xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp (revision a8197ad3aa952a03fc2aeebc2eafe9bb9de54550)
1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the VirtRegMap class.
10 //
11 // It also contains implementations of the Spiller interface, which, given a
12 // virtual register map and a machine function, eliminates all virtual
13 // references by replacing them with physical register references - adding spill
14 // code as necessary.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "LiveDebugVariables.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveStacks.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/MC/LaneBitmask.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "regalloc"
50 
51 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
52 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
53 
54 //===----------------------------------------------------------------------===//
55 //  VirtRegMap implementation
56 //===----------------------------------------------------------------------===//
57 
58 char VirtRegMap::ID = 0;
59 
60 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
61 
62 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
63   MRI = &mf.getRegInfo();
64   TII = mf.getSubtarget().getInstrInfo();
65   TRI = mf.getSubtarget().getRegisterInfo();
66   MF = &mf;
67 
68   Virt2PhysMap.clear();
69   Virt2StackSlotMap.clear();
70   Virt2SplitMap.clear();
71 
72   grow();
73   return false;
74 }
75 
76 void VirtRegMap::grow() {
77   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
78   Virt2PhysMap.resize(NumRegs);
79   Virt2StackSlotMap.resize(NumRegs);
80   Virt2SplitMap.resize(NumRegs);
81 }
82 
83 void VirtRegMap::assignVirt2Phys(unsigned virtReg, MCPhysReg physReg) {
84   assert(TargetRegisterInfo::isVirtualRegister(virtReg) &&
85          TargetRegisterInfo::isPhysicalRegister(physReg));
86   assert(Virt2PhysMap[virtReg] == NO_PHYS_REG &&
87          "attempt to assign physical register to already mapped "
88          "virtual register");
89   assert(!getRegInfo().isReserved(physReg) &&
90          "Attempt to map virtReg to a reserved physReg");
91   Virt2PhysMap[virtReg] = physReg;
92 }
93 
94 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
95   unsigned Size = TRI->getSpillSize(*RC);
96   unsigned Align = TRI->getSpillAlignment(*RC);
97   int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Align);
98   ++NumSpillSlots;
99   return SS;
100 }
101 
102 bool VirtRegMap::hasPreferredPhys(unsigned VirtReg) {
103   unsigned Hint = MRI->getSimpleHint(VirtReg);
104   if (!Hint)
105     return false;
106   if (TargetRegisterInfo::isVirtualRegister(Hint))
107     Hint = getPhys(Hint);
108   return getPhys(VirtReg) == Hint;
109 }
110 
111 bool VirtRegMap::hasKnownPreference(unsigned VirtReg) {
112   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
113   if (TargetRegisterInfo::isPhysicalRegister(Hint.second))
114     return true;
115   if (TargetRegisterInfo::isVirtualRegister(Hint.second))
116     return hasPhys(Hint.second);
117   return false;
118 }
119 
120 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
121   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
122   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
123          "attempt to assign stack slot to already spilled register");
124   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
125   return Virt2StackSlotMap[virtReg] = createSpillSlot(RC);
126 }
127 
128 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int SS) {
129   assert(TargetRegisterInfo::isVirtualRegister(virtReg));
130   assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
131          "attempt to assign stack slot to already spilled register");
132   assert((SS >= 0 ||
133           (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
134          "illegal fixed frame index");
135   Virt2StackSlotMap[virtReg] = SS;
136 }
137 
138 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
139   OS << "********** REGISTER MAP **********\n";
140   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
141     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
142     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
143       OS << '[' << printReg(Reg, TRI) << " -> "
144          << printReg(Virt2PhysMap[Reg], TRI) << "] "
145          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
146     }
147   }
148 
149   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
150     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
151     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
152       OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
153          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
154     }
155   }
156   OS << '\n';
157 }
158 
159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
160 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
161   print(dbgs());
162 }
163 #endif
164 
165 //===----------------------------------------------------------------------===//
166 //                              VirtRegRewriter
167 //===----------------------------------------------------------------------===//
168 //
169 // The VirtRegRewriter is the last of the register allocator passes.
170 // It rewrites virtual registers to physical registers as specified in the
171 // VirtRegMap analysis. It also updates live-in information on basic blocks
172 // according to LiveIntervals.
