1 //===- DWARFUnit.cpp ------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/DebugInfo/DWARF/DWARFUnit.h" 10 #include "llvm/ADT/SmallString.h" 11 #include "llvm/ADT/StringRef.h" 12 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h" 13 #include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h" 14 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 15 #include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h" 16 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h" 17 #include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h" 18 #include "llvm/DebugInfo/DWARF/DWARFDie.h" 19 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h" 20 #include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h" 21 #include "llvm/Support/DataExtractor.h" 22 #include "llvm/Support/Errc.h" 23 #include "llvm/Support/Path.h" 24 #include "llvm/Support/WithColor.h" 25 #include <algorithm> 26 #include <cassert> 27 #include <cstddef> 28 #include <cstdint> 29 #include <cstdio> 30 #include <utility> 31 #include <vector> 32 33 using namespace llvm; 34 using namespace dwarf; 35 36 void DWARFUnitVector::addUnitsForSection(DWARFContext &C, 37 const DWARFSection &Section, 38 DWARFSectionKind SectionKind) { 39 const DWARFObject &D = C.getDWARFObj(); 40 addUnitsImpl(C, D, Section, C.getDebugAbbrev(), &D.getRangeSection(), 41 &D.getLocSection(), D.getStringSection(), 42 D.getStringOffsetSection(), &D.getAddrSection(), 43 D.getLineSection(), D.isLittleEndian(), false, false, 44 SectionKind); 45 } 46 47 void DWARFUnitVector::addUnitsForDWOSection(DWARFContext &C, 48 const DWARFSection &DWOSection, 49 DWARFSectionKind SectionKind, 50 bool Lazy) { 51 const DWARFObject &D = C.getDWARFObj(); 52 addUnitsImpl(C, D, DWOSection, C.getDebugAbbrevDWO(), &D.getRangeDWOSection(), 53 &D.getLocDWOSection(), D.getStringDWOSection(), 54 D.getStringOffsetDWOSection(), &D.getAddrSection(), 55 D.getLineDWOSection(), C.isLittleEndian(), true, Lazy, 56 SectionKind); 57 } 58 59 void DWARFUnitVector::addUnitsImpl( 60 DWARFContext &Context, const DWARFObject &Obj, const DWARFSection &Section, 61 const DWARFDebugAbbrev *DA, const DWARFSection *RS, 62 const DWARFSection *LocSection, StringRef SS, const DWARFSection &SOS, 63 const DWARFSection *AOS, const DWARFSection &LS, bool LE, bool IsDWO, 64 bool Lazy, DWARFSectionKind SectionKind) { 65 DWARFDataExtractor Data(Obj, Section, LE, 0); 66 // Lazy initialization of Parser, now that we have all section info. 67 if (!Parser) { 68 Parser = [=, &Context, &Obj, &Section, &SOS, 69 &LS](uint32_t Offset, DWARFSectionKind SectionKind, 70 const DWARFSection *CurSection, 71 const DWARFUnitIndex::Entry *IndexEntry) 72 -> std::unique_ptr<DWARFUnit> { 73 const DWARFSection &InfoSection = CurSection ? *CurSection : Section; 74 DWARFDataExtractor Data(Obj, InfoSection, LE, 0); 75 if (!Data.isValidOffset(Offset)) 76 return nullptr; 77 const DWARFUnitIndex *Index = nullptr; 78 if (IsDWO) 79 Index = &getDWARFUnitIndex(Context, SectionKind); 80 DWARFUnitHeader Header; 81 if (!Header.extract(Context, Data, &Offset, SectionKind, Index, 82 IndexEntry)) 83 return nullptr; 84 std::unique_ptr<DWARFUnit> U; 85 if (Header.isTypeUnit()) 86 U = llvm::make_unique<DWARFTypeUnit>(Context, InfoSection, Header, DA, 87 RS, LocSection, SS, SOS, AOS, LS, 88 LE, IsDWO, *this); 89 else 90 U = llvm::make_unique<DWARFCompileUnit>(Context, InfoSection, Header, 91 DA, RS, LocSection, SS, SOS, 92 AOS, LS, LE, IsDWO, *this); 93 return U; 94 }; 95 } 96 if (Lazy) 97 return; 98 // Find a reasonable insertion point within the vector. We skip over 99 // (a) units from a different section, (b) units from the same section 100 // but with lower offset-within-section. This keeps units in order 101 // within a section, although not necessarily within the object file, 102 // even if we do lazy parsing. 103 auto I = this->begin(); 104 uint32_t Offset = 0; 105 while (Data.isValidOffset(Offset)) { 106 if (I != this->end() && 107 (&(*I)->getInfoSection() != &Section || (*I)->getOffset() == Offset)) { 108 ++I; 109 continue; 110 } 111 auto U = Parser(Offset, SectionKind, &Section, nullptr); 112 // If parsing failed, we're done with this section. 