xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the VirtRegMap class.
10 //
11 // It also contains implementations of the Spiller interface, which, given a
12 // virtual register map and a machine function, eliminates all virtual
13 // references by replacing them with physical register references - adding spill
14 // code as necessary.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/VirtRegMap.h"
19 #include "LiveDebugVariables.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LiveStacks.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/MC/LaneBitmask.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "regalloc"
50 
51 STATISTIC(NumSpillSlots, "Number of spill slots allocated");
52 STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
53 
54 //===----------------------------------------------------------------------===//
55 //  VirtRegMap implementation
56 //===----------------------------------------------------------------------===//
57 
58 char VirtRegMap::ID = 0;
59 
60 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
61 
62 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
63   MRI = &mf.getRegInfo();
64   TII = mf.getSubtarget().getInstrInfo();
65   TRI = mf.getSubtarget().getRegisterInfo();
66   MF = &mf;
67 
68   Virt2PhysMap.clear();
69   Virt2StackSlotMap.clear();
70   Virt2SplitMap.clear();
71 
72   grow();
73   return false;
74 }
75 
76 void VirtRegMap::grow() {
77   unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
78   Virt2PhysMap.resize(NumRegs);
79   Virt2StackSlotMap.resize(NumRegs);
80   Virt2SplitMap.resize(NumRegs);
81 }
82 
83 void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
84   assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
85   assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
86          "attempt to assign physical register to already mapped "
87          "virtual register");
88   assert(!getRegInfo().isReserved(physReg) &&
89          "Attempt to map virtReg to a reserved physReg");
90   Virt2PhysMap[virtReg.id()] = physReg;
91 }
92 
93 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
94   unsigned Size = TRI->getSpillSize(*RC);
95   unsigned Align = TRI->getSpillAlignment(*RC);
96   int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Align);
97   ++NumSpillSlots;
98   return SS;
99 }
100 
101 bool VirtRegMap::hasPreferredPhys(Register VirtReg) {
102   Register Hint = MRI->getSimpleHint(VirtReg);
103   if (!Hint.isValid())
104     return false;
105   if (Hint.isVirtual())
106     Hint = getPhys(Hint);
107   return getPhys(VirtReg) == Hint;
108 }
109 
110 bool VirtRegMap::hasKnownPreference(Register VirtReg) {
111   std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
112   if (Register::isPhysicalRegister(Hint.second))
113     return true;
114   if (Register::isVirtualRegister(Hint.second))
115     return hasPhys(Hint.second);
116   return false;
117 }
118 
119 int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
120   assert(virtReg.isVirtual());
121   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
122          "attempt to assign stack slot to already spilled register");
123   const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
124   return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
125 }
126 
127 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
128   assert(virtReg.isVirtual());
129   assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
130          "attempt to assign stack slot to already spilled register");
131   assert((SS >= 0 ||
132           (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
133          "illegal fixed frame index");
134   Virt2StackSlotMap[virtReg.id()] = SS;
135 }
136 
137 void VirtRegMap::print(raw_ostream &OS, const Module*) const {
138   OS << "********** REGISTER MAP **********\n";
139   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
140     unsigned Reg = Register::index2VirtReg(i);
141     if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
142       OS << '[' << printReg(Reg, TRI) << " -> "
143          << printReg(Virt2PhysMap[Reg], TRI) << "] "
144          << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
145     }
146   }
147 
148   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
149     unsigned Reg = Register::index2VirtReg(i);
150     if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
151       OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
152          << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
153     }
154   }
155   OS << '\n';
156 }
157 
158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
159 LLVM_DUMP_METHOD void VirtRegMap::dump() const {
160   print(dbgs());
161 }
162 #endif
163 
164 //===----------------------------------------------------------------------===//
165 //                              VirtRegRewriter
166 //===----------------------------------------------------------------------===//
167 //
168 // The VirtRegRewriter is the last of the register allocator passes.
169 // It rewrites virtual registers to physical registers as specified in the
170 // VirtRegMap analysis. It also updates live-in information on basic blocks
171 // according to LiveIntervals.
