xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/WinEHPrepare.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/WinEHPrepare.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/WinEHFuncInfo.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/EHPersonalities.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Verifier.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/TargetParser/Triple.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/SSAUpdater.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "win-eh-prepare"
43 
44 static cl::opt<bool> DisableDemotion(
45     "disable-demotion", cl::Hidden,
46     cl::desc(
47         "Clone multicolor basic blocks but do not demote cross scopes"),
48     cl::init(false));
49 
50 static cl::opt<bool> DisableCleanups(
51     "disable-cleanups", cl::Hidden,
52     cl::desc("Do not remove implausible terminators or other similar cleanups"),
53     cl::init(false));
54 
55 // TODO: Remove this option when we fully migrate to new pass manager
56 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
57     "demote-catchswitch-only", cl::Hidden,
58     cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
59 
60 namespace {
61 
62 class WinEHPrepareImpl {
63 public:
64   WinEHPrepareImpl(bool DemoteCatchSwitchPHIOnly)
65       : DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
66 
67   bool runOnFunction(Function &Fn);
68 
69 private:
70   void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
71   void
72   insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
73                  SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
74   AllocaInst *insertPHILoads(PHINode *PN, Function &F);
75   void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
76                           DenseMap<BasicBlock *, Value *> &Loads, Function &F);
77   bool prepareExplicitEH(Function &F);
78   void colorFunclets(Function &F);
79 
80   void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
81   void cloneCommonBlocks(Function &F);
82   void removeImplausibleInstructions(Function &F);
83   void cleanupPreparedFunclets(Function &F);
84   void verifyPreparedFunclets(Function &F);
85 
86   bool DemoteCatchSwitchPHIOnly;
87 
88   // All fields are reset by runOnFunction.
89   EHPersonality Personality = EHPersonality::Unknown;
90 
91   const DataLayout *DL = nullptr;
92   DenseMap<BasicBlock *, ColorVector> BlockColors;
93   MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
94 };
95 
96 class WinEHPrepare : public FunctionPass {
97   bool DemoteCatchSwitchPHIOnly;
98 
99 public:
100   static char ID; // Pass identification, replacement for typeid.
101 
102   WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
103       : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
104 
105   StringRef getPassName() const override {
106     return "Windows exception handling preparation";
107   }
108 
109   bool runOnFunction(Function &Fn) override {
110     return WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn);
111   }
112 };
113 
114 } // end anonymous namespace
115 
116 PreservedAnalyses WinEHPreparePass::run(Function &F,
117                                         FunctionAnalysisManager &) {
118   bool Changed = WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(F);
119   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
120 }
121 
122 char WinEHPrepare::ID = 0;
123 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions", false,
124                 false)
125 
126 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
127   return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
128 }
129 
130 bool WinEHPrepareImpl::runOnFunction(Function &Fn) {
131   if (!Fn.hasPersonalityFn())
132     return false;
133 
134   // Classify the personality to see what kind of preparation we need.
135   Personality = classifyEHPersonality(Fn.getPersonalityFn());
136 
137   // Do nothing if this is not a scope-based personality.
138   if (!isScopedEHPersonality(Personality))
139     return false;
140 
141   DL = &Fn.getParent()->getDataLayout();
142   return prepareExplicitEH(Fn);
143 }
144 
145 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
146                              const BasicBlock *BB) {
147   CxxUnwindMapEntry UME;
148   UME.ToState = ToState;
149   UME.Cleanup = BB;
150   FuncInfo.CxxUnwindMap.push_back(UME);
151   return FuncInfo.getLastStateNumber();
152 }
153 
154 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
155                                 int TryHigh, int CatchHigh,
156                                 ArrayRef<const CatchPadInst *> Handlers) {
157   WinEHTryBlockMapEntry TBME;
158   TBME.TryLow = TryLow;
159   TBME.TryHigh = TryHigh;
160   TBME.CatchHigh = CatchHigh;
161   assert(TBME.TryLow <= TBME.TryHigh);
162   for (const CatchPadInst *CPI : Handlers) {
163     WinEHHandlerType HT;
164     Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
165     if (TypeInfo->isNullValue())
166       HT.TypeDescriptor = nullptr;
167     else
168       HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
169     HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
170     HT.Handler = CPI->getParent();
171     if (auto *AI =
172             dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
173       HT.CatchObj.Alloca = AI;
174     else
175       HT.CatchObj.Alloca = nullptr;
176     TBME.HandlerArray.push_back(HT);
177   }
178   FuncInfo.TryBlockMap.push_back(TBME);
179 }
180 
181 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
182   for (const User *U : CleanupPad->users())
183     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
184       return CRI->getUnwindDest();
185   return nullptr;
186 }
187 
188 static void calculateStateNumbersForInvokes(const Function *Fn,
189                                             WinEHFuncInfo &FuncInfo) {
190   auto *F = const_cast<Function *>(Fn);
191   DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
192   for (BasicBlock &BB : *F) {
193     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
194     if (!II)
195       continue;
196 
197     auto &BBColors = BlockColors[&BB];
198     assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
199     BasicBlock *FuncletEntryBB = BBColors.front();
200 
201     BasicBlock *FuncletUnwindDest;
202     auto *FuncletPad =
203         dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
204     assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
205     if (!FuncletPad)
206       FuncletUnwindDest = nullptr;
207     else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
208       FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
209     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
210       FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
211     else
212       llvm_unreachable("unexpected funclet pad!");
213 
214     BasicBlock *InvokeUnwindDest = II->getUnwindDest();
215     int BaseState = -1;
216     if (FuncletUnwindDest == InvokeUnwindDest) {
217       auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
218       if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
219         BaseState = BaseStateI->second;
220     }
221 
222     if (BaseState != -1) {
223       FuncInfo.InvokeStateMap[II] = BaseState;
224     } else {
225       Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
226       assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
227       FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
228     }
229   }
230 }
231 
232 // See comments below for calculateSEHStateForAsynchEH().
