1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass lowers LLVM IR exception handling into something closer to what the 10 // backend wants for functions using a personality function from a runtime 11 // provided by MSVC. Functions with other personality functions are left alone 12 // and may be prepared by other passes. In particular, all supported MSVC 13 // personality functions require cleanup code to be outlined, and the C++ 14 // personality requires catch handler code to be outlined. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/EHPersonalities.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/Passes.h" 26 #include "llvm/CodeGen/WinEHFuncInfo.h" 27 #include "llvm/IR/Verifier.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/MC/MCSymbol.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/SSAUpdater.h" 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "winehprepare" 42 43 static cl::opt<bool> DisableDemotion( 44 "disable-demotion", cl::Hidden, 45 cl::desc( 46 "Clone multicolor basic blocks but do not demote cross scopes"), 47 cl::init(false)); 48 49 static cl::opt<bool> DisableCleanups( 50 "disable-cleanups", cl::Hidden, 51 cl::desc("Do not remove implausible terminators or other similar cleanups"), 52 cl::init(false)); 53 54 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt( 55 "demote-catchswitch-only", cl::Hidden, 56 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false)); 57 58 namespace { 59 60 class WinEHPrepare : public FunctionPass { 61 public: 62 static char ID; // Pass identification, replacement for typeid. 63 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false) 64 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} 65 66 bool runOnFunction(Function &Fn) override; 67 68 bool doFinalization(Module &M) override; 69 70 void getAnalysisUsage(AnalysisUsage &AU) const override; 71 72 StringRef getPassName() const override { 73 return "Windows exception handling preparation"; 74 } 75 76 private: 77 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot); 78 void 79 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, 80 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist); 81 AllocaInst *insertPHILoads(PHINode *PN, Function &F); 82 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, 83 DenseMap<BasicBlock *, Value *> &Loads, Function &F); 84 bool prepareExplicitEH(Function &F); 85 void colorFunclets(Function &F); 86 87 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly); 88 void cloneCommonBlocks(Function &F); 89 void removeImplausibleInstructions(Function &F); 90 void cleanupPreparedFunclets(Function &F); 91 void verifyPreparedFunclets(Function &F); 92 93 bool DemoteCatchSwitchPHIOnly; 94 95 // All fields are reset by runOnFunction. 96 EHPersonality Personality = EHPersonality::Unknown; 97 98 const DataLayout *DL = nullptr; 99 DenseMap<BasicBlock *, ColorVector> BlockColors; 100 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks; 101 }; 102 103 } // end anonymous namespace 104 105 char WinEHPrepare::ID = 0; 106 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions", 107 false, false) 108 109 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) { 110 return new WinEHPrepare(DemoteCatchSwitchPHIOnly); 111 } 112 113 bool WinEHPrepare::runOnFunction(Function &Fn) { 114 if (!Fn.hasPersonalityFn()) 115 return false; 116 117 // Classify the personality to see what kind of preparation we need. 118 Personality = classifyEHPersonality(Fn.getPersonalityFn()); 119 120 // Do nothing if this is not a scope-based personality. 121 if (!isScopedEHPersonality(Personality)) 122 return false; 123 124 DL = &Fn.getParent()->getDataLayout(); 125 return prepareExplicitEH(Fn); 126 } 127 128 bool WinEHPrepare::doFinalization(Module &M) { return false; } 129 130 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {} 131 132 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState, 133 const BasicBlock *BB) { 134 CxxUnwindMapEntry UME; 135 UME.ToState = ToState; 136 UME.Cleanup = BB; 137 FuncInfo.CxxUnwindMap.push_back(UME); 138 return FuncInfo.getLastStateNumber(); 139 } 140 141 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow, 142 int TryHigh, int CatchHigh, 143 ArrayRef<const CatchPadInst *> Handlers) { 144 WinEHTryBlockMapEntry TBME; 145 TBME.TryLow = TryLow; 146 TBME.TryHigh = TryHigh; 147 TBME.CatchHigh = CatchHigh; 148 assert(TBME.TryLow <= TBME.TryHigh); 149 for (const CatchPadInst *CPI : Handlers) { 150 WinEHHandlerType HT; 151 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0)); 152 if (TypeInfo->isNullValue()) 153 HT.TypeDescriptor = nullptr; 154 else 155 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts()); 156 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue(); 157 HT.Handler = CPI->getParent(); 158 if (auto *AI = 159 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts())) 160 HT.CatchObj.Alloca = AI; 161 else 162 HT.CatchObj.Alloca = nullptr; 163 TBME.HandlerArray.push_back(HT); 164 } 165 FuncInfo.TryBlockMap.push_back(TBME); 166 } 167 168 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) { 169 for (const User *U : CleanupPad->users()) 170 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U)) 171 return CRI->getUnwindDest(); 172 return nullptr; 173 } 174 175 static void calculateStateNumbersForInvokes(const Function *Fn, 176 WinEHFuncInfo &FuncInfo) { 177 auto *F = const_cast<Function *>(Fn); 178 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F); 179 for (BasicBlock &BB : *F) { 180 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 181 if (!II) 182 continue; 183 184 auto &BBColors = BlockColors[&BB]; 185 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation"); 186 BasicBlock *FuncletEntryBB = BBColors.front(); 187 188 BasicBlock *FuncletUnwindDest; 189 auto *FuncletPad = 190 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI()); 191 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()); 192 if (!FuncletPad) 193 FuncletUnwindDest = nullptr; 