172 //
173 namespace {
174 
175 class VirtRegRewriter : public MachineFunctionPass {
176   MachineFunction *MF;
177   const TargetRegisterInfo *TRI;
178   const TargetInstrInfo *TII;
179   MachineRegisterInfo *MRI;
180   SlotIndexes *Indexes;
181   LiveIntervals *LIS;
182   VirtRegMap *VRM;
183 
184   void rewrite();
185   void addMBBLiveIns();
186   bool readsUndefSubreg(const MachineOperand &MO) const;
187   void addLiveInsForSubRanges(const LiveInterval &LI, Register PhysReg) const;
188   void handleIdentityCopy(MachineInstr &MI) const;
189   void expandCopyBundle(MachineInstr &MI) const;
190   bool subRegLiveThrough(const MachineInstr &MI, Register SuperPhysReg) const;
191 
192 public:
193   static char ID;
194 
195   VirtRegRewriter() : MachineFunctionPass(ID) {}
196 
197   void getAnalysisUsage(AnalysisUsage &AU) const override;
198 
199   bool runOnMachineFunction(MachineFunction&) override;
200 
201   MachineFunctionProperties getSetProperties() const override {
202     return MachineFunctionProperties().set(
203         MachineFunctionProperties::Property::NoVRegs);
204   }
205 };
206 
207 } // end anonymous namespace
208 
209 char VirtRegRewriter::ID = 0;
210 
211 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
212 
213 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
214                       "Virtual Register Rewriter", false, false)
215 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
216 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
217 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
218 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
219 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
220 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
221                     "Virtual Register Rewriter", false, false)
222 
223 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
224   AU.setPreservesCFG();
225   AU.addRequired<LiveIntervals>();
226   AU.addRequired<SlotIndexes>();
227   AU.addPreserved<SlotIndexes>();
228   AU.addRequired<LiveDebugVariables>();
229   AU.addRequired<LiveStacks>();
230   AU.addPreserved<LiveStacks>();
231   AU.addRequired<VirtRegMap>();
232   MachineFunctionPass::getAnalysisUsage(AU);
233 }
234 
235 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
236   MF = &fn;
237   TRI = MF->getSubtarget().getRegisterInfo();
238   TII = MF->getSubtarget().getInstrInfo();
239   MRI = &MF->getRegInfo();
240   Indexes = &getAnalysis<SlotIndexes>();
241   LIS = &getAnalysis<LiveIntervals>();
242   VRM = &getAnalysis<VirtRegMap>();
243   LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
244                     << "********** Function: " << MF->getName() << '\n');
245   LLVM_DEBUG(VRM->dump());
246 
247   // Add kill flags while we still have virtual registers.
248   LIS->addKillFlags(VRM);
249 
250   // Live-in lists on basic blocks are required for physregs.
251   addMBBLiveIns();
252 
253   // Rewrite virtual registers.
254   rewrite();
255 
256   // Write out new DBG_VALUE instructions.
257   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
258 
259   // All machine operands and other references to virtual registers have been
260   // replaced. Remove the virtual registers and release all the transient data.
261   VRM->clearAllVirt();
262   MRI->clearVirtRegs();
263   return true;
264 }
265 
266 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
267                                              Register PhysReg) const {
268   assert(!LI.empty());
269   assert(LI.hasSubRanges());
270 
271   using SubRangeIteratorPair =
272       std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
273 
274   SmallVector<SubRangeIteratorPair, 4> SubRanges;
275   SlotIndex First;
276   SlotIndex Last;
277   for (const LiveInterval::SubRange &SR : LI.subranges()) {
278     SubRanges.push_back(std::make_pair(&SR, SR.begin()));
279     if (!First.isValid() || SR.segments.front().start < First)
280       First = SR.segments.front().start;
281     if (!Last.isValid() || SR.segments.back().end > Last)
282       Last = SR.segments.back().end;
283   }
284 
285   // Check all mbb start positions between First and Last while
286   // simulatenously advancing an iterator for each subrange.
287   for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
288        MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
289     SlotIndex MBBBegin = MBBI->first;
290     // Advance all subrange iterators so that their end position is just
291     // behind MBBBegin (or the iterator is at the end).
292     LaneBitmask LaneMask;
293     for (auto &RangeIterPair : SubRanges) {
294       const LiveInterval::SubRange *SR = RangeIterPair.first;
295       LiveInterval::const_iterator &SRI = RangeIterPair.second;
296       while (SRI != SR->end() && SRI->end <= MBBBegin)
297         ++SRI;
298       if (SRI == SR->end())
299         continue;
300       if (SRI->start <= MBBBegin)
301         LaneMask |= SR->LaneMask;
302     }
303     if (LaneMask.none())
304       continue;
305     MachineBasicBlock *MBB = MBBI->second;
306     MBB->addLiveIn(PhysReg, LaneMask);
307   }
308 }
309 
310 // Compute MBB live-in lists from virtual register live ranges and their
311 // assignments.
312 void VirtRegRewriter::addMBBLiveIns() {
313   for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
314     Register VirtReg = Register::index2VirtReg(Idx);
315     if (MRI->reg_nodbg_empty(VirtReg))
316       continue;
317     LiveInterval &LI = LIS->getInterval(VirtReg);
318     if (LI.empty() || LIS->intervalIsInOneMBB(LI))
319       continue;
320     // This is a virtual register that is live across basic blocks. Its
321     // assigned PhysReg must be marked as live-in to those blocks.