233 // State - incoming State of normal paths
234 struct WorkItem {
235   const BasicBlock *Block;
236   int State;
237   WorkItem(const BasicBlock *BB, int St) {
238     Block = BB;
239     State = St;
240   }
241 };
242 void llvm::calculateCXXStateForAsynchEH(const BasicBlock *BB, int State,
243                                         WinEHFuncInfo &EHInfo) {
244   SmallVector<struct WorkItem *, 8> WorkList;
245   struct WorkItem *WI = new WorkItem(BB, State);
246   WorkList.push_back(WI);
247 
248   while (!WorkList.empty()) {
249     WI = WorkList.pop_back_val();
250     const BasicBlock *BB = WI->Block;
251     int State = WI->State;
252     delete WI;
253     if (EHInfo.BlockToStateMap.count(BB) && EHInfo.BlockToStateMap[BB] <= State)
254       continue; // skip blocks already visited by lower State
255 
256     const llvm::Instruction *I = BB->getFirstNonPHI();
257     const llvm::Instruction *TI = BB->getTerminator();
258     if (I->isEHPad())
259       State = EHInfo.EHPadStateMap[I];
260     EHInfo.BlockToStateMap[BB] = State; // Record state, also flag visiting
261 
262     if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) && State > 0) {
263       // Retrive the new State
264       State = EHInfo.CxxUnwindMap[State].ToState; // Retrive next State
265     } else if (isa<InvokeInst>(TI)) {
266       auto *Call = cast<CallBase>(TI);
267       const Function *Fn = Call->getCalledFunction();
268       if (Fn && Fn->isIntrinsic() &&
269           (Fn->getIntrinsicID() == Intrinsic::seh_scope_begin ||
270            Fn->getIntrinsicID() == Intrinsic::seh_try_begin))
271         // Retrive the new State from seh_scope_begin
272         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
273       else if (Fn && Fn->isIntrinsic() &&
274                (Fn->getIntrinsicID() == Intrinsic::seh_scope_end ||
275                 Fn->getIntrinsicID() == Intrinsic::seh_try_end)) {
276         // In case of conditional ctor, let's retrieve State from Invoke
277         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
278         // end of current state, retrive new state from UnwindMap
279         State = EHInfo.CxxUnwindMap[State].ToState;
280       }
281     }
282     // Continue push successors into worklist
283     for (auto *SuccBB : successors(BB)) {
284       WI = new WorkItem(SuccBB, State);
285       WorkList.push_back(WI);
286     }
287   }
288 }
289 
290 // The central theory of this routine is based on the following:
291 //   A _try scope is always a SEME (Single Entry Multiple Exits) region
292 //     as jumping into a _try is not allowed
293 //   The single entry must start with a seh_try_begin() invoke with a
294 //     correct State number that is the initial state of the SEME.
295 //   Through control-flow, state number is propagated into all blocks.
296 //   Side exits marked by seh_try_end() will unwind to parent state via
297 //     existing SEHUnwindMap[].
298 //   Side exits can ONLY jump into parent scopes (lower state number).
299 //   Thus, when a block succeeds various states from its predecessors,
300 //     the lowest State trumphs others.
301 //   If some exits flow to unreachable, propagation on those paths terminate,
302 //     not affecting remaining blocks.
303 void llvm::calculateSEHStateForAsynchEH(const BasicBlock *BB, int State,
304                                         WinEHFuncInfo &EHInfo) {
305   SmallVector<struct WorkItem *, 8> WorkList;
306   struct WorkItem *WI = new WorkItem(BB, State);
307   WorkList.push_back(WI);
308 
309   while (!WorkList.empty()) {
310     WI = WorkList.pop_back_val();
311     const BasicBlock *BB = WI->Block;
312     int State = WI->State;
313     delete WI;
314     if (EHInfo.BlockToStateMap.count(BB) && EHInfo.BlockToStateMap[BB] <= State)
315       continue; // skip blocks already visited by lower State
316 
317     const llvm::Instruction *I = BB->getFirstNonPHI();
318     const llvm::Instruction *TI = BB->getTerminator();
319     if (I->isEHPad())
320       State = EHInfo.EHPadStateMap[I];
321     EHInfo.BlockToStateMap[BB] = State; // Record state
322 
323     if (isa<CatchPadInst>(I) && isa<CatchReturnInst>(TI)) {
324       const Constant *FilterOrNull = cast<Constant>(
325           cast<CatchPadInst>(I)->getArgOperand(0)->stripPointerCasts());
326       const Function *Filter = dyn_cast<Function>(FilterOrNull);
327       if (!Filter || !Filter->getName().starts_with("__IsLocalUnwind"))
328         State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
329     } else if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) &&
330                State > 0) {
331       // Retrive the new State.
332       State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
333     } else if (isa<InvokeInst>(TI)) {
334       auto *Call = cast<CallBase>(TI);
335       const Function *Fn = Call->getCalledFunction();
336       if (Fn && Fn->isIntrinsic() &&
337           Fn->getIntrinsicID() == Intrinsic::seh_try_begin)
338         // Retrive the new State from seh_try_begin
339         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
340       else if (Fn && Fn->isIntrinsic() &&
341                Fn->getIntrinsicID() == Intrinsic::seh_try_end)
342         // end of current state, retrive new state from UnwindMap
343         State = EHInfo.SEHUnwindMap[State].ToState;
344     }
345     // Continue push successors into worklist
346     for (auto *SuccBB : successors(BB)) {
347       WI = new WorkItem(SuccBB, State);
348       WorkList.push_back(WI);
349     }
350   }
351 }
352 
353 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
354 // to. If the unwind edge came from an invoke, return null.
355 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
356                                                  Value *ParentPad) {
357   const Instruction *TI = BB->getTerminator();
358   if (isa<InvokeInst>(TI))
359     return nullptr;
360   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
361     if (CatchSwitch->getParentPad() != ParentPad)
362       return nullptr;
363     return BB;
364   }
365   assert(!TI->isEHPad() && "unexpected EHPad!");
366   auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
367   if (CleanupPad->getParentPad() != ParentPad)
368     return nullptr;
369   return CleanupPad->getParent();
370 }
371 
372 // Starting from a EHPad, Backward walk through control-flow graph
373 // to produce two primary outputs:
374 //      FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
375 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
376                                      const Instruction *FirstNonPHI,
377                                      int ParentState) {
378   const BasicBlock *BB = FirstNonPHI->getParent();
379   assert(BB->isEHPad() && "not a funclet!");
380 
381   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
382     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
383            "shouldn't revist catch funclets!");
384 
385     SmallVector<const CatchPadInst *, 2> Handlers;
386     for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
387       auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
388       Handlers.push_back(CatchPad);
389     }
390     int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
391     FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
392     for (const BasicBlock *PredBlock : predecessors(BB))
393       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
394                                                CatchSwitch->getParentPad())))
395         calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
396                                  TryLow);
397     int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
398 
399     // catchpads are separate funclets in C++ EH due to the way rethrow works.
