1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the VirtRegMap class. 10 // 11 // It also contains implementations of the Spiller interface, which, given a 12 // virtual register map and a machine function, eliminates all virtual 13 // references by replacing them with physical register references - adding spill 14 // code as necessary. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/CodeGen/VirtRegMap.h" 19 #include "LiveDebugVariables.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveInterval.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LiveStacks.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Config/llvm-config.h" 38 #include "llvm/MC/LaneBitmask.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "regalloc" 50 51 STATISTIC(NumSpillSlots, "Number of spill slots allocated"); 52 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); 53 54 //===----------------------------------------------------------------------===// 55 // VirtRegMap implementation 56 //===----------------------------------------------------------------------===// 57 58 char VirtRegMap::ID = 0; 59 60 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) 61 62 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { 63 MRI = &mf.getRegInfo(); 64 TII = mf.getSubtarget().getInstrInfo(); 65 TRI = mf.getSubtarget().getRegisterInfo(); 66 MF = &mf; 67 68 Virt2PhysMap.clear(); 69 Virt2StackSlotMap.clear(); 70 Virt2SplitMap.clear(); 71 72 grow(); 73 return false; 74 } 75 76 void VirtRegMap::grow() { 77 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); 78 Virt2PhysMap.resize(NumRegs); 79 Virt2StackSlotMap.resize(NumRegs); 80 Virt2SplitMap.resize(NumRegs); 81 } 82 83 void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) { 84 assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg)); 85 assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG && 86 "attempt to assign physical register to already mapped " 87 "virtual register"); 88 assert(!getRegInfo().isReserved(physReg) && 89 "Attempt to map virtReg to a reserved physReg"); 90 Virt2PhysMap[virtReg.id()] = physReg; 91 } 92 93 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { 94 unsigned Size = TRI->getSpillSize(*RC); 95 unsigned Align = TRI->getSpillAlignment(*RC); 96 int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Align); 97 ++NumSpillSlots; 98 return SS; 99 } 100 101 bool VirtRegMap::hasPreferredPhys(Register VirtReg) { 102 Register Hint = MRI->getSimpleHint(VirtReg); 103 if (!Hint.isValid()) 104 return false; 105 if (Hint.isVirtual()) 106 Hint = getPhys(Hint); 107 return getPhys(VirtReg) == Hint; 108 } 109 110 bool VirtRegMap::hasKnownPreference(Register VirtReg) { 111 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg); 112 if (Register::isPhysicalRegister(Hint.second)) 113 return true; 114 if (Register::isVirtualRegister(Hint.second)) 115 return hasPhys(Hint.second); 116 return false; 117 } 118 119 int VirtRegMap::assignVirt2StackSlot(Register virtReg) { 120 assert(virtReg.isVirtual()); 121 assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT && 122 "attempt to assign stack slot to already spilled register"); 123 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); 124 return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC); 125 } 126 127 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) { 128 assert(virtReg.isVirtual()); 129 assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT && 130 "attempt to assign stack slot to already spilled register"); 131 assert((SS >= 0 || 132 (SS >= MF->getFrameInfo().getObjectIndexBegin())) && 133 "illegal fixed frame index"); 134 Virt2StackSlotMap[virtReg.id()] = SS; 135 } 136 137 void VirtRegMap::print(raw_ostream &OS, const Module*) const { 138 OS << "********** REGISTER MAP **********\n"; 139 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 140 unsigned Reg = Register::index2VirtReg(i); 141 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { 142 OS << '[' << printReg(Reg, TRI) << " -> " 143 << printReg(Virt2PhysMap[Reg], TRI) << "] " 144 