173 //
174 namespace {
175 
176 class VirtRegRewriter : public MachineFunctionPass {
177   MachineFunction *MF;
178   const TargetRegisterInfo *TRI;
179   const TargetInstrInfo *TII;
180   MachineRegisterInfo *MRI;
181   SlotIndexes *Indexes;
182   LiveIntervals *LIS;
183   VirtRegMap *VRM;
184 
185   void rewrite();
186   void addMBBLiveIns();
187   bool readsUndefSubreg(const MachineOperand &MO) const;
188   void addLiveInsForSubRanges(const LiveInterval &LI, unsigned PhysReg) const;
189   void handleIdentityCopy(MachineInstr &MI) const;
190   void expandCopyBundle(MachineInstr &MI) const;
191   bool subRegLiveThrough(const MachineInstr &MI, unsigned SuperPhysReg) const;
192 
193 public:
194   static char ID;
195 
196   VirtRegRewriter() : MachineFunctionPass(ID) {}
197 
198   void getAnalysisUsage(AnalysisUsage &AU) const override;
199 
200   bool runOnMachineFunction(MachineFunction&) override;
201 
202   MachineFunctionProperties getSetProperties() const override {
203     return MachineFunctionProperties().set(
204         MachineFunctionProperties::Property::NoVRegs);
205   }
206 };
207 
208 } // end anonymous namespace
209 
210 char VirtRegRewriter::ID = 0;
211 
212 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
213 
214 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
215                       "Virtual Register Rewriter", false, false)
216 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
217 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
218 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
219 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
220 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
221 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
222                     "Virtual Register Rewriter", false, false)
223 
224 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
225   AU.setPreservesCFG();
226   AU.addRequired<LiveIntervals>();
227   AU.addRequired<SlotIndexes>();
228   AU.addPreserved<SlotIndexes>();
229   AU.addRequired<LiveDebugVariables>();
230   AU.addRequired<LiveStacks>();
231   AU.addPreserved<LiveStacks>();
232   AU.addRequired<VirtRegMap>();
233   MachineFunctionPass::getAnalysisUsage(AU);
234 }
235 
236 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
237   MF = &fn;
238   TRI = MF->getSubtarget().getRegisterInfo();
239   TII = MF->getSubtarget().getInstrInfo();
240   MRI = &MF->getRegInfo();
241   Indexes = &getAnalysis<SlotIndexes>();
242   LIS = &getAnalysis<LiveIntervals>();
243   VRM = &getAnalysis<VirtRegMap>();
244   LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
245                     << "********** Function: " << MF->getName() << '\n');
246   LLVM_DEBUG(VRM->dump());
247 
248   // Add kill flags while we still have virtual registers.
249   LIS->addKillFlags(VRM);
250 
251   // Live-in lists on basic blocks are required for physregs.
252   addMBBLiveIns();
253 
254   // Rewrite virtual registers.
255   rewrite();
256 
257   // Write out new DBG_VALUE instructions.
258   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
259 
260   // All machine operands and other references to virtual registers have been
261   // replaced. Remove the virtual registers and release all the transient data.
262   VRM->clearAllVirt();
263   MRI->clearVirtRegs();
264   return true;
265 }
266 
267 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
268                                              unsigned PhysReg) const {
269   assert(!LI.empty());
270   assert(LI.hasSubRanges());
271 
272   using SubRangeIteratorPair =
273       std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
274 
275   SmallVector<SubRangeIteratorPair, 4> SubRanges;
276   SlotIndex First;
277   SlotIndex Last;
278   for (const LiveInterval::SubRange &SR : LI.subranges()) {
279     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
280     if (!First.isValid() || SR.segments.front().start < First)
281       First = SR.segments.front().start;
282     if (!Last.isValid() || SR.segments.back().end > Last)
283       Last = SR.segments.back().end;
284   }
285 
286   // Check all mbb start positions between First and Last while
287   // simulatenously advancing an iterator for each subrange.
288   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
289        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
290     SlotIndex MBBBegin = MBBI->first;
291     // Advance all subrange iterators so that their end position is just
292     // behind MBBBegin (or the iterator is at the end).
293     LaneBitmask LaneMask;
294     for (auto &RangeIterPair : SubRanges) {
295       const LiveInterval::SubRange *SR = RangeIterPair.first;
296       LiveInterval::const_iterator &SRI = RangeIterPair.second;
297       while (SRI != SR->end() && SRI->end <= MBBBegin)
298         ++SRI;
299       if (SRI == SR->end())
300         continue;
301       if (SRI->start <= MBBBegin)
302         LaneMask |= SR->LaneMask;
303     }
304     if (LaneMask.none())
305       continue;
306     MachineBasicBlock *MBB = MBBI->second;
307     MBB->addLiveIn(PhysReg, LaneMask);
308   }
309 }
310 
311 // Compute MBB live-in lists from virtual register live ranges and their
312 // assignments.
313 void VirtRegRewriter::addMBBLiveIns() {
314   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
315     unsigned VirtReg = TargetRegisterInfo::index2VirtReg(Idx);
316     if (MRI->reg_nodbg_empty(VirtReg))
317       continue;
318     LiveInterval &LI = LIS->getInterval(VirtReg);
319     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
320       continue;
321     // This is a virtual register that is live across basic blocks. Its
322     // assigned PhysReg must be marked as live-in to those blocks.