113 if (!U) 114 break; 115 Offset = U->getNextUnitOffset(); 116 I = std::next(this->insert(I, std::move(U))); 117 } 118 } 119 120 DWARFUnit *DWARFUnitVector::addUnit(std::unique_ptr<DWARFUnit> Unit) { 121 auto I = std::upper_bound(begin(), end(), Unit, 122 [](const std::unique_ptr<DWARFUnit> &LHS, 123 const std::unique_ptr<DWARFUnit> &RHS) { 124 return LHS->getOffset() < RHS->getOffset(); 125 }); 126 return this->insert(I, std::move(Unit))->get(); 127 } 128 129 DWARFUnit *DWARFUnitVector::getUnitForOffset(uint32_t Offset) const { 130 auto end = begin() + getNumInfoUnits(); 131 auto *CU = 132 std::upper_bound(begin(), end, Offset, 133 [](uint32_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { 134 return LHS < RHS->getNextUnitOffset(); 135 }); 136 if (CU != end && (*CU)->getOffset() <= Offset) 137 return CU->get(); 138 return nullptr; 139 } 140 141 DWARFUnit * 142 DWARFUnitVector::getUnitForIndexEntry(const DWARFUnitIndex::Entry &E) { 143 const auto *CUOff = E.getOffset(DW_SECT_INFO); 144 if (!CUOff) 145 return nullptr; 146 147 auto Offset = CUOff->Offset; 148 auto end = begin() + getNumInfoUnits(); 149 150 auto *CU = 151 std::upper_bound(begin(), end, CUOff->Offset, 152 [](uint32_t LHS, const std::unique_ptr<DWARFUnit> &RHS) { 153 return LHS < RHS->getNextUnitOffset(); 154 }); 155 if (CU != end && (*CU)->getOffset() <= Offset) 156 return CU->get(); 157 158 if (!Parser) 159 return nullptr; 160 161 auto U = Parser(Offset, DW_SECT_INFO, nullptr, &E); 162 if (!U) 163 U = nullptr; 164 165 auto *NewCU = U.get(); 166 this->insert(CU, std::move(U)); 167 ++NumInfoUnits; 168 return NewCU; 169 } 170 171 DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section, 172 const DWARFUnitHeader &Header, const DWARFDebugAbbrev *DA, 173 const DWARFSection *RS, const DWARFSection *LocSection, 174 StringRef SS, const DWARFSection &SOS, 175 const DWARFSection *AOS, const DWARFSection &LS, bool LE, 176 bool IsDWO, const DWARFUnitVector &UnitVector) 177 : Context(DC), InfoSection(Section), Header(Header), Abbrev(DA), 178 RangeSection(RS), LocSection(LocSection), LineSection(LS), 179 StringSection(SS), StringOffsetSection(SOS), AddrOffsetSection(AOS), 180 isLittleEndian(LE), IsDWO(IsDWO), UnitVector(UnitVector) { 181 clear(); 182 // For split DWARF we only need to keep track of the location list section's 183 // data (no relocations), and if we are reading a package file, we need to 184 // adjust the location list data based on the index entries. 185 if (IsDWO) { 186 LocSectionData = LocSection->Data; 187 if (auto *IndexEntry = Header.getIndexEntry()) 188 if (const auto *C = IndexEntry->getOffset(DW_SECT_LOC)) 189 LocSectionData = LocSectionData.substr(C->Offset, C->Length); 190 } 191 } 192 193 DWARFUnit::~DWARFUnit() = default; 194 195 DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const { 196 return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian, 197 getAddressByteSize()); 198 } 199 200 Optional<object::SectionedAddress> 201 DWARFUnit::getAddrOffsetSectionItem(uint32_t Index) const { 202 if (IsDWO) { 203 auto R = Context.info_section_units(); 204 auto I = R.begin(); 205 // Surprising if a DWO file has more than one skeleton unit in it - this 206 // probably shouldn't be valid, but if a use case is found, here's where to 207 // support it (probably have to linearly search for the matching skeleton CU 208 // here) 209 if (I != R.end() && std::next(I) == R.end()) 210 return (*I)->getAddrOffsetSectionItem(Index); 211 } 212 uint32_t Offset = AddrOffsetSectionBase + Index * getAddressByteSize(); 213 if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize()) 214 return None; 215 DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection, 216 isLittleEndian, getAddressByteSize()); 217 uint64_t Section; 218 uint64_t Address = DA.getRelocatedAddress(&Offset, &Section); 219 return {{Address, Section}}; 220 } 221 222 Optional<uint64_t> DWARFUnit::getStringOffsetSectionItem(uint32_t Index) const { 223 