xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the VirtRegMap class.
10 //
11 // It also contains implementations of the Spiller interface, which, given a
12 // virtual register map and a machine function, eliminates all virtual
13 // references by replacing them with physical register references - adding spill
14 // code as necessary.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/LiveDebugVariables.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveStacks.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetFrameLowering.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "regalloc"
51 
52 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
53 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
54 
55 //===----------------------------------------------------------------------===//
56 //  VirtRegMap implementation
57 //===----------------------------------------------------------------------===//
58 
59 char VirtRegMap::ID = 0;
60 
61 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
62 
63 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
64   MRI = &mf.getRegInfo();
65   TII = mf.getSubtarget().getInstrInfo();
66   TRI = mf.getSubtarget().getRegisterInfo();
67   MF = &mf;
68 
69   Virt2PhysMap.clear();
70   Virt2StackSlotMap.clear();
71   Virt2SplitMap.clear();
72   Virt2ShapeMap.clear();
73 
74   grow();
75   return false;
76 }
77 
78 void VirtRegMap::grow() {
79   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
80   Virt2PhysMap.resize(NumRegs);
81   Virt2StackSlotMap.resize(NumRegs);
82   Virt2SplitMap.resize(NumRegs);
83 }
84 
85 void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
86   assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
87   assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
88          "attempt to assign physical register to already mapped "
89          "virtual register");
90   assert(!getRegInfo().isReserved(physReg) &&
91          "Attempt to map virtReg to a reserved physReg");
92   Virt2PhysMap[virtReg.id()] = physReg;
93 }
94 
95 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
96   unsigned Size = TRI->getSpillSize(*RC);
97   Align Alignment = TRI->getSpillAlign(*RC);
98   // Set preferred alignment if we are still able to realign the stack
99   auto &ST = MF->getSubtarget();
100   Align CurrentAlign = ST.getFrameLowering()->getStackAlign();
101   if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) {
102     Alignment = CurrentAlign;
103   }
104   int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
105   ++NumSpillSlots;
106   return SS;
107 }
108 
109 bool VirtRegMap::hasPreferredPhys(Register VirtReg) const {
110   Register Hint = MRI->getSimpleHint(VirtReg);
111   if (!Hint.isValid())
112     return false;
113   if (Hint.isVirtual())
114     Hint = getPhys(Hint);
115   return Register(getPhys(VirtReg)) == Hint;
116 }
117 
118 bool VirtRegMap::hasKnownPreference(Register VirtReg) const {
119   std::pair<unsigned, Register> Hint = MRI->getRegAllocationHint(VirtReg);
120   if (Hint.second.isPhysical())
121     return true;
122   if (Hint.second.isVirtual())
123     return hasPhys(Hint.second);
124   return false;
125 }
126 
127 int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
128   assert(virtReg.isVirtual());
129   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
130          "attempt to assign stack slot to already spilled register");
131   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
132   return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
133 }
134 
135 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
136   assert(virtReg.isVirtual());
137   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
138          "attempt to assign stack slot to already spilled register");
139   assert((SS >= 0 ||
140           (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
141          "illegal fixed frame index");
142   Virt2StackSlotMap[virtReg.id()] = SS;
143 }
144 
145 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
146   OS << "********** REGISTER MAP **********\n";
147   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
148     Register Reg = Register::index2VirtReg(i);
149     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
150       OS << '[' << printReg(Reg, TRI) << " -> "
151          << printReg(Virt2PhysMap[Reg], TRI) << "] "
152          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
153     }
154   }
155 
156   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
157     Register Reg = Register::index2VirtReg(i);
158     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
159       OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
160          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
161     }
162   }
163   OS << '\n';
164 }
165 
166 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
167 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
168   print(dbgs());
169 }
170 #endif
171 
172 //===----------------------------------------------------------------------===//
173 //                              VirtRegRewriter
174 //===----------------------------------------------------------------------===//
175 //
176 // The VirtRegRewriter is the last of the register allocator passes.
177 // It rewrites virtual registers to physical registers as specified in the
178 // VirtRegMap analysis. It also updates live-in information on basic blocks
179 // according to LiveIntervals.