400     int TryHigh = CatchLow - 1;
401 
402     // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
403     //  stored in pre-order (outer first, inner next), not post-order
404     //  Add to map here.  Fix the CatchHigh after children are processed
405     const Module *Mod = BB->getParent()->getParent();
406     bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit();
407     if (IsPreOrder)
408       addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
409     unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
410 
411     for (const auto *CatchPad : Handlers) {
412       FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
413       FuncInfo.EHPadStateMap[CatchPad] = CatchLow;
414       for (const User *U : CatchPad->users()) {
415         const auto *UserI = cast<Instruction>(U);
416         if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
417           BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
418           if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
419             calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
420         }
421         if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
422           BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
423           // If a nested cleanup pad reports a null unwind destination and the
424           // enclosing catch pad doesn't it must be post-dominated by an
425           // unreachable instruction.
426           if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
427             calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
428         }
429       }
430     }
431     int CatchHigh = FuncInfo.getLastStateNumber();
432     // Now child Catches are processed, update CatchHigh
433     if (IsPreOrder)
434       FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
435     else // PostOrder
436       addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
437 
438     LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
439     LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
440                       << '\n');
441     LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
442                       << '\n');
443   } else {
444     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
445 
446     // It's possible for a cleanup to be visited twice: it might have multiple
447     // cleanupret instructions.
448     if (FuncInfo.EHPadStateMap.count(CleanupPad))
449       return;
450 
451     int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
452     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
453     LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
454                       << BB->getName() << '\n');
455     for (const BasicBlock *PredBlock : predecessors(BB)) {
456       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
457                                                CleanupPad->getParentPad()))) {
458         calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
459                                  CleanupState);
460       }
461     }
462     for (const User *U : CleanupPad->users()) {
463       const auto *UserI = cast<Instruction>(U);
464       if (UserI->isEHPad())
465         report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
466                            "contain exceptional actions");
467     }
468   }
469 }
470 
471 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
472                         const Function *Filter, const BasicBlock *Handler) {
473   SEHUnwindMapEntry Entry;
474   Entry.ToState = ParentState;
475   Entry.IsFinally = false;
476   Entry.Filter = Filter;
477   Entry.Handler = Handler;
478   FuncInfo.SEHUnwindMap.push_back(Entry);
479   return FuncInfo.SEHUnwindMap.size() - 1;
480 }
481 
482 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
483                          const BasicBlock *Handler) {
484   SEHUnwindMapEntry Entry;
485   Entry.ToState = ParentState;
486   Entry.IsFinally = true;
487   Entry.Filter = nullptr;
488   Entry.Handler = Handler;
489   FuncInfo.SEHUnwindMap.push_back(Entry);
490   return FuncInfo.SEHUnwindMap.size() - 1;
491 }
492 
493 // Starting from a EHPad, Backward walk through control-flow graph
494 // to produce two primary outputs:
495 //      FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
496 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
497                                      const Instruction *FirstNonPHI,
498                                      int ParentState) {
499   const BasicBlock *BB = FirstNonPHI->getParent();
500   assert(BB->isEHPad() && "no a funclet!");
501 
502   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
503     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
504            "shouldn't revist catch funclets!");
505 
506     // Extract the filter function and the __except basic block and create a
507     // state for them.
508     assert(CatchSwitch->getNumHandlers() == 1 &&
509            "SEH doesn't have multiple handlers per __try");
510     const auto *CatchPad =
511         cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
512     const BasicBlock *CatchPadBB = CatchPad->getParent();
513     const Constant *FilterOrNull =
514         cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
515     const Function *Filter = dyn_cast<Function>(FilterOrNull);
516     assert((Filter || FilterOrNull->isNullValue()) &&
517            "unexpected filter value");
518     int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
519 
520     // Everything in the __try block uses TryState as its parent state.
521     FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
522     FuncInfo.EHPadStateMap[CatchPad] = TryState;
523     LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
524                       << CatchPadBB->getName() << '\n');
525     for (const BasicBlock *PredBlock : predecessors(BB))
526       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
527                                                CatchSwitch->getParentPad())))
528         calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
529                                  TryState);
530 
531     // Everything in the __except block unwinds to ParentState, just like code
532     // outside the __try.
533     for (const User *U : CatchPad->users()) {
534       const auto *UserI = cast<Instruction>(U);
535       if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
536         BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
537         if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
538           calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
539       }
540       if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
541         BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
542         // If a nested cleanup pad reports a null unwind destination and the
543         // enclosing catch pad doesn't it must be post-dominated by an
544         // unreachable instruction.
545         if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
546           calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
547       }
548     }
549   } else {
550     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
551 
552     // It's possible for a cleanup to be visited twice: it might have multiple
553     // cleanupret instructions.
554     if (FuncInfo.EHPadStateMap.count(CleanupPad))
555       return;
556 
557     int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
558     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
559     LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
560                       << BB->getName() << '\n');
561     for (const BasicBlock *PredBlock : predecessors(BB))
562       if ((PredBlock =
563                getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
564         calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
565                                  CleanupState);
566     for (const User *U : CleanupPad->users()) {
567       const auto *UserI = cast<Instruction>(U);
568       if (UserI->isEHPad())
569         report_fatal_error("Cleanup funclets for the SEH personality cannot "
570                            "contain exceptional actions");
571     }
572   }
573 }
574 
575 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
576   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
577     return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
578            CatchSwitch->unwindsToCaller();
579   if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
580     return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
581            getCleanupRetUnwindDest(CleanupPad) == nullptr;
582   if (isa<CatchPadInst>(EHPad))
583     return false;
584   llvm_unreachable("unexpected EHPad!");
585 }
586 
587 void llvm::calculateSEHStateNumbers(const Function *Fn,
588                                     WinEHFuncInfo &FuncInfo) {
589   // Don't compute state numbers twice.