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 145 } 146 } 147 148 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 149 unsigned Reg = Register::index2VirtReg(i); 150 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { 151 OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] 152 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 153 } 154 } 155 OS << '\n'; 156 } 157 158 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 159 LLVM_DUMP_METHOD void VirtRegMap::dump() const { 160 print(dbgs()); 161 } 162 #endif 163 164 //===----------------------------------------------------------------------===// 165 // VirtRegRewriter 166 //===----------------------------------------------------------------------===// 167 // 168 // The VirtRegRewriter is the last of the register allocator passes. 169 // It rewrites virtual registers to physical registers as specified in the 170 // VirtRegMap analysis. It also updates live-in information on basic blocks 171 // according to LiveIntervals. 172 // 173 namespace { 174 175 class VirtRegRewriter : public MachineFunctionPass { 176 MachineFunction *MF; 177 const TargetRegisterInfo *TRI; 178 const TargetInstrInfo *TII; 179 MachineRegisterInfo *MRI; 180 SlotIndexes *Indexes; 181 LiveIntervals *LIS; 182 VirtRegMap *VRM; 183 184 void rewrite(); 185 void addMBBLiveIns(); 186 bool readsUndefSubreg(const MachineOperand &MO) const; 187 void addLiveInsForSubRanges(const LiveInterval &LI, Register PhysReg) const; 188 void handleIdentityCopy(MachineInstr &MI) const; 189 void expandCopyBundle(MachineInstr &MI) const; 190 bool subRegLiveThrough(const MachineInstr &MI, Register SuperPhysReg) const; 191 192 public: 193 static char ID; 194 195 VirtRegRewriter() : MachineFunctionPass(ID) {} 196 197 void getAnalysisUsage(AnalysisUsage &AU) const override; 198 199 bool runOnMachineFunction(MachineFunction&) override; 200 201 MachineFunctionProperties getSetProperties() const override { 202 return MachineFunctionProperties().set( 203 MachineFunctionProperties::Property::NoVRegs); 204 } 205 }; 206 207 } // end anonymous namespace 208 209 char VirtRegRewriter::ID = 0; 210 211 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; 212 213 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", 214 "Virtual Register Rewriter", false, false) 215 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 216 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 217 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 218 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 219 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 220 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", 221 "Virtual Register Rewriter", false, false) 222 223 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { 224 AU.setPreservesCFG(); 225 AU.addRequired<LiveIntervals>(); 226 AU.addRequired<SlotIndexes>(); 227 AU.addPreserved<SlotIndexes>(); 228 AU.addRequired<LiveDebugVariables>(); 229 AU.addRequired<LiveStacks>(); 230 AU.addPreserved<LiveStacks>(); 231 AU.addRequired<VirtRegMap>(); 232 MachineFunctionPass::getAnalysisUsage(AU); 233 } 234 235 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { 236 MF = &fn; 237 TRI = MF->getSubtarget().getRegisterInfo(); 238 TII = MF->getSubtarget().getInstrInfo(); 239 MRI = &MF->getRegInfo(); 240 Indexes = &getAnalysis<SlotIndexes>(); 241 LIS = &getAnalysis<LiveIntervals>(); 242 VRM = &getAnalysis<VirtRegMap>(); 243 LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" 244 << "********** Function: " << MF->getName() << '\n'); 245 LLVM_DEBUG(VRM->dump()); 246 247 // Add kill flags while we still have virtual registers. 248 LIS->addKillFlags(VRM); 249 250 // Live-in lists on basic blocks are required for physregs. 251 addMBBLiveIns(); 252 253 // Rewrite virtual registers. 254 rewrite(); 255 256 // Write out new DBG_VALUE instructions. 