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) {
912   if (const DWARFDebugInfoEntry *Sibling = getSiblingEntry(Die))
913     return DWARFDie(this, Sibling);
914 
915   return DWARFDie();
916 }
917 
918 const DWARFDebugInfoEntry *
919 DWARFUnit::getSiblingEntry(const DWARFDebugInfoEntry *Die) const {
920   if (!Die)
921     return nullptr;
922   assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
923 
924   if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
925     assert(*SiblingIdx < DieArray.size() &&
926            "SiblingIdx is out of DieArray boundaries");
927     return &DieArray[*SiblingIdx];
928   }
929 
930   return nullptr;
931 }
932 
933 DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) {
934   if (const DWARFDebugInfoEntry *Sibling = getPreviousSiblingEntry(Die))
935     return DWARFDie(this, Sibling);
936 
937   return DWARFDie();
938 }
939 
940 const DWARFDebugInfoEntry *
941 DWARFUnit::getPreviousSiblingEntry(const DWARFDebugInfoEntry *Die) const {
942   if (!Die)
943     return nullptr;
944   assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
945 
946   std::optional<uint32_t> ParentIdx = Die->getParentIdx();
947   if (!ParentIdx)
948     // Die is a root die, there is no previous sibling.
949     return nullptr;
950 
951   assert(*ParentIdx < DieArray.size() &&
952          "ParentIdx is out of DieArray boundaries");
953   assert(getDIEIndex(Die) > 0 && "Die is a root die");
954 
955   uint32_t PrevDieIdx = getDIEIndex(Die) - 1;
956   if (PrevDieIdx == *ParentIdx)
957     // Immediately previous node is parent, there is no previous sibling.
958     return nullptr;
959 
960   while (DieArray[PrevDieIdx].getParentIdx() != *ParentIdx) {
961     PrevDieIdx = *DieArray[PrevDieIdx].getParentIdx();
962 
963     assert(PrevDieIdx < DieArray.size() &&
964            "PrevDieIdx is out of DieArray boundaries");
965     assert(PrevDieIdx >= *ParentIdx &&
966            "PrevDieIdx is not a child of parent of Die");
967   }
968 
969   return &DieArray[PrevDieIdx];
970 }
971 
972 DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) {
973   if (const DWARFDebugInfoEntry *Child = getFirstChildEntry(Die))
974     return DWARFDie(this, Child);
975 
976   return DWARFDie();
977 }
978 
979 const DWARFDebugInfoEntry *
980 DWARFUnit::getFirstChildEntry(const DWARFDebugInfoEntry *Die) const {
981   if (!Die)
982     return nullptr;
983   assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
984 
985   if (!Die->hasChildren())
986     return nullptr;
987 
988   // TODO: Instead of checking here for invalid die we might reject
989   // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
990   // We do not want access out of bounds when parsing corrupted debug data.
991   size_t I = getDIEIndex(Die) + 1;
992   if (I >= DieArray.size())
993     return nullptr;
994   return &DieArray[I];
995 }
996 
997 DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) {
998   if (const DWARFDebugInfoEntry *Child = getLastChildEntry(Die))
999     return DWARFDie(this, Child);
1000 
1001   return DWARFDie();
1002 }
1003 
1004 const DWARFDebugInfoEntry *
1005 DWARFUnit::getLastChildEntry(const DWARFDebugInfoEntry *Die) const {
1006   if (!Die)
1007     return nullptr;
1008   assert(Die >= DieArray.data() && Die < DieArray.data() + DieArray.size());
1009 
1010   if (!Die->hasChildren())
1011     return nullptr;
1012 
1013   if (std::optional<uint32_t> SiblingIdx = Die->getSiblingIdx()) {
1014     assert(*SiblingIdx < DieArray.size() &&
1015            "SiblingIdx is out of DieArray boundaries");
1016     assert(DieArray[*SiblingIdx - 1].getTag() == dwarf::DW_TAG_null &&
1017            "Bad end of children marker");
1018     return &DieArray[*SiblingIdx - 1];
1019   }
1020 
1021   // If SiblingIdx is set for non-root dies we could be sure that DWARF is
1022   // correct and "end of children marker" must be found. For root die we do not
1023   // have such a guarantee(parsing root die might be stopped if "end of children
1024   // marker" is missing, SiblingIdx is always zero for root die). That is why we
1025   // do not use assertion for checking for "end of children marker" for root
1026   // die.