if (!StringOffsetsTableContribution) 224 return None; 225 unsigned ItemSize = getDwarfStringOffsetsByteSize(); 226 uint32_t Offset = getStringOffsetsBase() + Index * ItemSize; 227 if (StringOffsetSection.Data.size() < Offset + ItemSize) 228 return None; 229 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, 230 isLittleEndian, 0); 231 return DA.getRelocatedValue(ItemSize, &Offset); 232 } 233 234 bool DWARFUnitHeader::extract(DWARFContext &Context, 235 const DWARFDataExtractor &debug_info, 236 uint32_t *offset_ptr, 237 DWARFSectionKind SectionKind, 238 const DWARFUnitIndex *Index, 239 const DWARFUnitIndex::Entry *Entry) { 240 Offset = *offset_ptr; 241 IndexEntry = Entry; 242 if (!IndexEntry && Index) 243 IndexEntry = Index->getFromOffset(*offset_ptr); 244 Length = debug_info.getRelocatedValue(4, offset_ptr); 245 FormParams.Format = DWARF32; 246 unsigned SizeOfLength = 4; 247 if (Length == 0xffffffff) { 248 Length = debug_info.getU64(offset_ptr); 249 FormParams.Format = DWARF64; 250 SizeOfLength = 8; 251 } 252 FormParams.Version = debug_info.getU16(offset_ptr); 253 if (FormParams.Version >= 5) { 254 UnitType = debug_info.getU8(offset_ptr); 255 FormParams.AddrSize = debug_info.getU8(offset_ptr); 256 AbbrOffset = debug_info.getRelocatedValue(FormParams.getDwarfOffsetByteSize(), offset_ptr); 257 } else { 258 AbbrOffset = debug_info.getRelocatedValue(FormParams.getDwarfOffsetByteSize(), offset_ptr); 259 FormParams.AddrSize = debug_info.getU8(offset_ptr); 260 // Fake a unit type based on the section type. This isn't perfect, 261 // but distinguishing compile and type units is generally enough. 262 if (SectionKind == DW_SECT_TYPES) 263 UnitType = DW_UT_type; 264 else 265 UnitType = DW_UT_compile; 266 } 267 if (IndexEntry) { 268 if (AbbrOffset) 269 return false; 270 auto *UnitContrib = IndexEntry->getOffset(); 271 if (!UnitContrib || UnitContrib->Length != (Length + 4)) 272 return false; 273 auto *AbbrEntry = IndexEntry->getOffset(DW_SECT_ABBREV); 274 if (!AbbrEntry) 275 return false; 276 AbbrOffset = AbbrEntry->Offset; 277 } 278 if (isTypeUnit()) { 279 TypeHash = debug_info.getU64(offset_ptr); 280 TypeOffset = debug_info.getU32(offset_ptr); 281 } else if (UnitType == DW_UT_split_compile || UnitType == DW_UT_skeleton) 282 DWOId = debug_info.getU64(offset_ptr); 283 284 // Header fields all parsed, capture the size of this unit header. 285 assert(*offset_ptr - Offset <= 255 && "unexpected header size"); 286 Size = uint8_t(*offset_ptr - Offset); 287 288 // Type offset is unit-relative; should be after the header and before 289 // the end of the current unit. 290 bool TypeOffsetOK = 291 !isTypeUnit() 292 ? true 293 : TypeOffset >= Size && TypeOffset < getLength() + SizeOfLength; 294 bool LengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1); 295 bool VersionOK = DWARFContext::isSupportedVersion(getVersion()); 296 bool AddrSizeOK = getAddressByteSize() == 4 || getAddressByteSize() == 8; 297 298 if (!LengthOK || !VersionOK || !AddrSizeOK || !TypeOffsetOK) 299 return false; 300 301 // Keep track of the highest DWARF version we encounter across all units. 302 Context.setMaxVersionIfGreater(getVersion()); 303 return true; 304 } 305 306 // Parse the rangelist table header, including the optional array of offsets 307 // following it (DWARF v5 and later). 308 static Expected<DWARFDebugRnglistTable> 309 parseRngListTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { 310 // TODO: Support DWARF64 311 // We are expected to be called with Offset 0 or pointing just past the table 312 // header, which is 12 bytes long for DWARF32. 313 if (Offset > 0) { 314 if (Offset < 12U) 315 return createStringError(errc::invalid_argument, "Did not detect a valid" 316 " range list table with base = 0x%" PRIu32, 317 Offset); 318 Offset -= 12U; 319 } 320 llvm::DWARFDebugRnglistTable Table; 321 if (Error E = Table.extractHeaderAndOffsets(DA, &Offset)) 322 return std::move(E); 323 return Table; 324 } 325 326 Error DWARFUnit::extractRangeList(uint32_t RangeListOffset, 327 DWARFDebugRangeList &RangeList) const { 328 // Require that compile unit is extracted. 