257 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); 258 259 // All machine operands and other references to virtual registers have been 260 // replaced. Remove the virtual registers and release all the transient data. 261 VRM->clearAllVirt(); 262 MRI->clearVirtRegs(); 263 return true; 264 } 265 266 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, 267 Register PhysReg) const { 268 assert(!LI.empty()); 269 assert(LI.hasSubRanges()); 270 271 using SubRangeIteratorPair = 272 std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>; 273 274 SmallVector<SubRangeIteratorPair, 4> SubRanges; 275 SlotIndex First; 276 SlotIndex Last; 277 for (const LiveInterval::SubRange &SR : LI.subranges()) { 278 SubRanges.push_back(std::make_pair(&SR, SR.begin())); 279 if (!First.isValid() || SR.segments.front().start < First) 280 First = SR.segments.front().start; 281 if (!Last.isValid() || SR.segments.back().end > Last) 282 Last = SR.segments.back().end; 283 } 284 285 // Check all mbb start positions between First and Last while 286 // simulatenously advancing an iterator for each subrange. 287 for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First); 288 MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { 289 SlotIndex MBBBegin = MBBI->first; 290 // Advance all subrange iterators so that their end position is just 291 // behind MBBBegin (or the iterator is at the end). 292 LaneBitmask LaneMask; 293 for (auto &RangeIterPair : SubRanges) { 294 const LiveInterval::SubRange *SR = RangeIterPair.first; 295 LiveInterval::const_iterator &SRI = RangeIterPair.second; 296 while (SRI != SR->end() && SRI->end <= MBBBegin) 297 ++SRI; 298 if (SRI == SR->end()) 299 continue; 300 if (SRI->start <= MBBBegin) 301 LaneMask |= SR->LaneMask; 302 } 303 if (LaneMask.none()) 304 continue; 305 MachineBasicBlock *MBB = MBBI->second; 306 MBB->addLiveIn(PhysReg, LaneMask); 307 } 308 } 309 310 // Compute MBB live-in lists from virtual register live ranges and their 311 // assignments. 312 void VirtRegRewriter::addMBBLiveIns() { 313 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { 314 Register VirtReg = Register::index2VirtReg(Idx); 315 if (MRI->reg_nodbg_empty(VirtReg)) 316 continue; 317 LiveInterval &LI = LIS->getInterval(VirtReg); 318 if (LI.empty() || LIS->intervalIsInOneMBB(LI)) 319 continue; 320 // This is a virtual register that is live across basic blocks. Its 321 // assigned PhysReg must be marked as live-in to those blocks. 322 Register PhysReg = VRM->getPhys(VirtReg); 323 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); 324 325 if (LI.hasSubRanges()) { 326 addLiveInsForSubRanges(LI, PhysReg); 327 } else { 328 // Go over MBB begin positions and see if we have segments covering them. 329 // The following works because segments and the MBBIndex list are both 330 // sorted by slot indexes. 331 SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); 332 for (const auto &Seg : LI) { 333 I = Indexes->advanceMBBIndex(I, Seg.start); 334 for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { 335 MachineBasicBlock *MBB = I->second; 336 MBB->addLiveIn(PhysReg); 337 } 338 } 339 } 340 } 341 342 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in 343 // each MBB's LiveIns set before calling addLiveIn on them. 344 for (MachineBasicBlock &MBB : *MF) 345 MBB.sortUniqueLiveIns(); 346 } 347 348 /// Returns true if the given machine operand \p MO only reads undefined lanes. 349 /// The function only works for use operands with a subregister set. 350 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { 351 // Shortcut if the operand is already marked undef. 352 if (MO.isUndef()) 353 return true; 354 355 Register Reg = MO.getReg(); 356 const LiveInterval &LI = LIS->getInterval(Reg); 357 const MachineInstr &MI = *MO.getParent(); 358 SlotIndex BaseIndex = LIS->getInstructionIndex(MI); 359 // This code is only meant to handle reading undefined subregisters which 360 // we couldn't properly detect before. 361 assert(LI.liveAt(BaseIndex) && 362 "Reads of completely dead register should be marked undef already"); 363 unsigned SubRegIdx = MO.getSubReg(); 364 assert(SubRegIdx != 0 && LI.hasSubRanges()); 365 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 366 // See if any of the relevant subregister liveranges is defined at this point. 