194 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) 195 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest(); 196 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad)) 197 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad); 198 else 199 llvm_unreachable("unexpected funclet pad!"); 200 201 BasicBlock *InvokeUnwindDest = II->getUnwindDest(); 202 int BaseState = -1; 203 if (FuncletUnwindDest == InvokeUnwindDest) { 204 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad); 205 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end()) 206 BaseState = BaseStateI->second; 207 } 208 209 if (BaseState != -1) { 210 FuncInfo.InvokeStateMap[II] = BaseState; 211 } else { 212 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI(); 213 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!"); 214 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst]; 215 } 216 } 217 } 218 219 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs 220 // to. If the unwind edge came from an invoke, return null. 221 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB, 222 Value *ParentPad) { 223 const Instruction *TI = BB->getTerminator(); 224 if (isa<InvokeInst>(TI)) 225 return nullptr; 226 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 227 if (CatchSwitch->getParentPad() != ParentPad) 228 return nullptr; 229 return BB; 230 } 231 assert(!TI->isEHPad() && "unexpected EHPad!"); 232 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad(); 233 if (CleanupPad->getParentPad() != ParentPad) 234 return nullptr; 235 return CleanupPad->getParent(); 236 } 237 238 // Starting from a EHPad, Backward walk through control-flow graph 239 // to produce two primary outputs: 240 // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[] 241 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo, 242 const Instruction *FirstNonPHI, 243 int ParentState) { 244 const BasicBlock *BB = FirstNonPHI->getParent(); 245 assert(BB->isEHPad() && "not a funclet!"); 246 247 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) { 248 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && 249 "shouldn't revist catch funclets!"); 250 251 SmallVector<const CatchPadInst *, 2> Handlers; 252 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 253 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI()); 254 Handlers.push_back(CatchPad); 255 } 256 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr); 257 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow; 258 for (const BasicBlock *PredBlock : predecessors(BB)) 259 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 260 CatchSwitch->getParentPad()))) 261 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 262 TryLow); 263 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr); 264 265 // catchpads are separate funclets in C++ EH due to the way rethrow works. 266 int TryHigh = CatchLow - 1; 267 268 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$ 269 // stored in pre-order (outer first, inner next), not post-order 270 // Add to map here. Fix the CatchHigh after children are processed 271 const Module *Mod = BB->getParent()->getParent(); 272 bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit(); 273 if (IsPreOrder) 274 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers); 275 unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1; 276 277 for (const auto *CatchPad : Handlers) { 278 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow; 279 for (const User *U : CatchPad->users()) { 280 const auto *UserI = cast<Instruction>(U); 281 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) { 282 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); 283 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 284 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow); 285 } 286 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) { 287 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad); 288 // If a nested cleanup pad reports a null unwind destination and the 289 // enclosing catch pad doesn't it must be post-dominated by an 290 // unreachable instruction. 291 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 292 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow); 293 } 294 } 295 } 296 int CatchHigh = FuncInfo.getLastStateNumber(); 297 // Now child Catches are processed, update CatchHigh 298 if (IsPreOrder) 299 FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh; 300 else // PostOrder 301 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers); 302 303 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n'); 304 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh 305 << '\n'); 306 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh 307 << '\n'); 308 } else { 309 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI); 310 311 // It's possible for a cleanup to be visited twice: it might have multiple 312 // cleanupret instructions. 313 if (FuncInfo.EHPadStateMap.count(CleanupPad)) 314 return; 315 316 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB); 317 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; 318 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " 319 << BB->getName() << '\n'); 320 for (const BasicBlock *PredBlock : predecessors(BB)) { 321 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 322 CleanupPad->getParentPad()))) { 323 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 324 CleanupState); 325 } 326 } 327 for (const User *U : CleanupPad->users()) { 328 const auto *UserI = cast<Instruction>(U); 329 if (UserI->isEHPad()) 330 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot " 331 "contain exceptional actions"); 332 } 333 } 334 } 335 336 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState, 337 const Function *Filter, const BasicBlock *Handler) { 338 SEHUnwindMapEntry Entry; 339 Entry.ToState = ParentState; 340 Entry.IsFinally = false; 341 Entry.Filter = Filter; 342 Entry.Handler = Handler; 343 FuncInfo.SEHUnwindMap.push_back(Entry); 344 return