329 assert(!DieArray.empty()); 330 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, 331 isLittleEndian, getAddressByteSize()); 332 uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset; 333 return RangeList.extract(RangesData, &ActualRangeListOffset); 334 } 335 336 void DWARFUnit::clear() { 337 Abbrevs = nullptr; 338 BaseAddr.reset(); 339 RangeSectionBase = 0; 340 AddrOffsetSectionBase = 0; 341 clearDIEs(false); 342 DWO.reset(); 343 } 344 345 const char *DWARFUnit::getCompilationDir() { 346 return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr); 347 } 348 349 void DWARFUnit::extractDIEsToVector( 350 bool AppendCUDie, bool AppendNonCUDies, 351 std::vector<DWARFDebugInfoEntry> &Dies) const { 352 if (!AppendCUDie && !AppendNonCUDies) 353 return; 354 355 // Set the offset to that of the first DIE and calculate the start of the 356 // next compilation unit header. 357 uint32_t DIEOffset = getOffset() + getHeaderSize(); 358 uint32_t NextCUOffset = getNextUnitOffset(); 359 DWARFDebugInfoEntry DIE; 360 DWARFDataExtractor DebugInfoData = getDebugInfoExtractor(); 361 uint32_t Depth = 0; 362 bool IsCUDie = true; 363 364 while (DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset, 365 Depth)) { 366 if (IsCUDie) { 367 if (AppendCUDie) 368 Dies.push_back(DIE); 369 if (!AppendNonCUDies) 370 break; 371 // The average bytes per DIE entry has been seen to be 372 // around 14-20 so let's pre-reserve the needed memory for 373 // our DIE entries accordingly. 374 Dies.reserve(Dies.size() + getDebugInfoSize() / 14); 375 IsCUDie = false; 376 } else { 377 Dies.push_back(DIE); 378 } 379 380 if (const DWARFAbbreviationDeclaration *AbbrDecl = 381 DIE.getAbbreviationDeclarationPtr()) { 382 // Normal DIE 383 if (AbbrDecl->hasChildren()) 384 ++Depth; 385 } else { 386 // NULL DIE. 387 if (Depth > 0) 388 --Depth; 389 if (Depth == 0) 390 break; // We are done with this compile unit! 391 } 392 } 393 394 // Give a little bit of info if we encounter corrupt DWARF (our offset 395 // should always terminate at or before the start of the next compilation 396 // unit header). 397 if (DIEOffset > NextCUOffset) 398 WithColor::warning() << format("DWARF compile unit extends beyond its " 399 "bounds cu 0x%8.8x at 0x%8.8x\n", 400 getOffset(), DIEOffset); 401 } 402 403 size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) { 404 if ((CUDieOnly && !DieArray.empty()) || 405 DieArray.size() > 1) 406 return 0; // Already parsed. 407 408 bool HasCUDie = !DieArray.empty(); 409 extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray); 410 411 if (DieArray.empty()) 412 return 0; 413 414 // If CU DIE was just parsed, copy several attribute values from it. 415 if (!HasCUDie) { 416 DWARFDie UnitDie = getUnitDIE(); 417 if (Optional<uint64_t> DWOId = toUnsigned(UnitDie.find(DW_AT_GNU_dwo_id))) 418 Header.setDWOId(*DWOId); 419 if (!IsDWO) { 420 assert(AddrOffsetSectionBase == 0); 421 assert(RangeSectionBase == 0); 422 AddrOffsetSectionBase = toSectionOffset(UnitDie.find(DW_AT_addr_base), 0); 423 if (!AddrOffsetSectionBase) 424 AddrOffsetSectionBase = 425 toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base), 0); 426 RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0); 427 } 428 429 // In general, in DWARF v5 and beyond we derive the start of the unit's 430 // contribution to the string offsets table from the unit DIE's 431 // DW_AT_str_offsets_base attribute. Split DWARF units do not use this 432 // attribute, so we assume that there is a contribution to the string 433 // offsets table starting at offset 0 of the debug_str_offsets.dwo section. 434 // In both cases we need to determine the format of the contribution, 435 // which may differ from the unit's format. 