322     Register PhysReg = VRM->getPhys(VirtReg);
323     assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
324 
325     if (LI.hasSubRanges()) {
326       addLiveInsForSubRanges(LI, PhysReg);
327     } else {
328       // Go over MBB begin positions and see if we have segments covering them.
329       // The following works because segments and the MBBIndex list are both
330       // sorted by slot indexes.
331       SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
332       for (const auto &Seg : LI) {
333         I = Indexes->advanceMBBIndex(I, Seg.start);
334         for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
335           MachineBasicBlock *MBB = I->second;
336           MBB->addLiveIn(PhysReg);
337         }
338       }
339     }
340   }
341 
342   // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
343   // each MBB's LiveIns set before calling addLiveIn on them.
344   for (MachineBasicBlock &MBB : *MF)
345     MBB.sortUniqueLiveIns();
346 }
347 
348 /// Returns true if the given machine operand \p MO only reads undefined lanes.
349 /// The function only works for use operands with a subregister set.
350 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
351   // Shortcut if the operand is already marked undef.
352   if (MO.isUndef())
353     return true;
354 
355   Register Reg = MO.getReg();
356   const LiveInterval &LI = LIS->getInterval(Reg);
357   const MachineInstr &MI = *MO.getParent();
358   SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
359   // This code is only meant to handle reading undefined subregisters which
360   // we couldn't properly detect before.
361   assert(LI.liveAt(BaseIndex) &&
362          "Reads of completely dead register should be marked undef already");
363   unsigned SubRegIdx = MO.getSubReg();
364   assert(SubRegIdx != 0 && LI.hasSubRanges());
365   LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
366   // See if any of the relevant subregister liveranges is defined at this point.
367   for (const LiveInterval::SubRange &SR : LI.subranges()) {
368     if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
369       return false;
370   }
371   return true;
372 }
373 
374 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
375   if (!MI.isIdentityCopy())
376     return;
377   LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
378   ++NumIdCopies;
379 
380   // Copies like:
381   //    %r0 = COPY undef %r0
382   //    %al = COPY %al, implicit-def %eax
383   // give us additional liveness information: The target (super-)register
384   // must not be valid before this point. Replace the COPY with a KILL
385   // instruction to maintain this information.
386   if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
387     MI.setDesc(TII->get(TargetOpcode::KILL));
388     LLVM_DEBUG(dbgs() << "  replace by: " << MI);
389     return;
390   }
391 
392   if (Indexes)
393     Indexes->removeSingleMachineInstrFromMaps(MI);
394   MI.eraseFromBundle();
395   LLVM_DEBUG(dbgs() << "  deleted.\n");
396 }
397 
398 /// The liverange splitting logic sometimes produces bundles of copies when
399 /// subregisters are involved. Expand these into a sequence of copy instructions
400 /// after processing the last in the bundle. Does not update LiveIntervals
401 /// which we shouldn't need for this instruction anymore.
402 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
403   if (!MI.isCopy())
404     return;
405 
406   if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
407     SmallVector<MachineInstr *, 2> MIs({&MI});
408 
409     // Only do this when the complete bundle is made out of COPYs.
410     MachineBasicBlock &MBB = *MI.getParent();
411     for (MachineBasicBlock::reverse_instr_iterator I =
412          std::next(MI.getReverseIterator()), E = MBB.instr_rend();
413          I != E && I->isBundledWithSucc(); ++I) {
414       if (!I->isCopy())
415         return;
416       MIs.push_back(&*I);
417     }
418     MachineInstr *FirstMI = MIs.back();
419 
420     auto anyRegsAlias = [](const MachineInstr *Dst,
421                            ArrayRef<MachineInstr *> Srcs,
422                            const TargetRegisterInfo *TRI) {
423       for (const MachineInstr *Src : Srcs)
424         if (Src != Dst)
425           if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
426                                Src->getOperand(1).getReg()))
427             return true;
428       return false;
429     };
430 
431     // If any of the destination registers in the bundle of copies alias any of
432     // the source registers, try to schedule the instructions to avoid any
433     // clobbering.
434     for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
435       for (int I = E; I--; )
436         if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
437           if (I + 1 != E)
438             std::swap(MIs[I], MIs[E - 1]);
439           --E;
440         }
441       if (PrevE == E) {
442         MF->getFunction().getContext().emitError(
443             "register rewriting failed: cycle in copy bundle");
444         break;
445       }
446     }
447 
448     MachineInstr *BundleStart = FirstMI;
449     for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
450       // If instruction is in the middle of the bundle, move it before the
451       // bundle starts, otherwise, just unbundle it. When we get to the last
452       // instruction, the bundle will have been completely undone.