FuncInfo.SEHUnwindMap.size() - 1; 345 } 346 347 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState, 348 const BasicBlock *Handler) { 349 SEHUnwindMapEntry Entry; 350 Entry.ToState = ParentState; 351 Entry.IsFinally = true; 352 Entry.Filter = nullptr; 353 Entry.Handler = Handler; 354 FuncInfo.SEHUnwindMap.push_back(Entry); 355 return FuncInfo.SEHUnwindMap.size() - 1; 356 } 357 358 // Starting from a EHPad, Backward walk through control-flow graph 359 // to produce two primary outputs: 360 // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[] 361 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo, 362 const Instruction *FirstNonPHI, 363 int ParentState) { 364 const BasicBlock *BB = FirstNonPHI->getParent(); 365 assert(BB->isEHPad() && "no a funclet!"); 366 367 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) { 368 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && 369 "shouldn't revist catch funclets!"); 370 371 // Extract the filter function and the __except basic block and create a 372 // state for them. 373 assert(CatchSwitch->getNumHandlers() == 1 && 374 "SEH doesn't have multiple handlers per __try"); 375 const auto *CatchPad = 376 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI()); 377 const BasicBlock *CatchPadBB = CatchPad->getParent(); 378 const Constant *FilterOrNull = 379 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts()); 380 const Function *Filter = dyn_cast<Function>(FilterOrNull); 381 assert((Filter || FilterOrNull->isNullValue()) && 382 "unexpected filter value"); 383 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB); 384 385 // Everything in the __try block uses TryState as its parent state. 386 FuncInfo.EHPadStateMap[CatchSwitch] = TryState; 387 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB " 388 << CatchPadBB->getName() << '\n'); 389 for (const BasicBlock *PredBlock : predecessors(BB)) 390 if ((PredBlock = getEHPadFromPredecessor(PredBlock, 391 CatchSwitch->getParentPad()))) 392 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 393 TryState); 394 395 // Everything in the __except block unwinds to ParentState, just like code 396 // outside the __try. 397 for (const User *U : CatchPad->users()) { 398 const auto *UserI = cast<Instruction>(U); 399 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) { 400 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); 401 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 402 calculateSEHStateNumbers(FuncInfo, UserI, ParentState); 403 } 404 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) { 405 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad); 406 // If a nested cleanup pad reports a null unwind destination and the 407 // enclosing catch pad doesn't it must be post-dominated by an 408 // unreachable instruction. 409 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) 410 calculateSEHStateNumbers(FuncInfo, UserI, ParentState); 411 } 412 } 413 } else { 414 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI); 415 416 // It's possible for a cleanup to be visited twice: it might have multiple 417 // cleanupret instructions. 418 if (FuncInfo.EHPadStateMap.count(CleanupPad)) 419 return; 420 421 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB); 422 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; 423 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " 424 << BB->getName() << '\n'); 425 for (const BasicBlock *PredBlock : predecessors(BB)) 426 if ((PredBlock = 427 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad()))) 428 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(), 429 CleanupState); 430 for (const User *U : CleanupPad->users()) { 431 const auto *UserI = cast<Instruction>(U); 432 if (UserI->isEHPad()) 433 report_fatal_error("Cleanup funclets for the SEH personality cannot " 434 "contain exceptional actions"); 435 } 436 } 437 } 438 439 static bool isTopLevelPadForMSVC(const Instruction *EHPad) { 440 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad)) 441 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) && 442 CatchSwitch->unwindsToCaller(); 443 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad)) 444 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) && 445 getCleanupRetUnwindDest(CleanupPad) == nullptr; 446 if (isa<CatchPadInst>(EHPad)) 447 return false; 448 llvm_unreachable("unexpected EHPad!"); 449 } 450 451 void llvm::calculateSEHStateNumbers(const Function *Fn, 452 WinEHFuncInfo &FuncInfo) { 453 // Don't compute state numbers twice. 454 if (!FuncInfo.SEHUnwindMap.empty()) 455 return; 456 457 for (const BasicBlock &BB : *Fn) { 458 if (!BB.isEHPad()) 459 continue; 460 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 461 if (!isTopLevelPadForMSVC(FirstNonPHI)) 462 continue; 463 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1); 464 } 465 466 calculateStateNumbersForInvokes(Fn, FuncInfo); 467 } 468 469 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn, 470 WinEHFuncInfo &FuncInfo) { 471 // Return if it's already been done. 472 if (!FuncInfo.EHPadStateMap.empty()) 473 return; 474 475 for (const BasicBlock &BB : *Fn) { 476 if (!BB.isEHPad()) 477 continue; 478 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 479 if (!isTopLevelPadForMSVC(FirstNonPHI)) 480 continue; 481 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1); 482 } 483 484 calculateStateNumbersForInvokes(Fn, FuncInfo); 485 } 486 487 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState, 488 int TryParentState, ClrHandlerType HandlerType, 489 uint32_t TypeToken, const BasicBlock *Handler) { 490 ClrEHUnwindMapEntry Entry; 491 Entry.HandlerParentState = HandlerParentState; 492 Entry.TryParentState = TryParentState; 493 Entry.Handler = Handler; 494 Entry.HandlerType = HandlerType; 495 Entry.TypeToken = TypeToken; 496 FuncInfo.ClrEHUnwindMap.push_back(Entry); 497 return FuncInfo.ClrEHUnwindMap.size() - 1; 498 } 499 500 void llvm::calculateClrEHStateNumbers(const Function *Fn, 501 WinEHFuncInfo &FuncInfo) { 502 // Return if it's already been done. 503 if (!FuncInfo.EHPadStateMap.empty()) 504 return; 505 506 // This numbering assigns one state number to each catchpad and cleanuppad. 