436 DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection, 437 isLittleEndian, 0); 438 if (IsDWO || getVersion() >= 5) { 439 auto StringOffsetOrError = 440 IsDWO ? determineStringOffsetsTableContributionDWO(DA) 441 : determineStringOffsetsTableContribution(DA); 442 if (!StringOffsetOrError) { 443 WithColor::error() << "invalid contribution to string offsets table in section .debug_str_offsets[.dwo]: " 444 << toString(StringOffsetOrError.takeError()) << '\n'; 445 } else { 446 StringOffsetsTableContribution = *StringOffsetOrError; 447 } 448 } 449 450 // DWARF v5 uses the .debug_rnglists and .debug_rnglists.dwo sections to 451 // describe address ranges. 452 if (getVersion() >= 5) { 453 if (IsDWO) 454 setRangesSection(&Context.getDWARFObj().getRnglistsDWOSection(), 0); 455 else 456 setRangesSection(&Context.getDWARFObj().getRnglistsSection(), 457 toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0)); 458 if (RangeSection->Data.size()) { 459 // Parse the range list table header. Individual range lists are 460 // extracted lazily. 461 DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection, 462 isLittleEndian, 0); 463 if (auto TableOrError = 464 parseRngListTableHeader(RangesDA, RangeSectionBase)) 465 RngListTable = TableOrError.get(); 466 else 467 WithColor::error() << "parsing a range list table: " 468 << toString(TableOrError.takeError()) 469 << '\n'; 470 471 // In a split dwarf unit, there is no DW_AT_rnglists_base attribute. 472 // Adjust RangeSectionBase to point past the table header. 473 if (IsDWO && RngListTable) 474 RangeSectionBase = RngListTable->getHeaderSize(); 475 } 476 } 477 478 // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for 479 // skeleton CU DIE, so that DWARF users not aware of it are not broken. 480 } 481 482 return DieArray.size(); 483 } 484 485 bool DWARFUnit::parseDWO() { 486 if (IsDWO) 487 return false; 488 if (DWO.get()) 489 return false; 490 DWARFDie UnitDie = getUnitDIE(); 491 if (!UnitDie) 492 return false; 493 auto DWOFileName = dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name)); 494 if (!DWOFileName) 495 return false; 496 auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir)); 497 SmallString<16> AbsolutePath; 498 if (sys::path::is_relative(*DWOFileName) && CompilationDir && 499 *CompilationDir) { 500 sys::path::append(AbsolutePath, *CompilationDir); 501 } 502 sys::path::append(AbsolutePath, *DWOFileName); 503 auto DWOId = getDWOId(); 504 if (!DWOId) 505 return false; 506 auto DWOContext = Context.getDWOContext(AbsolutePath); 507 if (!DWOContext) 508 return false; 509 510 DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId); 511 if (!DWOCU) 512 return false; 513 DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU); 514 // Share .debug_addr and .debug_ranges section with compile unit in .dwo 515 DWO->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase); 516 if (getVersion() >= 5) { 517 DWO->setRangesSection(&Context.getDWARFObj().getRnglistsDWOSection(), 0); 518 DWARFDataExtractor RangesDA(Context.getDWARFObj(), *RangeSection, 519 isLittleEndian, 0); 520 if (auto TableOrError = parseRngListTableHeader(RangesDA, RangeSectionBase)) 521 DWO->RngListTable = TableOrError.get(); 522 else 523 WithColor::error() << "parsing a range list table: " 524 << toString(TableOrError.takeError()) 525 << '\n'; 526 if (DWO->RngListTable) 527 DWO->RangeSectionBase = DWO->RngListTable->getHeaderSize(); 528 } else { 529 auto DWORangesBase = UnitDie.getRangesBaseAttribute(); 530 DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0); 531 } 532 533 return true; 534 } 535 536 void DWARFUnit::clearDIEs(bool KeepCUDie) { 537 if (DieArray.size() > (unsigned)KeepCUDie) { 538 DieArray.resize((unsigned)KeepCUDie); 539 DieArray.shrink_to_fit(); 540 } 541 } 542 543 Expected<DWARFAddressRangesVector> 544 DWARFUnit::findRnglistFromOffset(uint32_t Offset) { 545 if (getVersion() <= 4) { 546 DWARFDebugRangeList RangeList; 547 if (Error E = extractRangeList(Offset, RangeList)) 548 return std::move(E); 549 return RangeList.getAbsoluteRanges(getBaseAddress()); 550 } 551 if (RngListTable) { 552 DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection, 553 isLittleEndian, RngListTable->getAddrSize()); 554 auto RangeListOrError = RngListTable->findList(RangesData, Offset); 555 if (RangeListOrError) 556 return RangeListOrError.get().getAbsoluteRanges(getBaseAddress(), *this); 