590   if (!FuncInfo.SEHUnwindMap.empty())
591     return;
592 
593   for (const BasicBlock &BB : *Fn) {
594     if (!BB.isEHPad())
595       continue;
596     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
597     if (!isTopLevelPadForMSVC(FirstNonPHI))
598       continue;
599     ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
600   }
601 
602   calculateStateNumbersForInvokes(Fn, FuncInfo);
603 
604   bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
605   if (IsEHa) {
606     const BasicBlock *EntryBB = &(Fn->getEntryBlock());
607     calculateSEHStateForAsynchEH(EntryBB, -1, FuncInfo);
608   }
609 }
610 
611 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
612                                          WinEHFuncInfo &FuncInfo) {
613   // Return if it's already been done.
614   if (!FuncInfo.EHPadStateMap.empty())
615     return;
616 
617   for (const BasicBlock &BB : *Fn) {
618     if (!BB.isEHPad())
619       continue;
620     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
621     if (!isTopLevelPadForMSVC(FirstNonPHI))
622       continue;
623     calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
624   }
625 
626   calculateStateNumbersForInvokes(Fn, FuncInfo);
627 
628   bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
629   if (IsEHa) {
630     const BasicBlock *EntryBB = &(Fn->getEntryBlock());
631     calculateCXXStateForAsynchEH(EntryBB, -1, FuncInfo);
632   }
633 }
634 
635 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
636                            int TryParentState, ClrHandlerType HandlerType,
637                            uint32_t TypeToken, const BasicBlock *Handler) {
638   ClrEHUnwindMapEntry Entry;
639   Entry.HandlerParentState = HandlerParentState;
640   Entry.TryParentState = TryParentState;
641   Entry.Handler = Handler;
642   Entry.HandlerType = HandlerType;
643   Entry.TypeToken = TypeToken;
644   FuncInfo.ClrEHUnwindMap.push_back(Entry);
645   return FuncInfo.ClrEHUnwindMap.size() - 1;
646 }
647 
648 void llvm::calculateClrEHStateNumbers(const Function *Fn,
649                                       WinEHFuncInfo &FuncInfo) {
650   // Return if it's already been done.
651   if (!FuncInfo.EHPadStateMap.empty())
652     return;
653 
654   // This numbering assigns one state number to each catchpad and cleanuppad.
655   // It also computes two tree-like relations over states:
656   // 1) Each state has a "HandlerParentState", which is the state of the next
657   //    outer handler enclosing this state's handler (same as nearest ancestor
658   //    per the ParentPad linkage on EH pads, but skipping over catchswitches).
659   // 2) Each state has a "TryParentState", which:
660   //    a) for a catchpad that's not the last handler on its catchswitch, is
661   //       the state of the next catchpad on that catchswitch
662   //    b) for all other pads, is the state of the pad whose try region is the
663   //       next outer try region enclosing this state's try region.  The "try
664   //       regions are not present as such in the IR, but will be inferred
665   //       based on the placement of invokes and pads which reach each other
666   //       by exceptional exits
667   // Catchswitches do not get their own states, but each gets mapped to the
668   // state of its first catchpad.
669 
670   // Step one: walk down from outermost to innermost funclets, assigning each
671   // catchpad and cleanuppad a state number.  Add an entry to the
672   // ClrEHUnwindMap for each state, recording its HandlerParentState and
673   // handler attributes.  Record the TryParentState as well for each catchpad
674   // that's not the last on its catchswitch, but initialize all other entries'
675   // TryParentStates to a sentinel -1 value that the next pass will update.
676 
677   // Seed a worklist with pads that have no parent.
678   SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
679   for (const BasicBlock &BB : *Fn) {
680     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
681     const Value *ParentPad;
682     if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
683       ParentPad = CPI->getParentPad();
684     else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
685       ParentPad = CSI->getParentPad();
686     else
687       continue;
688     if (isa<ConstantTokenNone>(ParentPad))
689       Worklist.emplace_back(FirstNonPHI, -1);
690   }
691 
692   // Use the worklist to visit all pads, from outer to inner.  Record
693   // HandlerParentState for all pads.  Record TryParentState only for catchpads
694   // that aren't the last on their catchswitch (setting all other entries'
695   // TryParentStates to an initial value of -1).  This loop is also responsible
696   // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
697   // catchswitches.
698   while (!Worklist.empty()) {
699     const Instruction *Pad;
700     int HandlerParentState;
701     std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
702 
703     if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
704       // Create the entry for this cleanup with the appropriate handler
705       // properties.  Finally and fault handlers are distinguished by arity.
706       ClrHandlerType HandlerType =
707           (Cleanup->arg_size() ? ClrHandlerType::Fault
708                                : ClrHandlerType::Finally);
709       int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
710                                          HandlerType, 0, Pad->getParent());
711       // Queue any child EH pads on the worklist.
712       for (const User *U : Cleanup->users())
713         if (const auto *I = dyn_cast<Instruction>(U))
714           if (I->isEHPad())
715             Worklist.emplace_back(I, CleanupState);
716       // Remember this pad's state.
717       FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
718     } else {
719       // Walk the handlers of this catchswitch in reverse order since all but
720       // the last need to set the following one as its TryParentState.
721       const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
722       int CatchState = -1, FollowerState = -1;
723       SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
724       for (const BasicBlock *CatchBlock : llvm::reverse(CatchBlocks)) {
725         // Create the entry for this catch with the appropriate handler
726         // properties.
727         const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
728         uint32_t TypeToken = static_cast<uint32_t>(
729             cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
730         CatchState =
731             addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
732                             ClrHandlerType::Catch, TypeToken, CatchBlock);
733         // Queue any child EH pads on the worklist.
734         for (const User *U : Catch->users())
735           if (const auto *I = dyn_cast<Instruction>(U))
736             if (I->isEHPad())
737               Worklist.emplace_back(I, CatchState);
738         // Remember this catch's state.
739         FuncInfo.EHPadStateMap[Catch] = CatchState;
740         FollowerState = CatchState;
741       }
742       // Associate the catchswitch with the state of its first catch.
743       assert(CatchSwitch->getNumHandlers());
744       FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
745     }
746   }
747 
748   // Step two: record the TryParentState of each state.  For cleanuppads that
749   // don't have cleanuprets, we may need to infer this from their child pads,
750   // so visit pads in descendant-most to ancestor-most order.