507 // It also computes two tree-like relations over states: 508 // 1) Each state has a "HandlerParentState", which is the state of the next 509 // outer handler enclosing this state's handler (same as nearest ancestor 510 // per the ParentPad linkage on EH pads, but skipping over catchswitches). 511 // 2) Each state has a "TryParentState", which: 512 // a) for a catchpad that's not the last handler on its catchswitch, is 513 // the state of the next catchpad on that catchswitch 514 // b) for all other pads, is the state of the pad whose try region is the 515 // next outer try region enclosing this state's try region. The "try 516 // regions are not present as such in the IR, but will be inferred 517 // based on the placement of invokes and pads which reach each other 518 // by exceptional exits 519 // Catchswitches do not get their own states, but each gets mapped to the 520 // state of its first catchpad. 521 522 // Step one: walk down from outermost to innermost funclets, assigning each 523 // catchpad and cleanuppad a state number. Add an entry to the 524 // ClrEHUnwindMap for each state, recording its HandlerParentState and 525 // handler attributes. Record the TryParentState as well for each catchpad 526 // that's not the last on its catchswitch, but initialize all other entries' 527 // TryParentStates to a sentinel -1 value that the next pass will update. 528 529 // Seed a worklist with pads that have no parent. 530 SmallVector<std::pair<const Instruction *, int>, 8> Worklist; 531 for (const BasicBlock &BB : *Fn) { 532 const Instruction *FirstNonPHI = BB.getFirstNonPHI(); 533 const Value *ParentPad; 534 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI)) 535 ParentPad = CPI->getParentPad(); 536 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI)) 537 ParentPad = CSI->getParentPad(); 538 else 539 continue; 540 if (isa<ConstantTokenNone>(ParentPad)) 541 Worklist.emplace_back(FirstNonPHI, -1); 542 } 543 544 // Use the worklist to visit all pads, from outer to inner. Record 545 // HandlerParentState for all pads. Record TryParentState only for catchpads 546 // that aren't the last on their catchswitch (setting all other entries' 547 // TryParentStates to an initial value of -1). This loop is also responsible 548 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and 549 // catchswitches. 550 while (!Worklist.empty()) { 551 const Instruction *Pad; 552 int HandlerParentState; 553 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val(); 554 555 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) { 556 // Create the entry for this cleanup with the appropriate handler 557 // properties. Finally and fault handlers are distinguished by arity. 558 ClrHandlerType HandlerType = 559 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault 560 : ClrHandlerType::Finally); 561 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1, 562 HandlerType, 0, Pad->getParent()); 563 // Queue any child EH pads on the worklist. 564 for (const User *U : Cleanup->users()) 565 if (const auto *I = dyn_cast<Instruction>(U)) 566 if (I->isEHPad()) 567 Worklist.emplace_back(I, CleanupState); 568 // Remember this pad's state. 569 FuncInfo.EHPadStateMap[Cleanup] = CleanupState; 570 } else { 571 // Walk the handlers of this catchswitch in reverse order since all but 572 // the last need to set the following one as its TryParentState. 573 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad); 574 int CatchState = -1, FollowerState = -1; 575 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers()); 576 for (const BasicBlock *CatchBlock : llvm::reverse(CatchBlocks)) { 577 // Create the entry for this catch with the appropriate handler 578 // properties. 579 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI()); 580 uint32_t TypeToken = static_cast<uint32_t>( 581 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue()); 582 CatchState = 583 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState, 584 ClrHandlerType::Catch, TypeToken, CatchBlock); 585 // Queue any child EH pads on the worklist. 586 for (const User *U : Catch->users()) 587 if (const auto *I = dyn_cast<Instruction>(U)) 588 if (I->isEHPad()) 589 Worklist.emplace_back(I, CatchState); 590 // Remember this catch's state. 591 FuncInfo.EHPadStateMap[Catch] = CatchState; 592 FollowerState = CatchState; 593 } 594 // Associate the catchswitch with the state of its first catch. 595 assert(CatchSwitch->getNumHandlers()); 596 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState; 597 } 598 } 599 600 // Step two: record the TryParentState of each state. For cleanuppads that 601 // don't have cleanuprets, we may need to infer this from their child pads, 602 // so visit pads in descendant-most to ancestor-most order. 603 for (ClrEHUnwindMapEntry &Entry : llvm::reverse(FuncInfo.ClrEHUnwindMap)) { 604 const Instruction *Pad = 605 Entry.Handler.get<const BasicBlock *>()->getFirstNonPHI(); 606 // For most pads, the TryParentState is the state associated with the 607 // unwind dest of exceptional exits from it. 608 const BasicBlock *UnwindDest; 609 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) { 610 // If a catch is not the last in its catchswitch, its TryParentState is 611 // the state associated with the next catch in the switch, even though 612 // that's not the unwind dest of exceptions escaping the catch. Those 613 // cases were already assigned a TryParentState in the first pass, so 614 // skip them. 615 if (Entry.TryParentState != -1) 616 continue; 617 // Otherwise, get the unwind dest from the catchswitch. 