557 return RangeListOrError.takeError(); 558 } 559 560 return createStringError(errc::invalid_argument, 561 "missing or invalid range list table"); 562 } 563 564 Expected<DWARFAddressRangesVector> 565 DWARFUnit::findRnglistFromIndex(uint32_t Index) { 566 if (auto Offset = getRnglistOffset(Index)) 567 return findRnglistFromOffset(*Offset + RangeSectionBase); 568 569 if (RngListTable) 570 return createStringError(errc::invalid_argument, 571 "invalid range list table index %d", Index); 572 else 573 return createStringError(errc::invalid_argument, 574 "missing or invalid range list table"); 575 } 576 577 Expected<DWARFAddressRangesVector> DWARFUnit::collectAddressRanges() { 578 DWARFDie UnitDie = getUnitDIE(); 579 if (!UnitDie) 580 return createStringError(errc::invalid_argument, "No unit DIE"); 581 582 // First, check if unit DIE describes address ranges for the whole unit. 583 auto CUDIERangesOrError = UnitDie.getAddressRanges(); 584 if (!CUDIERangesOrError) 585 return createStringError(errc::invalid_argument, 586 "decoding address ranges: %s", 587 toString(CUDIERangesOrError.takeError()).c_str()); 588 return *CUDIERangesOrError; 589 } 590 591 void DWARFUnit::updateAddressDieMap(DWARFDie Die) { 592 if (Die.isSubroutineDIE()) { 593 auto DIERangesOrError = Die.getAddressRanges(); 594 if (DIERangesOrError) { 595 for (const auto &R : DIERangesOrError.get()) { 596 // Ignore 0-sized ranges. 597 if (R.LowPC == R.HighPC) 598 continue; 599 auto B = AddrDieMap.upper_bound(R.LowPC); 600 if (B != AddrDieMap.begin() && R.LowPC < (--B)->second.first) { 601 // The range is a sub-range of existing ranges, we need to split the 602 // existing range. 603 if (R.HighPC < B->second.first) 604 AddrDieMap[R.HighPC] = B->second; 605 if (R.LowPC > B->first) 606 AddrDieMap[B->first].first = R.LowPC; 607 } 608 AddrDieMap[R.LowPC] = std::make_pair(R.HighPC, Die); 609 } 610 } else 611 llvm::consumeError(DIERangesOrError.takeError()); 612 } 613 // Parent DIEs are added to the AddrDieMap prior to the Children DIEs to 614 // simplify the logic to update AddrDieMap. The child's range will always 615 // be equal or smaller than the parent's range. With this assumption, when 616 // adding one range into the map, it will at most split a range into 3 617 // sub-ranges. 618 for (DWARFDie Child = Die.getFirstChild(); Child; Child = Child.getSibling()) 619 updateAddressDieMap(Child); 620 } 621 622 DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) { 623 extractDIEsIfNeeded(false); 624 if (AddrDieMap.empty()) 625 updateAddressDieMap(getUnitDIE()); 626 auto R = AddrDieMap.upper_bound(Address); 627 if (R == AddrDieMap.begin()) 628 return DWARFDie(); 629 // upper_bound's previous item contains Address. 630 --R; 631 if (Address >= R->second.first) 632 return DWARFDie(); 633 return R->second.second; 634 } 635 636 void 637 DWARFUnit::getInlinedChainForAddress(uint64_t Address, 638 SmallVectorImpl<DWARFDie> &InlinedChain) { 639 assert(InlinedChain.empty()); 640 // Try to look for subprogram DIEs in the DWO file. 641 parseDWO(); 642 // First, find the subroutine that contains the given address (the leaf 643 // of inlined chain). 644 DWARFDie SubroutineDIE = 645 (DWO ? *DWO : *this).getSubroutineForAddress(Address); 646 647 if (!SubroutineDIE) 648 return; 649 650 while (!SubroutineDIE.isSubprogramDIE()) { 651 if (SubroutineDIE.getTag() == DW_TAG_inlined_subroutine) 652 InlinedChain.push_back(SubroutineDIE); 653 SubroutineDIE = SubroutineDIE.getParent(); 654 } 655 InlinedChain.push_back(SubroutineDIE); 656 } 657 658 const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context, 659 DWARFSectionKind Kind) { 660 if (Kind == DW_SECT_INFO) 661 return Context.getCUIndex(); 662 assert(Kind == DW_SECT_TYPES); 663 return Context.getTUIndex(); 664 } 665 666 DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) { 667 if (!Die) 668 return DWARFDie(); 669 const uint32_t Depth = Die->getDepth(); 670 // Unit DIEs always have a depth of zero and never have parents. 