751   for (ClrEHUnwindMapEntry &Entry : llvm::reverse(FuncInfo.ClrEHUnwindMap)) {
752     const Instruction *Pad =
753         cast<const BasicBlock *>(Entry.Handler)->getFirstNonPHI();
754     // For most pads, the TryParentState is the state associated with the
755     // unwind dest of exceptional exits from it.
756     const BasicBlock *UnwindDest;
757     if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
758       // If a catch is not the last in its catchswitch, its TryParentState is
759       // the state associated with the next catch in the switch, even though
760       // that's not the unwind dest of exceptions escaping the catch.  Those
761       // cases were already assigned a TryParentState in the first pass, so
762       // skip them.
763       if (Entry.TryParentState != -1)
764         continue;
765       // Otherwise, get the unwind dest from the catchswitch.
766       UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
767     } else {
768       const auto *Cleanup = cast<CleanupPadInst>(Pad);
769       UnwindDest = nullptr;
770       for (const User *U : Cleanup->users()) {
771         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
772           // Common and unambiguous case -- cleanupret indicates cleanup's
773           // unwind dest.
774           UnwindDest = CleanupRet->getUnwindDest();
775           break;
776         }
777 
778         // Get an unwind dest for the user
779         const BasicBlock *UserUnwindDest = nullptr;
780         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
781           UserUnwindDest = Invoke->getUnwindDest();
782         } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
783           UserUnwindDest = CatchSwitch->getUnwindDest();
784         } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
785           int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
786           int UserUnwindState =
787               FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
788           if (UserUnwindState != -1)
789             UserUnwindDest = cast<const BasicBlock *>(
790                 FuncInfo.ClrEHUnwindMap[UserUnwindState].Handler);
791         }
792 
793         // Not having an unwind dest for this user might indicate that it
794         // doesn't unwind, so can't be taken as proof that the cleanup itself
795         // may unwind to caller (see e.g. SimplifyUnreachable and
796         // RemoveUnwindEdge).
797         if (!UserUnwindDest)
798           continue;
799 
800         // Now we have an unwind dest for the user, but we need to see if it
801         // unwinds all the way out of the cleanup or if it stays within it.
802         const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
803         const Value *UserUnwindParent;
804         if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
805           UserUnwindParent = CSI->getParentPad();
806         else
807           UserUnwindParent =
808               cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
809 
810         // The unwind stays within the cleanup iff it targets a child of the
811         // cleanup.
812         if (UserUnwindParent == Cleanup)
813           continue;
814 
815         // This unwind exits the cleanup, so its dest is the cleanup's dest.
816         UnwindDest = UserUnwindDest;
817         break;
818       }
819     }
820 
821     // Record the state of the unwind dest as the TryParentState.
822     int UnwindDestState;
823 
824     // If UnwindDest is null at this point, either the pad in question can
825     // be exited by unwind to caller, or it cannot be exited by unwind.  In
826     // either case, reporting such cases as unwinding to caller is correct.
827     // This can lead to EH tables that "look strange" -- if this pad's is in
828     // a parent funclet which has other children that do unwind to an enclosing
829     // pad, the try region for this pad will be missing the "duplicate" EH
830     // clause entries that you'd expect to see covering the whole parent.  That
831     // should be benign, since the unwind never actually happens.  If it were
832     // an issue, we could add a subsequent pass that pushes unwind dests down
833     // from parents that have them to children that appear to unwind to caller.
834     if (!UnwindDest) {
835       UnwindDestState = -1;
836     } else {
837       UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
838     }
839 
840     Entry.TryParentState = UnwindDestState;
841   }
842 
843   // Step three: transfer information from pads to invokes.
844   calculateStateNumbersForInvokes(Fn, FuncInfo);
845 }
846 
847 void WinEHPrepareImpl::colorFunclets(Function &F) {
848   BlockColors = colorEHFunclets(F);
849 
850   // Invert the map from BB to colors to color to BBs.
851   for (BasicBlock &BB : F) {
852     ColorVector &Colors = BlockColors[&BB];
853     for (BasicBlock *Color : Colors)
854       FuncletBlocks[Color].push_back(&BB);
855   }
856 }
857 
858 void WinEHPrepareImpl::demotePHIsOnFunclets(Function &F,
859                                             bool DemoteCatchSwitchPHIOnly) {
860   // Strip PHI nodes off of EH pads.
861   SmallVector<PHINode *, 16> PHINodes;
862   for (BasicBlock &BB : make_early_inc_range(F)) {
863     if (!BB.isEHPad())
864       continue;
865     if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB.getFirstNonPHI()))
866       continue;
867 
868     for (Instruction &I : make_early_inc_range(BB)) {
869       auto *PN = dyn_cast<PHINode>(&I);
870       // Stop at the first non-PHI.
871       if (!PN)
872         break;
873 
874       AllocaInst *SpillSlot = insertPHILoads(PN, F);
875       if (SpillSlot)
876         insertPHIStores(PN, SpillSlot);
877 
878       PHINodes.push_back(PN);
879     }
880   }
881 
882   for (auto *PN : PHINodes) {
883     // There may be lingering uses on other EH PHIs being removed
884     PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
885     PN->eraseFromParent();
886   }
887 }
888 
889 void WinEHPrepareImpl::cloneCommonBlocks(Function &F) {
890   // We need to clone all blocks which belong to multiple funclets.  Values are
891   // remapped throughout the funclet to propagate both the new instructions
892   // *and* the new basic blocks themselves.
893   for (auto &Funclets : FuncletBlocks) {
894     BasicBlock *FuncletPadBB = Funclets.first;
895     std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
896     Value *FuncletToken;
897     if (FuncletPadBB == &F.getEntryBlock())
898       FuncletToken = ConstantTokenNone::get(F.getContext());
899     else
900       FuncletToken = FuncletPadBB->getFirstNonPHI();
901 
902     std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
903     ValueToValueMapTy VMap;
904     for (BasicBlock *BB : BlocksInFunclet) {
905       ColorVector &ColorsForBB = BlockColors[BB];
906       // We don't need to do anything if the block is monochromatic.
907       size_t NumColorsForBB = ColorsForBB.size();
908       if (NumColorsForBB == 1)
909         continue;
910 
911       DEBUG_WITH_TYPE("win-eh-prepare-coloring",
912                       dbgs() << "  Cloning block \'" << BB->getName()
913                              << "\' for funclet \'" << FuncletPadBB->getName()
914                              << "\'.\n");
915 
916       // Create a new basic block and copy instructions into it!