180 //
181 namespace {
182 
183 class VirtRegRewriter : public MachineFunctionPass {
184   MachineFunction *MF = nullptr;
185   const TargetRegisterInfo *TRI = nullptr;
186   const TargetInstrInfo *TII = nullptr;
187   MachineRegisterInfo *MRI = nullptr;
188   SlotIndexes *Indexes = nullptr;
189   LiveIntervals *LIS = nullptr;
190   VirtRegMap *VRM = nullptr;
191   LiveDebugVariables *DebugVars = nullptr;
192   DenseSet<Register> RewriteRegs;
193   bool ClearVirtRegs;
194 
195   void rewrite();
196   void addMBBLiveIns();
197   bool readsUndefSubreg(const MachineOperand &MO) const;
198   void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const;
199   void handleIdentityCopy(MachineInstr &MI);
200   void expandCopyBundle(MachineInstr &MI) const;
201   bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
202 
203 public:
204   static char ID;
205   VirtRegRewriter(bool ClearVirtRegs_ = true) :
206     MachineFunctionPass(ID),
207     ClearVirtRegs(ClearVirtRegs_) {}
208 
209   void getAnalysisUsage(AnalysisUsage &AU) const override;
210 
211   bool runOnMachineFunction(MachineFunction&) override;
212 
213   MachineFunctionProperties getSetProperties() const override {
214     if (ClearVirtRegs) {
215       return MachineFunctionProperties().set(
216         MachineFunctionProperties::Property::NoVRegs);
217     }
218 
219     return MachineFunctionProperties();
220   }
221 };
222 
223 } // end anonymous namespace
224 
225 char VirtRegRewriter::ID = 0;
226 
227 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
228 
229 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
230                       "Virtual Register Rewriter", false, false)
231 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
232 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
233 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
234 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
235 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
236 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
237                     "Virtual Register Rewriter", false, false)
238 
239 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
240   AU.setPreservesCFG();
241   AU.addRequired<LiveIntervalsWrapperPass>();
242   AU.addPreserved<LiveIntervalsWrapperPass>();
243   AU.addRequired<SlotIndexesWrapperPass>();
244   AU.addPreserved<SlotIndexesWrapperPass>();
245   AU.addRequired<LiveDebugVariables>();
246   AU.addRequired<LiveStacks>();
247   AU.addPreserved<LiveStacks>();
248   AU.addRequired<VirtRegMap>();
249 
250   if (!ClearVirtRegs)
251     AU.addPreserved<LiveDebugVariables>();
252 
253   MachineFunctionPass::getAnalysisUsage(AU);
254 }
255 
256 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
257   MF = &fn;
258   TRI = MF->getSubtarget().getRegisterInfo();
259   TII = MF->getSubtarget().getInstrInfo();
260   MRI = &MF->getRegInfo();
261   Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI();
262   LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
263   VRM = &getAnalysis<VirtRegMap>();
264   DebugVars = &getAnalysis<LiveDebugVariables>();
265   LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
266                     << "********** Function: " << MF->getName() << '\n');
267   LLVM_DEBUG(VRM->dump());
268 
269   // Add kill flags while we still have virtual registers.
270   LIS->addKillFlags(VRM);
271 
272   // Live-in lists on basic blocks are required for physregs.
273   addMBBLiveIns();
274 
275   // Rewrite virtual registers.
276   rewrite();
277 
278   if (ClearVirtRegs) {
279     // Write out new DBG_VALUE instructions.
280 
281     // We only do this if ClearVirtRegs is specified since this should be the
282     // final run of the pass and we don't want to emit them multiple times.
283     DebugVars->emitDebugValues(VRM);
284 
285     // All machine operands and other references to virtual registers have been
286     // replaced. Remove the virtual registers and release all the transient data.
287     VRM->clearAllVirt();
288     MRI->clearVirtRegs();
289   }
290 
291   return true;
292 }
293 
294 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
295                                              MCRegister PhysReg) const {
296   assert(!LI.empty());
297   assert(LI.hasSubRanges());
298 
299   using SubRangeIteratorPair =
300       std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
301 
302   SmallVector<SubRangeIteratorPair, 4> SubRanges;
303   SlotIndex First;
304   SlotIndex Last;
305   for (const LiveInterval::SubRange &SR : LI.subranges()) {
306     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
307     if (!First.isValid() || SR.segments.front().start < First)
308       First = SR.segments.front().start;
309     if (!Last.isValid() || SR.segments.back().end > Last)
310       Last = SR.segments.back().end;
311   }
312 
313   // Check all mbb start positions between First and Last while
314   // simultaneously advancing an iterator for each subrange.