671 if (Depth == 0) 672 return DWARFDie(); 673 // Depth of 1 always means parent is the compile/type unit. 674 if (Depth == 1) 675 return getUnitDIE(); 676 // Look for previous DIE with a depth that is one less than the Die's depth. 677 const uint32_t ParentDepth = Depth - 1; 678 for (uint32_t I = getDIEIndex(Die) - 1; I > 0; --I) { 679 if (DieArray[I].getDepth() == ParentDepth) 680 return DWARFDie(this, &DieArray[I]); 681 } 682 return DWARFDie(); 683 } 684 685 DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) { 686 if (!Die) 687 return DWARFDie(); 688 uint32_t Depth = Die->getDepth(); 689 // Unit DIEs always have a depth of zero and never have siblings. 690 if (Depth == 0) 691 return DWARFDie(); 692 // NULL DIEs don't have siblings. 693 if (Die->getAbbreviationDeclarationPtr() == nullptr) 694 return DWARFDie(); 695 696 // Find the next DIE whose depth is the same as the Die's depth. 697 for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx; 698 ++I) { 699 if (DieArray[I].getDepth() == Depth) 700 return DWARFDie(this, &DieArray[I]); 701 } 702 return DWARFDie(); 703 } 704 705 DWARFDie DWARFUnit::getPreviousSibling(const DWARFDebugInfoEntry *Die) { 706 if (!Die) 707 return DWARFDie(); 708 uint32_t Depth = Die->getDepth(); 709 // Unit DIEs always have a depth of zero and never have siblings. 710 if (Depth == 0) 711 return DWARFDie(); 712 713 // Find the previous DIE whose depth is the same as the Die's depth. 714 for (size_t I = getDIEIndex(Die); I > 0;) { 715 --I; 716 if (DieArray[I].getDepth() == Depth - 1) 717 return DWARFDie(); 718 if (DieArray[I].getDepth() == Depth) 719 return DWARFDie(this, &DieArray[I]); 720 } 721 return DWARFDie(); 722 } 723 724 DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) { 725 if (!Die->hasChildren()) 726 return DWARFDie(); 727 728 // We do not want access out of bounds when parsing corrupted debug data. 729 size_t I = getDIEIndex(Die) + 1; 730 if (I >= DieArray.size()) 731 return DWARFDie(); 732 return DWARFDie(this, &DieArray[I]); 733 } 734 735 DWARFDie DWARFUnit::getLastChild(const DWARFDebugInfoEntry *Die) { 736 if (!Die->hasChildren()) 737 return DWARFDie(); 738 739 uint32_t Depth = Die->getDepth(); 740 for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx; 741 ++I) { 742 if (DieArray[I].getDepth() == Depth + 1 && 743 DieArray[I].getTag() == dwarf::DW_TAG_null) 744 return DWARFDie(this, &DieArray[I]); 745 assert(DieArray[I].getDepth() > Depth && "Not processing children?"); 746 } 747 return DWARFDie(); 748 } 749 750 const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const { 751 if (!Abbrevs) 752 Abbrevs = Abbrev->getAbbreviationDeclarationSet(Header.getAbbrOffset()); 753 return Abbrevs; 754 } 755 756 llvm::Optional<object::SectionedAddress> DWARFUnit::getBaseAddress() { 757 if (BaseAddr) 758 return BaseAddr; 759 760 DWARFDie UnitDie = getUnitDIE(); 761 Optional<DWARFFormValue> PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc}); 762 BaseAddr = toSectionedAddress(PC); 763 return BaseAddr; 764 } 765 766 Expected<StrOffsetsContributionDescriptor> 767 StrOffsetsContributionDescriptor::validateContributionSize( 768 DWARFDataExtractor &DA) { 769 uint8_t EntrySize = getDwarfOffsetByteSize(); 770 // In order to ensure that we don't read a partial record at the end of 771 // the section we validate for a multiple of the entry size. 772 uint64_t ValidationSize = alignTo(Size, EntrySize); 773 // Guard against overflow. 774 if (ValidationSize >= Size) 775 if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize)) 776 return *this; 777 return createStringError(errc::invalid_argument, "length exceeds section size"); 778 } 779 780 // Look for a DWARF64-formatted contribution to the string offsets table 781 // starting at a given offset and record it in a descriptor. 782 static Expected<StrOffsetsContributionDescriptor> 783 parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { 784 if (!DA.isValidOffsetForDataOfSize(Offset, 16)) 785 return createStringError(errc::invalid_argument, "section offset exceeds section size"); 786 787 if (DA.getU32(&Offset) != 0xffffffff) 788 return createStringError(errc::invalid_argument, "32 bit contribution referenced from a 64 bit unit"); 789 790 uint64_t Size = DA.getU64(&Offset); 791 uint8_t Version = DA.getU16(&Offset); 792 (void)DA.getU16(&Offset); // padding 793 // The encoded length includes the 2-byte version field and the 2-byte 794 // padding, so we need to subtract them out when we populate the descriptor. 