917       BasicBlock *CBB =
918           CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
919       // Insert the clone immediately after the original to ensure determinism
920       // and to keep the same relative ordering of any funclet's blocks.
921       CBB->insertInto(&F, BB->getNextNode());
922 
923       // Add basic block mapping.
924       VMap[BB] = CBB;
925 
926       // Record delta operations that we need to perform to our color mappings.
927       Orig2Clone.emplace_back(BB, CBB);
928     }
929 
930     // If nothing was cloned, we're done cloning in this funclet.
931     if (Orig2Clone.empty())
932       continue;
933 
934     // Update our color mappings to reflect that one block has lost a color and
935     // another has gained a color.
936     for (auto &BBMapping : Orig2Clone) {
937       BasicBlock *OldBlock = BBMapping.first;
938       BasicBlock *NewBlock = BBMapping.second;
939 
940       BlocksInFunclet.push_back(NewBlock);
941       ColorVector &NewColors = BlockColors[NewBlock];
942       assert(NewColors.empty() && "A new block should only have one color!");
943       NewColors.push_back(FuncletPadBB);
944 
945       DEBUG_WITH_TYPE("win-eh-prepare-coloring",
946                       dbgs() << "  Assigned color \'" << FuncletPadBB->getName()
947                              << "\' to block \'" << NewBlock->getName()
948                              << "\'.\n");
949 
950       llvm::erase(BlocksInFunclet, OldBlock);
951       ColorVector &OldColors = BlockColors[OldBlock];
952       llvm::erase(OldColors, FuncletPadBB);
953 
954       DEBUG_WITH_TYPE("win-eh-prepare-coloring",
955                       dbgs() << "  Removed color \'" << FuncletPadBB->getName()
956                              << "\' from block \'" << OldBlock->getName()
957                              << "\'.\n");
958     }
959 
960     // Loop over all of the instructions in this funclet, fixing up operand
961     // references as we go.  This uses VMap to do all the hard work.
962     for (BasicBlock *BB : BlocksInFunclet)
963       // Loop over all instructions, fixing each one as we find it...
964       for (Instruction &I : *BB)
965         RemapInstruction(&I, VMap,
966                          RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
967 
968     // Catchrets targeting cloned blocks need to be updated separately from
969     // the loop above because they are not in the current funclet.
970     SmallVector<CatchReturnInst *, 2> FixupCatchrets;
971     for (auto &BBMapping : Orig2Clone) {
972       BasicBlock *OldBlock = BBMapping.first;
973       BasicBlock *NewBlock = BBMapping.second;
974 
975       FixupCatchrets.clear();
976       for (BasicBlock *Pred : predecessors(OldBlock))
977         if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
978           if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
979             FixupCatchrets.push_back(CatchRet);
980 
981       for (CatchReturnInst *CatchRet : FixupCatchrets)
982         CatchRet->setSuccessor(NewBlock);
983     }
984 
985     auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
986       unsigned NumPreds = PN->getNumIncomingValues();
987       for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
988            ++PredIdx) {
989         BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
990         bool EdgeTargetsFunclet;
991         if (auto *CRI =
992                 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
993           EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
994         } else {
995           ColorVector &IncomingColors = BlockColors[IncomingBlock];
996           assert(!IncomingColors.empty() && "Block not colored!");
997           assert((IncomingColors.size() == 1 ||
998                   !llvm::is_contained(IncomingColors, FuncletPadBB)) &&
999                  "Cloning should leave this funclet's blocks monochromatic");
1000           EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
1001         }
1002         if (IsForOldBlock != EdgeTargetsFunclet)
1003           continue;
1004         PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
1005         // Revisit the next entry.
1006         --PredIdx;
1007         --PredEnd;
1008       }
1009     };
1010 
1011     for (auto &BBMapping : Orig2Clone) {
1012       BasicBlock *OldBlock = BBMapping.first;
1013       BasicBlock *NewBlock = BBMapping.second;
1014       for (PHINode &OldPN : OldBlock->phis()) {
1015         UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
1016       }
1017       for (PHINode &NewPN : NewBlock->phis()) {
1018         UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
1019       }
1020     }
1021 
1022     // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
1023     // the PHI nodes for NewBB now.
1024     for (auto &BBMapping : Orig2Clone) {
1025       BasicBlock *OldBlock = BBMapping.first;
1026       BasicBlock *NewBlock = BBMapping.second;
1027       for (BasicBlock *SuccBB : successors(NewBlock)) {
1028         for (PHINode &SuccPN : SuccBB->phis()) {
1029           // Ok, we have a PHI node.  Figure out what the incoming value was for
1030           // the OldBlock.
1031           int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
1032           if (OldBlockIdx == -1)
1033             break;
1034           Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
1035 
1036           // Remap the value if necessary.
1037           if (auto *Inst = dyn_cast<Instruction>(IV)) {
1038             ValueToValueMapTy::iterator I = VMap.find(Inst);
1039             if (I != VMap.end())
1040               IV = I->second;
1041           }
1042 
1043           SuccPN.addIncoming(IV, NewBlock);
1044         }
1045       }
1046     }
1047 
1048     for (ValueToValueMapTy::value_type VT : VMap) {
1049       // If there were values defined in BB that are used outside the funclet,
1050       // then we now have to update all uses of the value to use either the
1051       // original value, the cloned value, or some PHI derived value.  This can
1052       // require arbitrary PHI insertion, of which we are prepared to do, clean
1053       // these up now.
1054       SmallVector<Use *, 16> UsesToRename;
1055 
1056       auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
1057       if (!OldI)
1058         continue;
1059       auto *NewI = cast<Instruction>(VT.second);
1060       // Scan all uses of this instruction to see if it is used outside of its
1061       // funclet, and if so, record them in UsesToRename.
1062       for (Use &U : OldI->uses()) {
1063         Instruction *UserI = cast<Instruction>(U.getUser());
1064         BasicBlock *UserBB = UserI->getParent();
1065         ColorVector &ColorsForUserBB = BlockColors[UserBB];
1066         assert(!ColorsForUserBB.empty());
1067         if (ColorsForUserBB.size() > 1 ||
1068             *ColorsForUserBB.begin() != FuncletPadBB)
1069           UsesToRename.push_back(&U);
1070       }
1071 
1072       // If there are no uses outside the block, we're done with this
1073       // instruction.