618 UnwindDest = Catch->getCatchSwitch()->getUnwindDest(); 619 } else { 620 const auto *Cleanup = cast<CleanupPadInst>(Pad); 621 UnwindDest = nullptr; 622 for (const User *U : Cleanup->users()) { 623 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { 624 // Common and unambiguous case -- cleanupret indicates cleanup's 625 // unwind dest. 626 UnwindDest = CleanupRet->getUnwindDest(); 627 break; 628 } 629 630 // Get an unwind dest for the user 631 const BasicBlock *UserUnwindDest = nullptr; 632 if (auto *Invoke = dyn_cast<InvokeInst>(U)) { 633 UserUnwindDest = Invoke->getUnwindDest(); 634 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) { 635 UserUnwindDest = CatchSwitch->getUnwindDest(); 636 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) { 637 int UserState = FuncInfo.EHPadStateMap[ChildCleanup]; 638 int UserUnwindState = 639 FuncInfo.ClrEHUnwindMap[UserState].TryParentState; 640 if (UserUnwindState != -1) 641 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState] 642 .Handler.get<const BasicBlock *>(); 643 } 644 645 // Not having an unwind dest for this user might indicate that it 646 // doesn't unwind, so can't be taken as proof that the cleanup itself 647 // may unwind to caller (see e.g. SimplifyUnreachable and 648 // RemoveUnwindEdge). 649 if (!UserUnwindDest) 650 continue; 651 652 // Now we have an unwind dest for the user, but we need to see if it 653 // unwinds all the way out of the cleanup or if it stays within it. 654 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI(); 655 const Value *UserUnwindParent; 656 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad)) 657 UserUnwindParent = CSI->getParentPad(); 658 else 659 UserUnwindParent = 660 cast<CleanupPadInst>(UserUnwindPad)->getParentPad(); 661 662 // The unwind stays within the cleanup iff it targets a child of the 663 // cleanup. 664 if (UserUnwindParent == Cleanup) 665 continue; 666 667 // This unwind exits the cleanup, so its dest is the cleanup's dest. 668 UnwindDest = UserUnwindDest; 669 break; 670 } 671 } 672 673 // Record the state of the unwind dest as the TryParentState. 674 int UnwindDestState; 675 676 // If UnwindDest is null at this point, either the pad in question can 677 // be exited by unwind to caller, or it cannot be exited by unwind. In 678 // either case, reporting such cases as unwinding to caller is correct. 679 // This can lead to EH tables that "look strange" -- if this pad's is in 680 // a parent funclet which has other children that do unwind to an enclosing 681 // pad, the try region for this pad will be missing the "duplicate" EH 682 // clause entries that you'd expect to see covering the whole parent. That 683 // should be benign, since the unwind never actually happens. If it were 684 // an issue, we could add a subsequent pass that pushes unwind dests down 685 // from parents that have them to children that appear to unwind to caller. 686 if (!UnwindDest) { 687 UnwindDestState = -1; 688 } else { 689 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()]; 690 } 691 692 Entry.TryParentState = UnwindDestState; 693 } 694 695 // Step three: transfer information from pads to invokes. 696 calculateStateNumbersForInvokes(Fn, FuncInfo); 697 } 698 699 void WinEHPrepare::colorFunclets(Function &F) { 700 BlockColors = colorEHFunclets(F); 701 702 // Invert the map from BB to colors to color to BBs. 703 for (BasicBlock &BB : F) { 704 ColorVector &Colors = BlockColors[&BB]; 705 for (BasicBlock *Color : Colors) 706 FuncletBlocks[Color].push_back(&BB); 707 } 708 } 709 710 void WinEHPrepare::demotePHIsOnFunclets(Function &F, 711 bool DemoteCatchSwitchPHIOnly) { 712 // Strip PHI nodes off of EH pads. 713 SmallVector<PHINode *, 16> PHINodes; 714 for (BasicBlock &BB : make_early_inc_range(F)) { 715 if (!BB.isEHPad()) 716 continue; 717 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB.getFirstNonPHI())) 718 continue; 719 720 for (Instruction &I : make_early_inc_range(BB)) { 721 auto *PN = dyn_cast<PHINode>(&I); 722 // Stop at the first non-PHI. 723 if (!PN) 724 break; 725 726 AllocaInst *SpillSlot = insertPHILoads(PN, F); 727 if (SpillSlot) 728 insertPHIStores(PN, SpillSlot); 729 730 PHINodes.push_back(PN); 731 } 732 } 733 734 for (auto *PN : PHINodes) { 735 // There may be lingering uses on other EH PHIs being removed 736 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 737 PN->eraseFromParent(); 738 } 739 } 740 741 void WinEHPrepare::cloneCommonBlocks(Function &F) { 742 // We need to clone all blocks which belong to multiple funclets. Values are 743 // remapped throughout the funclet to propagate both the new instructions 744 // *and* the new basic blocks themselves. 745 for (auto &Funclets : FuncletBlocks) { 746 BasicBlock *FuncletPadBB = Funclets.first; 747 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second; 748 Value *FuncletToken; 749 if (FuncletPadBB == &F.getEntryBlock()) 750 FuncletToken = ConstantTokenNone::get(F.getContext()); 751 else 752 FuncletToken = FuncletPadBB->getFirstNonPHI(); 753 754 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone; 755 ValueToValueMapTy VMap; 756 for (BasicBlock *BB : BlocksInFunclet) { 757 ColorVector &ColorsForBB = BlockColors[BB]; 758 // We don't need to do anything if the block is monochromatic. 759 size_t NumColorsForBB = ColorsForBB.size(); 760 if (NumColorsForBB == 1) 761 continue; 762 763 DEBUG_WITH_TYPE("winehprepare-coloring", 764 dbgs() << " Cloning block \'" << BB->getName() 765 << "\' for funclet \'" << FuncletPadBB->getName() 766 << "\'.\n"); 767 768 // Create a new basic block and copy instructions into it! 769 BasicBlock *CBB = 770 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName())); 771 // Insert the clone immediately after the original to ensure determinism 772 // and to keep the same relative ordering of any funclet's blocks. 773 CBB->insertInto(&F, BB->getNextNode()); 774 775 // Add basic block mapping. 776 VMap[BB] = CBB; 777 778 // Record delta operations that we need to perform to our color mappings. 779 Orig2Clone.emplace_back(BB, CBB); 780 } 781 782 // If nothing was cloned, we're done cloning in this funclet. 