1027 
1028   // TODO: Instead of checking here for invalid die we might reject
1029   // invalid dies at parsing stage(DWARFUnit::extractDIEsToVector).
1030   if (getDIEIndex(Die) == 0 && DieArray.size() > 1 &&
1031       DieArray.back().getTag() == dwarf::DW_TAG_null) {
1032     // For the unit die we might take last item from DieArray.
1033     assert(getDIEIndex(Die) ==
1034                getDIEIndex(const_cast<DWARFUnit *>(this)->getUnitDIE()) &&
1035            "Bad unit die");
1036     return &DieArray.back();
1037   }
1038 
1039   return nullptr;
1040 }
1041 
1042 const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const {
1043   if (!Abbrevs) {
1044     Expected<const DWARFAbbreviationDeclarationSet *> AbbrevsOrError =
1045         Abbrev->getAbbreviationDeclarationSet(getAbbreviationsOffset());
1046     if (!AbbrevsOrError) {
1047       // FIXME: We should propagate this error upwards.
1048       consumeError(AbbrevsOrError.takeError());
1049       return nullptr;
1050     }
1051     Abbrevs = *AbbrevsOrError;
1052   }
1053   return Abbrevs;
1054 }
1055 
1056 std::optional<object::SectionedAddress> DWARFUnit::getBaseAddress() {
1057   if (BaseAddr)
1058     return BaseAddr;
1059 
1060   DWARFDie UnitDie = (SU ? SU : this)->getUnitDIE();
1061   std::optional<DWARFFormValue> PC =
1062       UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
1063   BaseAddr = toSectionedAddress(PC);
1064   return BaseAddr;
1065 }
1066 
1067 Expected<StrOffsetsContributionDescriptor>
1068 StrOffsetsContributionDescriptor::validateContributionSize(
1069     DWARFDataExtractor &DA) {
1070   uint8_t EntrySize = getDwarfOffsetByteSize();
1071   // In order to ensure that we don't read a partial record at the end of
1072   // the section we validate for a multiple of the entry size.
1073   uint64_t ValidationSize = alignTo(Size, EntrySize);
1074   // Guard against overflow.
1075   if (ValidationSize >= Size)
1076     if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
1077       return *this;
1078   return createStringError(errc::invalid_argument, "length exceeds section size");
1079 }
1080 
1081 // Look for a DWARF64-formatted contribution to the string offsets table
1082 // starting at a given offset and record it in a descriptor.
1083 static Expected<StrOffsetsContributionDescriptor>
1084 parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
1085   if (!DA.isValidOffsetForDataOfSize(Offset, 16))
1086     return createStringError(errc::invalid_argument, "section offset exceeds section size");
1087 
1088   if (DA.getU32(&Offset) != dwarf::DW_LENGTH_DWARF64)
1089     return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit");
1090 
1091   uint64_t Size = DA.getU64(&Offset);
1092   uint8_t Version = DA.getU16(&Offset);
1093   (void)DA.getU16(&Offset); // padding
1094   // The encoded length includes the 2-byte version field and the 2-byte
1095   // padding, so we need to subtract them out when we populate the descriptor.
1096   return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64);
1097 }
1098 
1099 // Look for a DWARF32-formatted contribution to the string offsets table
1100 // starting at a given offset and record it in a descriptor.
1101 static Expected<StrOffsetsContributionDescriptor>
1102 parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint64_t Offset) {
1103   if (!DA.isValidOffsetForDataOfSize(Offset, 8))
1104     return createStringError(errc::invalid_argument, "section offset exceeds section size");
1105 
1106   uint32_t ContributionSize = DA.getU32(&Offset);
1107   if (ContributionSize >= dwarf::DW_LENGTH_lo_reserved)
1108     return createStringError(errc::invalid_argument, "invalid length");
1109 
1110   uint8_t Version = DA.getU16(&Offset);
1111   (void)DA.getU16(&Offset); // padding
1112   // The encoded length includes the 2-byte version field and the 2-byte
1113   // padding, so we need to subtract them out when we populate the descriptor.