1074       if (UsesToRename.empty())
1075         continue;
1076 
1077       // We found a use of OldI outside of the funclet.  Rename all uses of OldI
1078       // that are outside its funclet to be uses of the appropriate PHI node
1079       // etc.
1080       SSAUpdater SSAUpdate;
1081       SSAUpdate.Initialize(OldI->getType(), OldI->getName());
1082       SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
1083       SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
1084 
1085       while (!UsesToRename.empty())
1086         SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
1087     }
1088   }
1089 }
1090 
1091 void WinEHPrepareImpl::removeImplausibleInstructions(Function &F) {
1092   // Remove implausible terminators and replace them with UnreachableInst.
1093   for (auto &Funclet : FuncletBlocks) {
1094     BasicBlock *FuncletPadBB = Funclet.first;
1095     std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
1096     Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
1097     auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
1098     auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
1099     auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
1100 
1101     for (BasicBlock *BB : BlocksInFunclet) {
1102       for (Instruction &I : *BB) {
1103         auto *CB = dyn_cast<CallBase>(&I);
1104         if (!CB)
1105           continue;
1106 
1107         Value *FuncletBundleOperand = nullptr;
1108         if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
1109           FuncletBundleOperand = BU->Inputs.front();
1110 
1111         if (FuncletBundleOperand == FuncletPad)
1112           continue;
1113 
1114         // Skip call sites which are nounwind intrinsics or inline asm.
1115         auto *CalledFn =
1116             dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
1117         if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) ||
1118                          CB->isInlineAsm()))
1119           continue;
1120 
1121         // This call site was not part of this funclet, remove it.
1122         if (isa<InvokeInst>(CB)) {
1123           // Remove the unwind edge if it was an invoke.
1124           removeUnwindEdge(BB);
1125           // Get a pointer to the new call.
1126           BasicBlock::iterator CallI =
1127               std::prev(BB->getTerminator()->getIterator());
1128           auto *CI = cast<CallInst>(&*CallI);
1129           changeToUnreachable(CI);
1130         } else {
1131           changeToUnreachable(&I);
1132         }
1133 
1134         // There are no more instructions in the block (except for unreachable),
1135         // we are done.
1136         break;
1137       }
1138 
1139       Instruction *TI = BB->getTerminator();
1140       // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
1141       bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
1142       // The token consumed by a CatchReturnInst must match the funclet token.
1143       bool IsUnreachableCatchret = false;
1144       if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1145         IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1146       // The token consumed by a CleanupReturnInst must match the funclet token.
1147       bool IsUnreachableCleanupret = false;
1148       if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1149         IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1150       if (IsUnreachableRet || IsUnreachableCatchret ||
1151           IsUnreachableCleanupret) {
1152         changeToUnreachable(TI);
1153       } else if (isa<InvokeInst>(TI)) {
1154         if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1155           // Invokes within a cleanuppad for the MSVC++ personality never
1156           // transfer control to their unwind edge: the personality will
1157           // terminate the program.
1158           removeUnwindEdge(BB);
1159         }
1160       }
1161     }
1162   }
1163 }
1164 
1165 void WinEHPrepareImpl::cleanupPreparedFunclets(Function &F) {
1166   // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1167   // branches, etc.
1168   for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
1169     SimplifyInstructionsInBlock(&BB);
1170     ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1171     MergeBlockIntoPredecessor(&BB);
1172   }
1173 
1174   // We might have some unreachable blocks after cleaning up some impossible
1175   // control flow.
1176   removeUnreachableBlocks(F);
1177 }
1178 
1179 #ifndef NDEBUG
1180 void WinEHPrepareImpl::verifyPreparedFunclets(Function &F) {
1181   for (BasicBlock &BB : F) {
1182     size_t NumColors = BlockColors[&BB].size();
1183     assert(NumColors == 1 && "Expected monochromatic BB!");
1184     if (NumColors == 0)
1185       report_fatal_error("Uncolored BB!");
1186     if (NumColors > 1)
1187       report_fatal_error("Multicolor BB!");
1188     assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1189            "EH Pad still has a PHI!");
1190   }
1191 }
1192 #endif
1193 
1194 bool WinEHPrepareImpl::prepareExplicitEH(Function &F) {
1195   // Remove unreachable blocks.  It is not valuable to assign them a color and
1196   // their existence can trick us into thinking values are alive when they are
1197   // not.
1198   removeUnreachableBlocks(F);
1199 
1200   // Determine which blocks are reachable from which funclet entries.
1201   colorFunclets(F);
1202 
1203   cloneCommonBlocks(F);
1204 
1205   if (!DisableDemotion)
1206     demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1207                                 DemoteCatchSwitchPHIOnlyOpt);
1208 
1209   if (!DisableCleanups) {
1210     assert(!verifyFunction(F, &dbgs()));
1211     removeImplausibleInstructions(F);
1212 
1213     assert(!verifyFunction(F, &dbgs()));
1214     cleanupPreparedFunclets(F);
1215   }
1216 
1217   LLVM_DEBUG(verifyPreparedFunclets(F));
1218   // Recolor the CFG to verify that all is well.
1219   LLVM_DEBUG(colorFunclets(F));
1220   LLVM_DEBUG(verifyPreparedFunclets(F));
1221 
1222   return true;
1223 }
1224 
1225 // TODO: Share loads when one use dominates another, or when a catchpad exit
1226 // dominates uses (needs dominators).
1227 AllocaInst *WinEHPrepareImpl::insertPHILoads(PHINode *PN, Function &F) {
1228   BasicBlock *PHIBlock = PN->getParent();
1229   AllocaInst *SpillSlot = nullptr;
1230   Instruction *EHPad = PHIBlock->getFirstNonPHI();
1231 
1232   if (!EHPad->isTerminator()) {
1233     // If the EHPad isn't a terminator, then we can insert a load in this block
1234     // that will dominate all uses.