323     unsigned PhysReg = VRM->getPhys(VirtReg);
324     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
325 
326     if (LI.hasSubRanges()) {
327       addLiveInsForSubRanges(LI, PhysReg);
328     } else {
329       // Go over MBB begin positions and see if we have segments covering them.
330       // The following works because segments and the MBBIndex list are both
331       // sorted by slot indexes.
332       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
333       for (const auto &Seg : LI) {
334         I = Indexes->advanceMBBIndex(I, Seg.start);
335         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
336           MachineBasicBlock *MBB = I->second;
337           MBB->addLiveIn(PhysReg);
338         }
339       }
340     }
341   }
342 
343   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
344   // each MBB's LiveIns set before calling addLiveIn on them.
345   for (MachineBasicBlock &MBB : *MF)
346     MBB.sortUniqueLiveIns();
347 }
348 
349 /// Returns true if the given machine operand \p MO only reads undefined lanes.
350 /// The function only works for use operands with a subregister set.
351 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
352   // Shortcut if the operand is already marked undef.
353   if (MO.isUndef())
354     return true;
355 
356   unsigned Reg = MO.getReg();
357   const LiveInterval &LI = LIS->getInterval(Reg);
358   const MachineInstr &MI = *MO.getParent();
359   SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
360   // This code is only meant to handle reading undefined subregisters which
361   // we couldn't properly detect before.
362   assert(LI.liveAt(BaseIndex) &&
363          "Reads of completely dead register should be marked undef already");
364   unsigned SubRegIdx = MO.getSubReg();
365   assert(SubRegIdx != 0 && LI.hasSubRanges());
366   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
367   // See if any of the relevant subregister liveranges is defined at this point.
368   for (const LiveInterval::SubRange &SR : LI.subranges()) {
369     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
370       return false;
371   }
372   return true;
373 }
374 
375 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
376   if (!MI.isIdentityCopy())
377     return;
378   LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
379   ++NumIdCopies;
380 
381   // Copies like:
382   //    %r0 = COPY undef %r0
383   //    %al = COPY %al, implicit-def %eax
384   // give us additional liveness information: The target (super-)register
385   // must not be valid before this point. Replace the COPY with a KILL
386   // instruction to maintain this information.
387   if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
388     MI.setDesc(TII->get(TargetOpcode::KILL));
389     LLVM_DEBUG(dbgs() << "  replace by: " << MI);
390     return;
391   }
392 
393   if (Indexes)
394     Indexes->removeSingleMachineInstrFromMaps(MI);
395   MI.eraseFromBundle();
396   LLVM_DEBUG(dbgs() << "  deleted.\n");
397 }
398 
399 /// The liverange splitting logic sometimes produces bundles of copies when
400 /// subregisters are involved. Expand these into a sequence of copy instructions
401 /// after processing the last in the bundle. Does not update LiveIntervals
402 /// which we shouldn't need for this instruction anymore.
403 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
404   if (!MI.isCopy())
405     return;
406 
407   if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
408     SmallVector<MachineInstr *, 2> MIs({&MI});
409 
410     // Only do this when the complete bundle is made out of COPYs.
411     MachineBasicBlock &MBB = *MI.getParent();
412     for (MachineBasicBlock::reverse_instr_iterator I =
413          std::next(MI.getReverseIterator()), E = MBB.instr_rend();
414          I != E && I->isBundledWithSucc(); ++I) {
415       if (!I->isCopy())
416         return;
417       MIs.push_back(&*I);
418     }
419     MachineInstr *FirstMI = MIs.back();
420 
421     auto anyRegsAlias = [](const MachineInstr *Dst,
422                            ArrayRef<MachineInstr *> Srcs,
423                            const TargetRegisterInfo *TRI) {
424       for (const MachineInstr *Src : Srcs)
425         if (Src != Dst)
426           if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
427                                Src->getOperand(1).getReg()))
428             return true;
429       return false;
430     };
431 
432     // If any of the destination registers in the bundle of copies alias any of
433     // the source registers, try to schedule the instructions to avoid any
434     // clobbering.
435     for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
436       for (int I = E; I--; )
437         if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
438           if (I + 1 != E)
439             std::swap(MIs[I], MIs[E - 1]);
440           --E;
441         }
442       if (PrevE == E) {
443         MF->getFunction().getContext().emitError(
444             "register rewriting failed: cycle in copy bundle");
445         break;
446       }
447     }
448 
449     MachineInstr *BundleStart = FirstMI;
450     for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
451       // If instruction is in the middle of the bundle, move it before the
452       // bundle starts, otherwise, just unbundle it. When we get to the last
453       // instruction, the bundle will have been completely undone.