367 for (const LiveInterval::SubRange &SR : LI.subranges()) { 368 if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex)) 369 return false; 370 } 371 return true; 372 } 373 374 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const { 375 if (!MI.isIdentityCopy()) 376 return; 377 LLVM_DEBUG(dbgs() << "Identity copy: " << MI); 378 ++NumIdCopies; 379 380 // Copies like: 381 // %r0 = COPY undef %r0 382 // %al = COPY %al, implicit-def %eax 383 // give us additional liveness information: The target (super-)register 384 // must not be valid before this point. Replace the COPY with a KILL 385 // instruction to maintain this information. 386 if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) { 387 MI.setDesc(TII->get(TargetOpcode::KILL)); 388 LLVM_DEBUG(dbgs() << " replace by: " << MI); 389 return; 390 } 391 392 if (Indexes) 393 Indexes->removeSingleMachineInstrFromMaps(MI); 394 MI.eraseFromBundle(); 395 LLVM_DEBUG(dbgs() << " deleted.\n"); 396 } 397 398 /// The liverange splitting logic sometimes produces bundles of copies when 399 /// subregisters are involved. Expand these into a sequence of copy instructions 400 /// after processing the last in the bundle. Does not update LiveIntervals 401 /// which we shouldn't need for this instruction anymore. 402 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { 403 if (!MI.isCopy()) 404 return; 405 406 if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { 407 SmallVector<MachineInstr *, 2> MIs({&MI}); 408 409 // Only do this when the complete bundle is made out of COPYs. 410 MachineBasicBlock &MBB = *MI.getParent(); 411 for (MachineBasicBlock::reverse_instr_iterator I = 412 std::next(MI.getReverseIterator()), E = MBB.instr_rend(); 413 I != E && I->isBundledWithSucc(); ++I) { 414 if (!I->isCopy()) 415 return; 416 MIs.push_back(&*I); 417 } 418 MachineInstr *FirstMI = MIs.back(); 419 420 auto anyRegsAlias = [](const MachineInstr *Dst, 421 ArrayRef<MachineInstr *> Srcs, 422 const TargetRegisterInfo *TRI) { 423 for (const MachineInstr *Src : Srcs) 424 if (Src != Dst) 425 if (TRI->regsOverlap(Dst->getOperand(0).getReg(), 426 Src->getOperand(1).getReg())) 427 return true; 428 return false; 429 }; 430 431 // If any of the destination registers in the bundle of copies alias any of 432 // the source registers, try to schedule the instructions to avoid any 433 // clobbering. 434 for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) { 435 for (int I = E; I--; ) 436 if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) { 437 if (I + 1 != E) 438 std::swap(MIs[I], MIs[E - 1]); 439 --E; 440 } 441 if (PrevE == E) { 442 MF->getFunction().getContext().emitError( 443 "register rewriting failed: cycle in copy bundle"); 444 break; 445 } 446 } 447 448 MachineInstr *BundleStart = FirstMI; 449 for (MachineInstr *BundledMI : llvm::reverse(MIs)) { 450 // If instruction is in the middle of the bundle, move it before the 451 // bundle starts, otherwise, just unbundle it. When we get to the last 452 // instruction, the bundle will have been completely undone. 453 if (BundledMI != BundleStart) { 454 BundledMI->removeFromBundle(); 455 MBB.insert(FirstMI, BundledMI); 456 } else if (BundledMI->isBundledWithSucc()) { 457 BundledMI->unbundleFromSucc(); 458 BundleStart = &*std::next(BundledMI->getIterator()); 459 } 460 461 if (Indexes && BundledMI != FirstMI) 462 Indexes->insertMachineInstrInMaps(*BundledMI); 463 } 464 } 465 } 466 467 /// Check whether (part of) \p SuperPhysReg is live through \p MI. 468 /// \pre \p MI defines a subregister of a virtual register that 469 /// has been assigned to \p SuperPhysReg. 470 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, 471 Register SuperPhysReg) const { 472 SlotIndex MIIndex = LIS->getInstructionIndex(MI); 473 SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); 474 SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); 475 for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) { 476 const LiveRange &UnitRange = LIS->getRegUnit(*Unit); 477 // If the regunit is live both before and after MI, 478 // we assume it is live through. 