1235     SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1236                                Twine(PN->getName(), ".wineh.spillslot"),
1237                                &F.getEntryBlock().front());
1238     Value *V = new LoadInst(PN->getType(), SpillSlot,
1239                             Twine(PN->getName(), ".wineh.reload"),
1240                             &*PHIBlock->getFirstInsertionPt());
1241     PN->replaceAllUsesWith(V);
1242     return SpillSlot;
1243   }
1244 
1245   // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1246   // loads of the slot before every use.
1247   DenseMap<BasicBlock *, Value *> Loads;
1248   for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1249     auto *UsingInst = cast<Instruction>(U.getUser());
1250     if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1251       // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
1252       // stores for it separately.
1253       continue;
1254     }
1255     replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1256   }
1257   return SpillSlot;
1258 }
1259 
1260 // TODO: improve store placement.  Inserting at def is probably good, but need
1261 // to be careful not to introduce interfering stores (needs liveness analysis).
1262 // TODO: identify related phi nodes that can share spill slots, and share them
1263 // (also needs liveness).
1264 void WinEHPrepareImpl::insertPHIStores(PHINode *OriginalPHI,
1265                                        AllocaInst *SpillSlot) {
1266   // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1267   // stored to the spill slot by the end of the given Block.
1268   SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1269 
1270   Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1271 
1272   while (!Worklist.empty()) {
1273     BasicBlock *EHBlock;
1274     Value *InVal;
1275     std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1276 
1277     PHINode *PN = dyn_cast<PHINode>(InVal);
1278     if (PN && PN->getParent() == EHBlock) {
1279       // The value is defined by another PHI we need to remove, with no room to
1280       // insert a store after the PHI, so each predecessor needs to store its
1281       // incoming value.
1282       for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1283         Value *PredVal = PN->getIncomingValue(i);
1284 
1285         // Undef can safely be skipped.
1286         if (isa<UndefValue>(PredVal))
1287           continue;
1288 
1289         insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1290       }
1291     } else {
1292       // We need to store InVal, which dominates EHBlock, but can't put a store
1293       // in EHBlock, so need to put stores in each predecessor.
1294       for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1295         insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1296       }
1297     }
1298   }
1299 }
1300 
1301 void WinEHPrepareImpl::insertPHIStore(
1302     BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1303     SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1304 
1305   if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1306     // Pred is unsplittable, so we need to queue it on the worklist.
1307     Worklist.push_back({PredBlock, PredVal});
1308     return;
1309   }
1310 
1311   // Otherwise, insert the store at the end of the basic block.
1312   new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1313 }
1314 
1315 void WinEHPrepareImpl::replaceUseWithLoad(
1316     Value *V, Use &U, AllocaInst *&SpillSlot,
1317     DenseMap<BasicBlock *, Value *> &Loads, Function &F) {
1318   // Lazilly create the spill slot.
1319   if (!SpillSlot)
1320     SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1321                                Twine(V->getName(), ".wineh.spillslot"),
1322                                &F.getEntryBlock().front());
1323 
1324   auto *UsingInst = cast<Instruction>(U.getUser());
1325   if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1326     // If this is a PHI node, we can't insert a load of the value before
1327     // the use.  Instead insert the load in the predecessor block
1328     // corresponding to the incoming value.
1329     //
1330     // Note that if there are multiple edges from a basic block to this
1331     // PHI node that we cannot have multiple loads.  The problem is that
1332     // the resulting PHI node will have multiple values (from each load)
1333     // coming in from the same block, which is illegal SSA form.
1334     // For this reason, we keep track of and reuse loads we insert.
1335     BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1336     if (auto *CatchRet =
1337             dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1338       // Putting a load above a catchret and use on the phi would still leave
1339       // a cross-funclet def/use.  We need to split the edge, change the
1340       // catchret to target the new block, and put the load there.
1341       BasicBlock *PHIBlock = UsingInst->getParent();
1342       BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1343       // SplitEdge gives us:
1344       //   IncomingBlock:
1345       //     ...
1346       //     br label %NewBlock
1347       //   NewBlock:
1348       //     catchret label %PHIBlock
1349       // But we need:
1350       //   IncomingBlock:
1351       //     ...
1352       //     catchret label %NewBlock
1353       //   NewBlock:
1354       //     br label %PHIBlock
1355       // So move the terminators to each others' blocks and swap their
1356       // successors.
1357       BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1358       Goto->removeFromParent();
1359       CatchRet->removeFromParent();
1360       CatchRet->insertInto(IncomingBlock, IncomingBlock->end());
1361       Goto->insertInto(NewBlock, NewBlock->end());
1362       Goto->setSuccessor(0, PHIBlock);
1363       CatchRet->setSuccessor(NewBlock);
1364       // Update the color mapping for the newly split edge.
1365       // Grab a reference to the ColorVector to be inserted before getting the
1366       // reference to the vector we are copying because inserting the new
1367       // element in BlockColors might cause the map to be reallocated.
1368       ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1369       ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1370       ColorsForNewBlock = ColorsForPHIBlock;
1371       for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1372         FuncletBlocks[FuncletPad].push_back(NewBlock);
1373       // Treat the new block as incoming for load insertion.
1374       IncomingBlock = NewBlock;
1375     }
1376     Value *&Load = Loads[IncomingBlock];
1377     // Insert the load into the predecessor block
1378     if (!Load)
1379       Load = new LoadInst(V->getType(), SpillSlot,
1380                           Twine(V->getName(), ".wineh.reload"),
1381                           /*isVolatile=*/false, IncomingBlock->getTerminator());
1382 
1383     U.set(Load);
1384   } else {
1385     // Reload right before the old use.
1386     auto *Load = new LoadInst(V->getType(), SpillSlot,
1387                               Twine(V->getName(), ".wineh.reload"),
1388                               /*isVolatile=*/false, UsingInst);
1389     U.set(Load);
1390   }
1391 }
1392 
1393 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1394                                       MCSymbol *InvokeBegin,
1395                                       MCSymbol *InvokeEnd) {
1396   assert(InvokeStateMap.count(II) &&
1397          "should get invoke with precomputed state");
1398   LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1399 }
1400 
1401 void WinEHFuncInfo::addIPToStateRange(int State, MCSymbol* InvokeBegin,
1402     MCSymbol* InvokeEnd) {
1403     LabelToStateMap[InvokeBegin] = std::make_pair(State, InvokeEnd);
1404 }
1405 
1406 WinEHFuncInfo::WinEHFuncInfo() = default;
1407