783 if (Orig2Clone.empty()) 784 continue; 785 786 // Update our color mappings to reflect that one block has lost a color and 787 // another has gained a color. 788 for (auto &BBMapping : Orig2Clone) { 789 BasicBlock *OldBlock = BBMapping.first; 790 BasicBlock *NewBlock = BBMapping.second; 791 792 BlocksInFunclet.push_back(NewBlock); 793 ColorVector &NewColors = BlockColors[NewBlock]; 794 assert(NewColors.empty() && "A new block should only have one color!"); 795 NewColors.push_back(FuncletPadBB); 796 797 DEBUG_WITH_TYPE("winehprepare-coloring", 798 dbgs() << " Assigned color \'" << FuncletPadBB->getName() 799 << "\' to block \'" << NewBlock->getName() 800 << "\'.\n"); 801 802 llvm::erase_value(BlocksInFunclet, OldBlock); 803 ColorVector &OldColors = BlockColors[OldBlock]; 804 llvm::erase_value(OldColors, FuncletPadBB); 805 806 DEBUG_WITH_TYPE("winehprepare-coloring", 807 dbgs() << " Removed color \'" << FuncletPadBB->getName() 808 << "\' from block \'" << OldBlock->getName() 809 << "\'.\n"); 810 } 811 812 // Loop over all of the instructions in this funclet, fixing up operand 813 // references as we go. This uses VMap to do all the hard work. 814 for (BasicBlock *BB : BlocksInFunclet) 815 // Loop over all instructions, fixing each one as we find it... 816 for (Instruction &I : *BB) 817 RemapInstruction(&I, VMap, 818 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); 819 820 // Catchrets targeting cloned blocks need to be updated separately from 821 // the loop above because they are not in the current funclet. 822 SmallVector<CatchReturnInst *, 2> FixupCatchrets; 823 for (auto &BBMapping : Orig2Clone) { 824 BasicBlock *OldBlock = BBMapping.first; 825 BasicBlock *NewBlock = BBMapping.second; 826 827 FixupCatchrets.clear(); 828 for (BasicBlock *Pred : predecessors(OldBlock)) 829 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator())) 830 if (CatchRet->getCatchSwitchParentPad() == FuncletToken) 831 FixupCatchrets.push_back(CatchRet); 832 833 for (CatchReturnInst *CatchRet : FixupCatchrets) 834 CatchRet->setSuccessor(NewBlock); 835 } 836 837 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) { 838 unsigned NumPreds = PN->getNumIncomingValues(); 839 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd; 840 ++PredIdx) { 841 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx); 842 bool EdgeTargetsFunclet; 843 if (auto *CRI = 844 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) { 845 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken); 846 } else { 847 ColorVector &IncomingColors = BlockColors[IncomingBlock]; 848 assert(!IncomingColors.empty() && "Block not colored!"); 849 assert((IncomingColors.size() == 1 || 850 llvm::all_of(IncomingColors, 851 [&](BasicBlock *Color) { 852 return Color != FuncletPadBB; 853 })) && 854 "Cloning should leave this funclet's blocks monochromatic"); 855 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB); 856 } 857 if (IsForOldBlock != EdgeTargetsFunclet) 858 continue; 859 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false); 860 // Revisit the next entry. 861 --PredIdx; 862 --PredEnd; 863 } 864 }; 865 866 for (auto &BBMapping : Orig2Clone) { 867 BasicBlock *OldBlock = BBMapping.first; 868 BasicBlock *NewBlock = BBMapping.second; 869 for (PHINode &OldPN : OldBlock->phis()) { 870 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true); 871 } 872 for (PHINode &NewPN : NewBlock->phis()) { 873 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false); 874 } 875 } 876 877 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to 878 // the PHI nodes for NewBB now. 879 for (auto &BBMapping : Orig2Clone) { 880 BasicBlock *OldBlock = BBMapping.first; 881 BasicBlock *NewBlock = BBMapping.second; 882 for (BasicBlock *SuccBB : successors(NewBlock)) { 883 for (PHINode &SuccPN : SuccBB->phis()) { 884 // Ok, we have a PHI node. Figure out what the incoming value was for 885 // the OldBlock. 886 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock); 887 if (OldBlockIdx == -1) 888 break; 889 Value *IV = SuccPN.getIncomingValue(OldBlockIdx); 890 891 // Remap the value if necessary. 892 if (auto *Inst = dyn_cast<Instruction>(IV)) { 893 ValueToValueMapTy::iterator I = VMap.find(Inst); 894 if (I != VMap.end()) 895 IV = I->second; 896 } 897 898 SuccPN.addIncoming(IV, NewBlock); 899 } 900 } 901 } 902 903 for (ValueToValueMapTy::value_type VT : VMap) { 904 // If there were values defined in BB that are used outside the funclet, 905 // then we now have to update all uses of the value to use either the 906 // original value, the cloned value, or some PHI derived value. This can 907 // require arbitrary PHI insertion, of which we are prepared to do, clean 908 // these up now. 909 SmallVector<Use *, 16> UsesToRename; 910 911 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first)); 912 if (!OldI) 913 continue; 914 auto *NewI = cast<Instruction>(VT.second); 915 // Scan all uses of this instruction to see if it is used outside of its 916 // funclet, and if so, record them in UsesToRename. 917 for (Use &U : OldI->uses()) { 918 Instruction *UserI = cast<Instruction>(U.getUser()); 919 BasicBlock *UserBB = UserI->getParent(); 920 ColorVector &ColorsForUserBB = BlockColors[UserBB]; 921 assert(!ColorsForUserBB.empty()); 922 if (ColorsForUserBB.size() > 1 || 923 *ColorsForUserBB.begin() != FuncletPadBB) 924 UsesToRename.push_back(&U); 925 } 926 927 // If there are no uses outside the block, we're done with this 928 // instruction. 929 if (UsesToRename.empty()) 930 continue; 931 932 // We found a use of OldI outside of the funclet. Rename all uses of OldI 933 // that are outside its funclet to be uses of the appropriate PHI node 934 // etc. 935 SSAUpdater SSAUpdate; 936 SSAUpdate.Initialize(OldI->getType(), OldI->getName()); 937 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI); 938 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI); 939 940 while (!UsesToRename.empty()) 941 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val()); 942 } 943 } 944 } 945 946 void WinEHPrepare::removeImplausibleInstructions(Function &F) { 947 // Remove implausible terminators and replace them with UnreachableInst. 