315   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->getMBBLowerBound(First);
316        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
317     SlotIndex MBBBegin = MBBI->first;
318     // Advance all subrange iterators so that their end position is just
319     // behind MBBBegin (or the iterator is at the end).
320     LaneBitmask LaneMask;
321     for (auto &RangeIterPair : SubRanges) {
322       const LiveInterval::SubRange *SR = RangeIterPair.first;
323       LiveInterval::const_iterator &SRI = RangeIterPair.second;
324       while (SRI != SR->end() && SRI->end <= MBBBegin)
325         ++SRI;
326       if (SRI == SR->end())
327         continue;
328       if (SRI->start <= MBBBegin)
329         LaneMask |= SR->LaneMask;
330     }
331     if (LaneMask.none())
332       continue;
333     MachineBasicBlock *MBB = MBBI->second;
334     MBB->addLiveIn(PhysReg, LaneMask);
335   }
336 }
337 
338 // Compute MBB live-in lists from virtual register live ranges and their
339 // assignments.
340 void VirtRegRewriter::addMBBLiveIns() {
341   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
342     Register VirtReg = Register::index2VirtReg(Idx);
343     if (MRI->reg_nodbg_empty(VirtReg))
344       continue;
345     LiveInterval &LI = LIS->getInterval(VirtReg);
346     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
347       continue;
348     // This is a virtual register that is live across basic blocks. Its
349     // assigned PhysReg must be marked as live-in to those blocks.
350     Register PhysReg = VRM->getPhys(VirtReg);
351     if (PhysReg == VirtRegMap::NO_PHYS_REG) {
352       // There may be no physical register assigned if only some register
353       // classes were already allocated.
354       assert(!ClearVirtRegs && "Unmapped virtual register");
355       continue;
356     }
357 
358     if (LI.hasSubRanges()) {
359       addLiveInsForSubRanges(LI, PhysReg);
360     } else {
361       // Go over MBB begin positions and see if we have segments covering them.
362       // The following works because segments and the MBBIndex list are both
363       // sorted by slot indexes.
364       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
365       for (const auto &Seg : LI) {
366         I = Indexes->getMBBLowerBound(I, Seg.start);
367         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
368           MachineBasicBlock *MBB = I->second;
369           MBB->addLiveIn(PhysReg);
370         }
371       }
372     }
373   }
374 
375   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
376   // each MBB's LiveIns set before calling addLiveIn on them.
377   for (MachineBasicBlock &MBB : *MF)
378     MBB.sortUniqueLiveIns();
379 }
380 
381 /// Returns true if the given machine operand \p MO only reads undefined lanes.
382 /// The function only works for use operands with a subregister set.
383 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
384   // Shortcut if the operand is already marked undef.
385   if (MO.isUndef())
386     return true;
387 
388   Register Reg = MO.getReg();
389   const LiveInterval &LI = LIS->getInterval(Reg);
390   const MachineInstr &MI = *MO.getParent();
391   SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
392   // This code is only meant to handle reading undefined subregisters which
393   // we couldn't properly detect before.
394   assert(LI.liveAt(BaseIndex) &&
395          "Reads of completely dead register should be marked undef already");
396   unsigned SubRegIdx = MO.getSubReg();
397   assert(SubRegIdx != 0 && LI.hasSubRanges());
398   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
399   // See if any of the relevant subregister liveranges is defined at this point.
400   for (const LiveInterval::SubRange &SR : LI.subranges()) {
401     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
402       return false;
403   }
404   return true;
405 }
406 
407 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) {
408   if (!MI.isIdentityCopy())
409     return;
410   LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
411   ++NumIdCopies;
412 
413   Register DstReg = MI.getOperand(0).getReg();
414 
415   // We may have deferred allocation of the virtual register, and the rewrite
416   // regs code doesn't handle the liveness update.