454       if (BundledMI != BundleStart) {
455         BundledMI->removeFromBundle();
456         MBB.insert(FirstMI, BundledMI);
457       } else if (BundledMI->isBundledWithSucc()) {
458         BundledMI->unbundleFromSucc();
459         BundleStart = &*std::next(BundledMI->getIterator());
460       }
461 
462       if (Indexes && BundledMI != FirstMI)
463         Indexes->insertMachineInstrInMaps(*BundledMI);
464     }
465   }
466 }
467 
468 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
469 /// \pre \p MI defines a subregister of a virtual register that
470 /// has been assigned to \p SuperPhysReg.
471 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
472                                         unsigned SuperPhysReg) const {
473   SlotIndex MIIndex = LIS->getInstructionIndex(MI);
474   SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
475   SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
476   for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
477     const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
478     // If the regunit is live both before and after MI,
479     // we assume it is live through.
480     // Generally speaking, this is not true, because something like
481     // "RU = op RU" would match that description.
482     // However, we know that we are trying to assess whether
483     // a def of a virtual reg, vreg, is live at the same time of RU.
484     // If we are in the "RU = op RU" situation, that means that vreg
485     // is defined at the same time as RU (i.e., "vreg, RU = op RU").
486     // Thus, vreg and RU interferes and vreg cannot be assigned to
487     // SuperPhysReg. Therefore, this situation cannot happen.
488     if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
489       return true;
490   }
491   return false;
492 }
493 
494 void VirtRegRewriter::rewrite() {
495   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
496   SmallVector<unsigned, 8> SuperDeads;
497   SmallVector<unsigned, 8> SuperDefs;
498   SmallVector<unsigned, 8> SuperKills;
499 
500   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
501        MBBI != MBBE; ++MBBI) {
502     LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
503     for (MachineBasicBlock::instr_iterator
504            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
505       MachineInstr *MI = &*MII;
506       ++MII;
507 
508       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
509            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
510         MachineOperand &MO = *MOI;
511 
512         // Make sure MRI knows about registers clobbered by regmasks.
513         if (MO.isRegMask())
514           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
515 
516         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
517           continue;
518         unsigned VirtReg = MO.getReg();
519         unsigned PhysReg = VRM->getPhys(VirtReg);
520         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
521                "Instruction uses unmapped VirtReg");
522         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
523 
524         // Preserve semantics of sub-register operands.
525         unsigned SubReg = MO.getSubReg();
526         if (SubReg != 0) {
527           if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
528             // A virtual register kill refers to the whole register, so we may
529             // have to add implicit killed operands for the super-register.  A
530             // partial redef always kills and redefines the super-register.
531             if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
532                 (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
533               SuperKills.push_back(PhysReg);
534 
535             if (MO.isDef()) {
536               // Also add implicit defs for the super-register.
537               if (MO.isDead())
538                 SuperDeads.push_back(PhysReg);
539               else
540                 SuperDefs.push_back(PhysReg);
541             }
542           } else {
543             if (MO.isUse()) {
544               if (readsUndefSubreg(MO))
545                 // We need to add an <undef> flag if the subregister is
546                 // completely undefined (and we are not adding super-register
547                 // defs).
548                 MO.setIsUndef(true);
549             } else if (!MO.isDead()) {
550               assert(MO.isDef());
551             }
552           }
553 
554           // The def undef and def internal flags only make sense for
555           // sub-register defs, and we are substituting a full physreg.  An
556           // implicit killed operand from the SuperKills list will represent the
557           // partial read of the super-register.
558           if (MO.isDef()) {
559             MO.setIsUndef(false);
560             MO.setIsInternalRead(false);
561           }
562 
563           // PhysReg operands cannot have subregister indexes.
564           PhysReg = TRI->getSubReg(PhysReg, SubReg);
565           assert(PhysReg && "Invalid SubReg for physical register");
566           MO.setSubReg(0);
567         }
568         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
569         // we need the inlining here.
570         MO.setReg(PhysReg);
571         MO.setIsRenamable(true);
572       }
573 
574       // Add any missing super-register kills after rewriting the whole
575       // instruction.
576       while (!SuperKills.empty())
577         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
578 
579       while (!SuperDeads.empty())
580         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
581 
582       while (!SuperDefs.empty())
583         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
584 
585       LLVM_DEBUG(dbgs() << "> " << *MI);
586 
587       expandCopyBundle(*MI);
588 
589       // We can remove identity copies right now.
590       handleIdentityCopy(*MI);
591     }
592   }
593 }
594