479 // Generally speaking, this is not true, because something like 480 // "RU = op RU" would match that description. 481 // However, we know that we are trying to assess whether 482 // a def of a virtual reg, vreg, is live at the same time of RU. 483 // If we are in the "RU = op RU" situation, that means that vreg 484 // is defined at the same time as RU (i.e., "vreg, RU = op RU"). 485 // Thus, vreg and RU interferes and vreg cannot be assigned to 486 // SuperPhysReg. Therefore, this situation cannot happen. 487 if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses)) 488 return true; 489 } 490 return false; 491 } 492 493 void VirtRegRewriter::rewrite() { 494 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); 495 SmallVector<Register, 8> SuperDeads; 496 SmallVector<Register, 8> SuperDefs; 497 SmallVector<Register, 8> SuperKills; 498 499 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 500 MBBI != MBBE; ++MBBI) { 501 LLVM_DEBUG(MBBI->print(dbgs(), Indexes)); 502 for (MachineBasicBlock::instr_iterator 503 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { 504 MachineInstr *MI = &*MII; 505 ++MII; 506 507 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 508 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 509 MachineOperand &MO = *MOI; 510 511 // Make sure MRI knows about registers clobbered by regmasks. 512 if (MO.isRegMask()) 513 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 514 515 if (!MO.isReg() || !MO.getReg().isVirtual()) 516 continue; 517 Register VirtReg = MO.getReg(); 518 Register PhysReg = VRM->getPhys(VirtReg); 519 assert(PhysReg != VirtRegMap::NO_PHYS_REG && 520 "Instruction uses unmapped VirtReg"); 521 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); 522 523 // Preserve semantics of sub-register operands. 524 unsigned SubReg = MO.getSubReg(); 525 if (SubReg != 0) { 526 if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) { 527 // A virtual register kill refers to the whole register, so we may 528 // have to add implicit killed operands for the super-register. A 529 // partial redef always kills and redefines the super-register. 530 if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || 531 (MO.isDef() && subRegLiveThrough(*MI, PhysReg))) 532 SuperKills.push_back(PhysReg); 533 534 if (MO.isDef()) { 535 // Also add implicit defs for the super-register. 536 if (MO.isDead()) 537 SuperDeads.push_back(PhysReg); 538 else 539 SuperDefs.push_back(PhysReg); 540 } 541 } else { 542 if (MO.isUse()) { 543 if (readsUndefSubreg(MO)) 544 // We need to add an <undef> flag if the subregister is 545 // completely undefined (and we are not adding super-register 546 // defs). 547 MO.setIsUndef(true); 548 } else if (!MO.isDead()) { 549 assert(MO.isDef()); 550 } 551 } 552 553 // The def undef and def internal flags only make sense for 554 // sub-register defs, and we are substituting a full physreg. An 555 // implicit killed operand from the SuperKills list will represent the 556 // partial read of the super-register. 557 if (MO.isDef()) { 558 MO.setIsUndef(false); 559 MO.setIsInternalRead(false); 560 } 561 562 // PhysReg operands cannot have subregister indexes. 563 PhysReg = TRI->getSubReg(PhysReg, SubReg); 564 assert(PhysReg.isValid() && "Invalid SubReg for physical register"); 565 MO.setSubReg(0); 566 } 567 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but 568 // we need the inlining here. 569 MO.setReg(PhysReg); 570 MO.setIsRenamable(true); 571 } 572 573 // Add any missing super-register kills after rewriting the whole 574 // instruction. 575 while (!SuperKills.empty()) 576 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); 577 578 while (!SuperDeads.empty()) 579 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); 580 581 while (!SuperDefs.empty()) 582 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); 583 584 LLVM_DEBUG(dbgs() << "> " << *MI); 585 586 expandCopyBundle(*MI); 587 588 // We can remove identity copies right now. 589 handleIdentityCopy(*MI); 590 } 591 } 592 } 593