417   if (DstReg.isVirtual())
418     return;
419 
420   RewriteRegs.insert(DstReg);
421 
422   // Copies like:
423   //    %r0 = COPY undef %r0
424   //    %al = COPY %al, implicit-def %eax
425   // give us additional liveness information: The target (super-)register
426   // must not be valid before this point. Replace the COPY with a KILL
427   // instruction to maintain this information.
428   if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
429     MI.setDesc(TII->get(TargetOpcode::KILL));
430     LLVM_DEBUG(dbgs() << "  replace by: " << MI);
431     return;
432   }
433 
434   if (Indexes)
435     Indexes->removeSingleMachineInstrFromMaps(MI);
436   MI.eraseFromBundle();
437   LLVM_DEBUG(dbgs() << "  deleted.\n");
438 }
439 
440 /// The liverange splitting logic sometimes produces bundles of copies when
441 /// subregisters are involved. Expand these into a sequence of copy instructions
442 /// after processing the last in the bundle. Does not update LiveIntervals
443 /// which we shouldn't need for this instruction anymore.
444 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
445   if (!MI.isCopy() && !MI.isKill())
446     return;
447 
448   if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
449     SmallVector<MachineInstr *, 2> MIs({&MI});
450 
451     // Only do this when the complete bundle is made out of COPYs and KILLs.
452     MachineBasicBlock &MBB = *MI.getParent();
453     for (MachineBasicBlock::reverse_instr_iterator I =
454          std::next(MI.getReverseIterator()), E = MBB.instr_rend();
455          I != E && I->isBundledWithSucc(); ++I) {
456       if (!I->isCopy() && !I->isKill())
457         return;
458       MIs.push_back(&*I);
459     }
460     MachineInstr *FirstMI = MIs.back();
461 
462     auto anyRegsAlias = [](const MachineInstr *Dst,
463                            ArrayRef<MachineInstr *> Srcs,
464                            const TargetRegisterInfo *TRI) {
465       for (const MachineInstr *Src : Srcs)
466         if (Src != Dst)
467           if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
468                                Src->getOperand(1).getReg()))
469             return true;
470       return false;
471     };
472 
473     // If any of the destination registers in the bundle of copies alias any of
474     // the source registers, try to schedule the instructions to avoid any
475     // clobbering.
476     for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
477       for (int I = E; I--; )
478         if (!anyRegsAlias(MIs[I], ArrayRef(MIs).take_front(E), TRI)) {
479           if (I + 1 != E)
480             std::swap(MIs[I], MIs[E - 1]);
481           --E;
482         }
483       if (PrevE == E) {
484         MF->getFunction().getContext().emitError(
485             "register rewriting failed: cycle in copy bundle");
486         break;
487       }
488     }
489 
490     MachineInstr *BundleStart = FirstMI;
491     for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
492       // If instruction is in the middle of the bundle, move it before the
493       // bundle starts, otherwise, just unbundle it. When we get to the last
494       // instruction, the bundle will have been completely undone.
495       if (BundledMI != BundleStart) {
496         BundledMI->removeFromBundle();
497         MBB.insert(BundleStart, BundledMI);
498       } else if (BundledMI->isBundledWithSucc()) {
499         BundledMI->unbundleFromSucc();
500         BundleStart = &*std::next(BundledMI->getIterator());
501       }
502 
503       if (Indexes && BundledMI != FirstMI)
504         Indexes->insertMachineInstrInMaps(*BundledMI);
505     }
506   }
507 }
508 
509 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
510 /// \pre \p MI defines a subregister of a virtual register that
511 /// has been assigned to \p SuperPhysReg.
512 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
513                                         MCRegister SuperPhysReg) const {
514   SlotIndex MIIndex = LIS->getInstructionIndex(MI);
515   SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
516   SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
517   for (MCRegUnit Unit : TRI->regunits(SuperPhysReg)) {
518     const LiveRange &UnitRange = LIS->getRegUnit(Unit);
519     // If the regunit is live both before and after MI,
520     // we assume it is live through.
521     // Generally speaking, this is not true, because something like
522     // "RU = op RU" would match that description.
523     // However, we know that we are trying to assess whether
524     // a def of a virtual reg, vreg, is live at the same time of RU.