1114   return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version,
1115                                           DWARF32);
1116 }
1117 
1118 static Expected<StrOffsetsContributionDescriptor>
1119 parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA,
1120                                    llvm::dwarf::DwarfFormat Format,
1121                                    uint64_t Offset) {
1122   StrOffsetsContributionDescriptor Desc;
1123   switch (Format) {
1124   case dwarf::DwarfFormat::DWARF64: {
1125     if (Offset < 16)
1126       return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix");
1127     auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, Offset - 16);
1128     if (!DescOrError)
1129       return DescOrError.takeError();
1130     Desc = *DescOrError;
1131     break;
1132   }
1133   case dwarf::DwarfFormat::DWARF32: {
1134     if (Offset < 8)
1135       return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix");
1136     auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, Offset - 8);
1137     if (!DescOrError)
1138       return DescOrError.takeError();
1139     Desc = *DescOrError;
1140     break;
1141   }
1142   }
1143   return Desc.validateContributionSize(DA);
1144 }
1145 
1146 Expected<std::optional<StrOffsetsContributionDescriptor>>
1147 DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) {
1148   assert(!IsDWO);
1149   auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base));
1150   if (!OptOffset)
1151     return std::nullopt;
1152   auto DescOrError =
1153       parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), *OptOffset);
1154   if (!DescOrError)
1155     return DescOrError.takeError();
1156   return *DescOrError;
1157 }
1158 
1159 Expected<std::optional<StrOffsetsContributionDescriptor>>
1160 DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA) {
1161   assert(IsDWO);
1162   uint64_t Offset = 0;
1163   auto IndexEntry = Header.getIndexEntry();
1164   const auto *C =
1165       IndexEntry ? IndexEntry->getContribution(DW_SECT_STR_OFFSETS) : nullptr;
1166   if (C)
1167     Offset = C->getOffset();
1168   if (getVersion() >= 5) {
1169     if (DA.getData().data() == nullptr)
1170       return std::nullopt;
1171     Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16;
1172     // Look for a valid contribution at the given offset.
1173     auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset);
1174     if (!DescOrError)
1175       return DescOrError.takeError();
1176     return *DescOrError;
1177   }
1178   // Prior to DWARF v5, we derive the contribution size from the
1179   // index table (in a package file). In a .dwo file it is simply
1180   // the length of the string offsets section.
1181   StrOffsetsContributionDescriptor Desc;
1182   if (C)
1183     Desc = StrOffsetsContributionDescriptor(C->getOffset(), C->getLength(), 4,
1184                                             Header.getFormat());
1185   else if (!IndexEntry && !StringOffsetSection.Data.empty())
1186     Desc = StrOffsetsContributionDescriptor(0, StringOffsetSection.Data.size(),
1187                                             4, Header.getFormat());
1188   else
1189     return std::nullopt;
1190   auto DescOrError = Desc.validateContributionSize(DA);
1191   if (!DescOrError)
1192     return DescOrError.takeError();
1193   return *DescOrError;
1194 }
1195 
1196 std::optional<uint64_t> DWARFUnit::getRnglistOffset(uint32_t Index) {
1197   DataExtractor RangesData(RangeSection->Data, IsLittleEndian,
1198                            getAddressByteSize());
1199   DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection,
1200                               IsLittleEndian, 0);
1201   if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
1202           RangesData, RangeSectionBase, getFormat(), Index))
1203     return *Off + RangeSectionBase;
1204   return std::nullopt;
1205 }
1206 
1207 std::optional<uint64_t> DWARFUnit::getLoclistOffset(uint32_t Index) {
1208   if (std::optional<uint64_t> Off = llvm::DWARFListTableHeader::getOffsetEntry(
1209           LocTable->getData(), LocSectionBase, getFormat(), Index))
1210     return *Off + LocSectionBase;
1211   return std::nullopt;
1212 }
1213