795 return StrOffsetsContributionDescriptor(Offset, Size - 4, Version, DWARF64); 796 } 797 798 // Look for a DWARF32-formatted contribution to the string offsets table 799 // starting at a given offset and record it in a descriptor. 800 static Expected<StrOffsetsContributionDescriptor> 801 parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) { 802 if (!DA.isValidOffsetForDataOfSize(Offset, 8)) 803 return createStringError(errc::invalid_argument, "section offset exceeds section size"); 804 805 uint32_t ContributionSize = DA.getU32(&Offset); 806 if (ContributionSize >= 0xfffffff0) 807 return createStringError(errc::invalid_argument, "invalid length"); 808 809 uint8_t Version = DA.getU16(&Offset); 810 (void)DA.getU16(&Offset); // padding 811 // The encoded length includes the 2-byte version field and the 2-byte 812 // padding, so we need to subtract them out when we populate the descriptor. 813 return StrOffsetsContributionDescriptor(Offset, ContributionSize - 4, Version, 814 DWARF32); 815 } 816 817 static Expected<StrOffsetsContributionDescriptor> 818 parseDWARFStringOffsetsTableHeader(DWARFDataExtractor &DA, 819 llvm::dwarf::DwarfFormat Format, 820 uint64_t Offset) { 821 StrOffsetsContributionDescriptor Desc; 822 switch (Format) { 823 case dwarf::DwarfFormat::DWARF64: { 824 if (Offset < 16) 825 return createStringError(errc::invalid_argument, "insufficient space for 64 bit header prefix"); 826 auto DescOrError = parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset - 16); 827 if (!DescOrError) 828 return DescOrError.takeError(); 829 Desc = *DescOrError; 830 break; 831 } 832 case dwarf::DwarfFormat::DWARF32: { 833 if (Offset < 8) 834 return createStringError(errc::invalid_argument, "insufficient space for 32 bit header prefix"); 835 auto DescOrError = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset - 8); 836 if (!DescOrError) 837 return DescOrError.takeError(); 838 Desc = *DescOrError; 839 break; 840 } 841 } 842 return Desc.validateContributionSize(DA); 843 } 844 845 Expected<Optional<StrOffsetsContributionDescriptor>> 846 DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA) { 847 uint64_t Offset; 848 if (IsDWO) { 849 Offset = 0; 850 if (DA.getData().data() == nullptr) 851 return None; 852 } else { 853 auto OptOffset = toSectionOffset(getUnitDIE().find(DW_AT_str_offsets_base)); 854 if (!OptOffset) 855 return None; 856 Offset = *OptOffset; 857 } 858 auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset); 859 if (!DescOrError) 860 return DescOrError.takeError(); 861 return *DescOrError; 862 } 863 864 Expected<Optional<StrOffsetsContributionDescriptor>> 865 DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor & DA) { 866 uint64_t Offset = 0; 867 auto IndexEntry = Header.getIndexEntry(); 868 const auto *C = 869 IndexEntry ? IndexEntry->getOffset(DW_SECT_STR_OFFSETS) : nullptr; 870 if (C) 871 Offset = C->Offset; 872 if (getVersion() >= 5) { 873 if (DA.getData().data() == nullptr) 874 return None; 875 Offset += Header.getFormat() == dwarf::DwarfFormat::DWARF32 ? 8 : 16; 876 // Look for a valid contribution at the given offset. 877 auto DescOrError = parseDWARFStringOffsetsTableHeader(DA, Header.getFormat(), Offset); 878 if (!DescOrError) 879 return DescOrError.takeError(); 880 return *DescOrError; 881 } 882 // Prior to DWARF v5, we derive the contribution size from the 883 // index table (in a package file). In a .dwo file it is simply 884 // the length of the string offsets section. 885 if (!IndexEntry) 886 return { 887 Optional<StrOffsetsContributionDescriptor>( 888 {0, StringOffsetSection.Data.size(), 4, DWARF32})}; 889 if (C) 890 return {Optional<StrOffsetsContributionDescriptor>( 891 {C->Offset, C->Length, 4, DWARF32})}; 892 return None; 893 } 894