948 for (auto &Funclet : FuncletBlocks) { 949 BasicBlock *FuncletPadBB = Funclet.first; 950 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second; 951 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI(); 952 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI); 953 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad); 954 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad); 955 956 for (BasicBlock *BB : BlocksInFunclet) { 957 for (Instruction &I : *BB) { 958 auto *CB = dyn_cast<CallBase>(&I); 959 if (!CB) 960 continue; 961 962 Value *FuncletBundleOperand = nullptr; 963 if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet)) 964 FuncletBundleOperand = BU->Inputs.front(); 965 966 if (FuncletBundleOperand == FuncletPad) 967 continue; 968 969 // Skip call sites which are nounwind intrinsics or inline asm. 970 auto *CalledFn = 971 dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts()); 972 if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) || 973 CB->isInlineAsm())) 974 continue; 975 976 // This call site was not part of this funclet, remove it. 977 if (isa<InvokeInst>(CB)) { 978 // Remove the unwind edge if it was an invoke. 979 removeUnwindEdge(BB); 980 // Get a pointer to the new call. 981 BasicBlock::iterator CallI = 982 std::prev(BB->getTerminator()->getIterator()); 983 auto *CI = cast<CallInst>(&*CallI); 984 changeToUnreachable(CI); 985 } else { 986 changeToUnreachable(&I); 987 } 988 989 // There are no more instructions in the block (except for unreachable), 990 // we are done. 991 break; 992 } 993 994 Instruction *TI = BB->getTerminator(); 995 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst. 996 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad; 997 // The token consumed by a CatchReturnInst must match the funclet token. 998 bool IsUnreachableCatchret = false; 999 if (auto *CRI = dyn_cast<CatchReturnInst>(TI)) 1000 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad; 1001 // The token consumed by a CleanupReturnInst must match the funclet token. 1002 bool IsUnreachableCleanupret = false; 1003 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) 1004 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad; 1005 if (IsUnreachableRet || IsUnreachableCatchret || 1006 IsUnreachableCleanupret) { 1007 changeToUnreachable(TI); 1008 } else if (isa<InvokeInst>(TI)) { 1009 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) { 1010 // Invokes within a cleanuppad for the MSVC++ personality never 1011 // transfer control to their unwind edge: the personality will 1012 // terminate the program. 1013 removeUnwindEdge(BB); 1014 } 1015 } 1016 } 1017 } 1018 } 1019 1020 void WinEHPrepare::cleanupPreparedFunclets(Function &F) { 1021 // Clean-up some of the mess we made by removing useles PHI nodes, trivial 1022 // branches, etc. 1023 for (BasicBlock &BB : llvm::make_early_inc_range(F)) { 1024 SimplifyInstructionsInBlock(&BB); 1025 ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true); 1026 MergeBlockIntoPredecessor(&BB); 1027 } 1028 1029 // We might have some unreachable blocks after cleaning up some impossible 1030 // control flow. 1031 removeUnreachableBlocks(F); 1032 } 1033 1034 #ifndef NDEBUG 1035 void WinEHPrepare::verifyPreparedFunclets(Function &F) { 1036 for (BasicBlock &BB : F) { 1037 size_t NumColors = BlockColors[&BB].size(); 1038 assert(NumColors == 1 && "Expected monochromatic BB!"); 1039 if (NumColors == 0) 1040 report_fatal_error("Uncolored BB!"); 1041 if (NumColors > 1) 1042 report_fatal_error("Multicolor BB!"); 1043 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && 1044 "EH Pad still has a PHI!"); 1045 } 1046 } 1047 #endif 1048 1049 bool WinEHPrepare::prepareExplicitEH(Function &F) { 1050 // Remove unreachable blocks. It is not valuable to assign them a color and 1051 // their existence can trick us into thinking values are alive when they are 1052 // not. 1053 removeUnreachableBlocks(F); 1054 1055 // Determine which blocks are reachable from which funclet entries. 1056 colorFunclets(F); 1057 1058 cloneCommonBlocks(F); 1059 1060 if (!DisableDemotion) 1061 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly || 1062 DemoteCatchSwitchPHIOnlyOpt); 1063 1064 if (!DisableCleanups) { 1065 assert(!verifyFunction(F, &dbgs())); 1066 removeImplausibleInstructions(F); 1067 1068 assert(!verifyFunction(F, &dbgs())); 1069 cleanupPreparedFunclets(F); 1070 } 1071 1072 LLVM_DEBUG(verifyPreparedFunclets(F)); 1073 // Recolor the CFG to verify that all is well. 1074 LLVM_DEBUG(colorFunclets(F)); 1075 LLVM_DEBUG(verifyPreparedFunclets(F)); 1076 1077 BlockColors.clear(); 1078 FuncletBlocks.clear(); 1079 1080 return true; 1081 } 1082 1083 // TODO: Share loads when one use dominates another, or when a catchpad exit 1084 // dominates uses (needs dominators). 1085 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) { 1086 BasicBlock *PHIBlock = PN->getParent(); 1087 AllocaInst *SpillSlot = nullptr; 1088 Instruction *EHPad = PHIBlock->getFirstNonPHI(); 1089 1090 if (!EHPad->isTerminator()) { 1091 // If the EHPad isn't a terminator, then we can insert a load in this block 1092 // that will dominate all uses. 1093 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr, 1094 Twine(PN->getName(), ".wineh.spillslot"), 1095 &F.getEntryBlock().front()); 1096 Value *V = new LoadInst(PN->getType(), SpillSlot, 1097 Twine(PN->getName(), ".wineh.reload"), 1098 &*PHIBlock->getFirstInsertionPt()); 1099 PN->replaceAllUsesWith(V); 1100 return SpillSlot; 1101 } 1102 1103 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert 1104 // loads of the slot before every use. 1105 DenseMap<BasicBlock *, Value *> Loads; 1106 for (Use &U : llvm::make_early_inc_range(PN->uses())) { 1107 auto *UsingInst = cast<Instruction>(U.getUser()); 1108 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) { 1109 // Use is on an EH pad phi. Leave it alone; we'll insert loads and 1110 // stores for it separately. 