525     // If we are in the "RU = op RU" situation, that means that vreg
526     // is defined at the same time as RU (i.e., "vreg, RU = op RU").
527     // Thus, vreg and RU interferes and vreg cannot be assigned to
528     // SuperPhysReg. Therefore, this situation cannot happen.
529     if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
530       return true;
531   }
532   return false;
533 }
534 
535 void VirtRegRewriter::rewrite() {
536   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
537   SmallVector<Register, 8> SuperDeads;
538   SmallVector<Register, 8> SuperDefs;
539   SmallVector<Register, 8> SuperKills;
540 
541   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
542        MBBI != MBBE; ++MBBI) {
543     LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
544     for (MachineInstr &MI : llvm::make_early_inc_range(MBBI->instrs())) {
545       for (MachineOperand &MO : MI.operands()) {
546         // Make sure MRI knows about registers clobbered by regmasks.
547         if (MO.isRegMask())
548           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
549 
550         if (!MO.isReg() || !MO.getReg().isVirtual())
551           continue;
552         Register VirtReg = MO.getReg();
553         MCRegister PhysReg = VRM->getPhys(VirtReg);
554         if (PhysReg == VirtRegMap::NO_PHYS_REG)
555           continue;
556 
557         assert(Register(PhysReg).isPhysical());
558 
559         RewriteRegs.insert(PhysReg);
560         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
561 
562         // Preserve semantics of sub-register operands.
563         unsigned SubReg = MO.getSubReg();
564         if (SubReg != 0) {
565           if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
566             // A virtual register kill refers to the whole register, so we may
567             // have to add implicit killed operands for the super-register.  A
568             // partial redef always kills and redefines the super-register.
569             if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
570                 (MO.isDef() && subRegLiveThrough(MI, PhysReg)))
571               SuperKills.push_back(PhysReg);
572 
573             if (MO.isDef()) {
574               // Also add implicit defs for the super-register.
575               if (MO.isDead())
576                 SuperDeads.push_back(PhysReg);
577               else
578                 SuperDefs.push_back(PhysReg);
579             }
580           } else {
581             if (MO.isUse()) {
582               if (readsUndefSubreg(MO))
583                 // We need to add an <undef> flag if the subregister is
584                 // completely undefined (and we are not adding super-register
585                 // defs).
586                 MO.setIsUndef(true);
587             } else if (!MO.isDead()) {
588               assert(MO.isDef());
589             }
590           }
591 
592           // The def undef and def internal flags only make sense for
593           // sub-register defs, and we are substituting a full physreg.  An
594           // implicit killed operand from the SuperKills list will represent the
595           // partial read of the super-register.
596           if (MO.isDef()) {
597             MO.setIsUndef(false);
598             MO.setIsInternalRead(false);
599           }
600 
601           // PhysReg operands cannot have subregister indexes.
602           PhysReg = TRI->getSubReg(PhysReg, SubReg);
603           assert(PhysReg.isValid() && "Invalid SubReg for physical register");
604           MO.setSubReg(0);
605         }
606         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
607         // we need the inlining here.
608         MO.setReg(PhysReg);
609         MO.setIsRenamable(true);
610       }
611 
612       // Add any missing super-register kills after rewriting the whole
613       // instruction.
614       while (!SuperKills.empty())
615         MI.addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
616 
617       while (!SuperDeads.empty())
618         MI.addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
619 
620       while (!SuperDefs.empty())
621         MI.addRegisterDefined(SuperDefs.pop_back_val(), TRI);
622 
623       LLVM_DEBUG(dbgs() << "> " << MI);
624 
625       expandCopyBundle(MI);
626 
627       // We can remove identity copies right now.
628       handleIdentityCopy(MI);
629     }
630   }
631 
632   if (LIS) {
633     // Don't bother maintaining accurate LiveIntervals for registers which were
634     // already allocated.
635     for (Register PhysReg : RewriteRegs) {
636       for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
637         LIS->removeRegUnit(Unit);
638       }
639     }
640   }
641 
642   RewriteRegs.clear();
643 }
644 
645 FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) {
646   return new VirtRegRewriter(ClearVirtRegs);
647 }
648