453       if (BundledMI != BundleStart) {
454         BundledMI->removeFromBundle();
455         MBB.insert(FirstMI, BundledMI);
456       } else if (BundledMI->isBundledWithSucc()) {
457         BundledMI->unbundleFromSucc();
458         BundleStart = &*std::next(BundledMI->getIterator());
459       }
460 
461       if (Indexes && BundledMI != FirstMI)
462         Indexes->insertMachineInstrInMaps(*BundledMI);
463     }
464   }
465 }
466 
467 /// Check whether (part of) \p SuperPhysReg is live through \p MI.
468 /// \pre \p MI defines a subregister of a virtual register that
469 /// has been assigned to \p SuperPhysReg.
470 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
471                                         Register SuperPhysReg) const {
472   SlotIndex MIIndex = LIS->getInstructionIndex(MI);
473   SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
474   SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
475   for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
476     const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
477     // If the regunit is live both before and after MI,
478     // we assume it is live through.
479     // Generally speaking, this is not true, because something like
480     // "RU = op RU" would match that description.
481     // However, we know that we are trying to assess whether
482     // a def of a virtual reg, vreg, is live at the same time of RU.
483     // If we are in the "RU = op RU" situation, that means that vreg
484     // is defined at the same time as RU (i.e., "vreg, RU = op RU").
485     // Thus, vreg and RU interferes and vreg cannot be assigned to
486     // SuperPhysReg. Therefore, this situation cannot happen.
487     if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
488       return true;
489   }
490   return false;
491 }
492 
493 void VirtRegRewriter::rewrite() {
494   bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
495   SmallVector<Register, 8> SuperDeads;
496   SmallVector<Register, 8> SuperDefs;
497   SmallVector<Register, 8> SuperKills;
498 
499   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
500        MBBI != MBBE; ++MBBI) {
501     LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
502     for (MachineBasicBlock::instr_iterator
503            MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
504       MachineInstr *MI = &*MII;
505       ++MII;
506 
507       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
508            MOE = MI->operands_end(); MOI != MOE; ++MOI) {
509         MachineOperand &MO = *MOI;
510 
511         // Make sure MRI knows about registers clobbered by regmasks.
512         if (MO.isRegMask())
513           MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
514 
515         if (!MO.isReg() || !MO.getReg().isVirtual())
516           continue;
517         Register VirtReg = MO.getReg();
518         Register PhysReg = VRM->getPhys(VirtReg);
519         assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
520                "Instruction uses unmapped VirtReg");
521         assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
522 
523         // Preserve semantics of sub-register operands.
524         unsigned SubReg = MO.getSubReg();
525         if (SubReg != 0) {
526           if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
527             // A virtual register kill refers to the whole register, so we may
528             // have to add implicit killed operands for the super-register.  A
529             // partial redef always kills and redefines the super-register.
530             if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
531                 (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
532               SuperKills.push_back(PhysReg);
533 
534             if (MO.isDef()) {
535               // Also add implicit defs for the super-register.
536               if (MO.isDead())
537                 SuperDeads.push_back(PhysReg);
538               else
539                 SuperDefs.push_back(PhysReg);
540             }
541           } else {
542             if (MO.isUse()) {
543               if (readsUndefSubreg(MO))
544                 // We need to add an <undef> flag if the subregister is
545                 // completely undefined (and we are not adding super-register
546                 // defs).
547                 MO.setIsUndef(true);
548             } else if (!MO.isDead()) {
549               assert(MO.isDef());
550             }
551           }
552 
553           // The def undef and def internal flags only make sense for
554           // sub-register defs, and we are substituting a full physreg.  An
555           // implicit killed operand from the SuperKills list will represent the
556           // partial read of the super-register.
557           if (MO.isDef()) {
558             MO.setIsUndef(false);
559             MO.setIsInternalRead(false);
560           }
561 
562           // PhysReg operands cannot have subregister indexes.
563           PhysReg = TRI->getSubReg(PhysReg, SubReg);
564           assert(PhysReg.isValid() && "Invalid SubReg for physical register");
565           MO.setSubReg(0);
566         }
567         // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
568         // we need the inlining here.
569         MO.setReg(PhysReg);
570         MO.setIsRenamable(true);
571       }
572 
573       // Add any missing super-register kills after rewriting the whole
574       // instruction.
575       while (!SuperKills.empty())
576         MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
577 
578       while (!SuperDeads.empty())
579         MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
580 
581       while (!SuperDefs.empty())
582         MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
583 
584       LLVM_DEBUG(dbgs() << "> " << *MI);
585 
586       expandCopyBundle(*MI);
587 
588       // We can remove identity copies right now.
589       handleIdentityCopy(*MI);
590     }
591   }
592 }
593