1111 continue; 1112 } 1113 replaceUseWithLoad(PN, U, SpillSlot, Loads, F); 1114 } 1115 return SpillSlot; 1116 } 1117 1118 // TODO: improve store placement. Inserting at def is probably good, but need 1119 // to be careful not to introduce interfering stores (needs liveness analysis). 1120 // TODO: identify related phi nodes that can share spill slots, and share them 1121 // (also needs liveness). 1122 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI, 1123 AllocaInst *SpillSlot) { 1124 // Use a worklist of (Block, Value) pairs -- the given Value needs to be 1125 // stored to the spill slot by the end of the given Block. 1126 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist; 1127 1128 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI}); 1129 1130 while (!Worklist.empty()) { 1131 BasicBlock *EHBlock; 1132 Value *InVal; 1133 std::tie(EHBlock, InVal) = Worklist.pop_back_val(); 1134 1135 PHINode *PN = dyn_cast<PHINode>(InVal); 1136 if (PN && PN->getParent() == EHBlock) { 1137 // The value is defined by another PHI we need to remove, with no room to 1138 // insert a store after the PHI, so each predecessor needs to store its 1139 // incoming value. 1140 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { 1141 Value *PredVal = PN->getIncomingValue(i); 1142 1143 // Undef can safely be skipped. 1144 if (isa<UndefValue>(PredVal)) 1145 continue; 1146 1147 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist); 1148 } 1149 } else { 1150 // We need to store InVal, which dominates EHBlock, but can't put a store 1151 // in EHBlock, so need to put stores in each predecessor. 1152 for (BasicBlock *PredBlock : predecessors(EHBlock)) { 1153 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist); 1154 } 1155 } 1156 } 1157 } 1158 1159 void WinEHPrepare::insertPHIStore( 1160 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, 1161 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) { 1162 1163 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) { 1164 // Pred is unsplittable, so we need to queue it on the worklist. 1165 Worklist.push_back({PredBlock, PredVal}); 1166 return; 1167 } 1168 1169 // Otherwise, insert the store at the end of the basic block. 1170 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()); 1171 } 1172 1173 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, 1174 DenseMap<BasicBlock *, Value *> &Loads, 1175 Function &F) { 1176 // Lazilly create the spill slot. 1177 if (!SpillSlot) 1178 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr, 1179 Twine(V->getName(), ".wineh.spillslot"), 1180 &F.getEntryBlock().front()); 1181 1182 auto *UsingInst = cast<Instruction>(U.getUser()); 1183 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) { 1184 // If this is a PHI node, we can't insert a load of the value before 1185 // the use. Instead insert the load in the predecessor block 1186 // corresponding to the incoming value. 1187 // 1188 // Note that if there are multiple edges from a basic block to this 1189 // PHI node that we cannot have multiple loads. The problem is that 1190 // the resulting PHI node will have multiple values (from each load) 1191 // coming in from the same block, which is illegal SSA form. 1192 // For this reason, we keep track of and reuse loads we insert. 1193 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U); 1194 if (auto *CatchRet = 1195 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) { 1196 // Putting a load above a catchret and use on the phi would still leave 1197 // a cross-funclet def/use. We need to split the edge, change the 1198 // catchret to target the new block, and put the load there. 1199 BasicBlock *PHIBlock = UsingInst->getParent(); 1200 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock); 1201 // SplitEdge gives us: 1202 // IncomingBlock: 1203 // ... 1204 // br label %NewBlock 1205 // NewBlock: 1206 // catchret label %PHIBlock 1207 // But we need: 1208 // IncomingBlock: 1209 // ... 1210 // catchret label %NewBlock 1211 // NewBlock: 1212 // br label %PHIBlock 1213 // So move the terminators to each others' blocks and swap their 1214 // successors. 1215 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator()); 1216 Goto->removeFromParent(); 1217 CatchRet->removeFromParent(); 1218 IncomingBlock->getInstList().push_back(CatchRet); 1219 NewBlock->getInstList().push_back(Goto); 1220 Goto->setSuccessor(0, PHIBlock); 1221 CatchRet->setSuccessor(NewBlock); 1222 // Update the color mapping for the newly split edge. 1223 // Grab a reference to the ColorVector to be inserted before getting the 1224 // reference to the vector we are copying because inserting the new 1225 // element in BlockColors might cause the map to be reallocated. 1226 ColorVector &ColorsForNewBlock = BlockColors[NewBlock]; 1227 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock]; 1228 ColorsForNewBlock = ColorsForPHIBlock; 1229 for (BasicBlock *FuncletPad : ColorsForPHIBlock) 1230 FuncletBlocks[FuncletPad].push_back(NewBlock); 1231 // Treat the new block as incoming for load insertion. 1232 IncomingBlock = NewBlock; 1233 } 1234 Value *&Load = Loads[IncomingBlock]; 1235 // Insert the load into the predecessor block 1236 if (!Load) 1237 Load = new LoadInst(V->getType(), SpillSlot, 1238 Twine(V->getName(), ".wineh.reload"), 1239 /*isVolatile=*/false, IncomingBlock->getTerminator()); 1240 1241 U.set(Load); 1242 } else { 1243 // Reload right before the old use. 1244 auto *Load = new LoadInst(V->getType(), SpillSlot, 1245 Twine(V->getName(), ".wineh.reload"), 1246 /*isVolatile=*/false, UsingInst); 1247 U.set(Load); 1248 } 1249 } 1250 1251 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II, 1252 MCSymbol *InvokeBegin, 1253 MCSymbol *InvokeEnd) { 1254 assert(InvokeStateMap.count(II) && 1255 "should get invoke with precomputed state"); 1256 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd); 1257 } 1258 1259 WinEHFuncInfo::WinEHFuncInfo() {} 1260