1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the VirtRegMap class. 10 // 11 // It also contains implementations of the Spiller interface, which, given a 12 // virtual register map and a machine function, eliminates all virtual 13 // references by replacing them with physical register references - adding spill 14 // code as necessary. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/CodeGen/VirtRegMap.h" 19 #include "LiveDebugVariables.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/LiveInterval.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LiveStacks.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineFunctionPass.h" 29 #include "llvm/CodeGen/MachineInstr.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Config/llvm-config.h" 38 #include "llvm/MC/LaneBitmask.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "regalloc" 50 51 STATISTIC(NumSpillSlots, "Number of spill slots allocated"); 52 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); 53 54 //===----------------------------------------------------------------------===// 55 // VirtRegMap implementation 56 //===----------------------------------------------------------------------===// 57 58 char VirtRegMap::ID = 0; 59 60 INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false) 61 62 bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) { 63 MRI = &mf.getRegInfo(); 64 TII = mf.getSubtarget().getInstrInfo(); 65 TRI = mf.getSubtarget().getRegisterInfo(); 66 MF = &mf; 67 68 Virt2PhysMap.clear(); 69 Virt2StackSlotMap.clear(); 70 Virt2SplitMap.clear(); 71 Virt2ShapeMap.clear(); 72 73 grow(); 74 return false; 75 } 76 77 void VirtRegMap::grow() { 78 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); 79 Virt2PhysMap.resize(NumRegs); 80 Virt2StackSlotMap.resize(NumRegs); 81 Virt2SplitMap.resize(NumRegs); 82 } 83 84 void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) { 85 assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg)); 86 assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG && 87 "attempt to assign physical register to already mapped " 88 "virtual register"); 89 assert(!getRegInfo().isReserved(physReg) && 90 "Attempt to map virtReg to a reserved physReg"); 91 Virt2PhysMap[virtReg.id()] = physReg; 92 } 93 94 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { 95 unsigned Size = TRI->getSpillSize(*RC); 96 Align Alignment = TRI->getSpillAlign(*RC); 97 int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment); 98 ++NumSpillSlots; 99 return SS; 100 } 101 102 bool VirtRegMap::hasPreferredPhys(Register VirtReg) { 103 Register Hint = MRI->getSimpleHint(VirtReg); 104 if (!Hint.isValid()) 105 return false; 106 if (Hint.isVirtual()) 107 Hint = getPhys(Hint); 108 return Register(getPhys(VirtReg)) == Hint; 109 } 110 111 bool VirtRegMap::hasKnownPreference(Register VirtReg) { 112 std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg); 113 if (Register::isPhysicalRegister(Hint.second)) 114 return true; 115 if (Register::isVirtualRegister(Hint.second)) 116 return hasPhys(Hint.second); 117 return false; 118 } 119 120 int VirtRegMap::assignVirt2StackSlot(Register virtReg) { 121 assert(virtReg.isVirtual()); 122 assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT && 123 "attempt to assign stack slot to already spilled register"); 124 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); 125 return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC); 126 } 127 128 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) { 129 assert(virtReg.isVirtual()); 130 assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT && 131 "attempt to assign stack slot to already spilled register"); 132 assert((SS >= 0 || 133 (SS >= MF->getFrameInfo().getObjectIndexBegin())) && 134 "illegal fixed frame index"); 135 Virt2StackSlotMap[virtReg.id()] = SS; 136 } 137 138 void VirtRegMap::print(raw_ostream &OS, const Module*) const { 139 OS << "********** REGISTER MAP **********\n"; 140 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 141 unsigned Reg = Register::index2VirtReg(i); 142 if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) { 143 OS << '[' << printReg(Reg, TRI) << " -> " 144 << printReg(Virt2PhysMap[Reg], TRI) << "] " 145 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 146 } 147 } 148 149 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 150 unsigned Reg = Register::index2VirtReg(i); 151 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { 152 OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] 153 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 154 } 155 } 156 OS << '\n'; 157 } 158 159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 160 LLVM_DUMP_METHOD void VirtRegMap::dump() const { 161 print(dbgs()); 162 } 163 #endif 164 165 //===----------------------------------------------------------------------===// 166 // VirtRegRewriter 167 //===----------------------------------------------------------------------===// 168 // 169 // The VirtRegRewriter is the last of the register allocator passes. 170 // It rewrites virtual registers to physical registers as specified in the 171 // VirtRegMap analysis. It also updates live-in information on basic blocks 172 // according to LiveIntervals. 173 // 174 namespace { 175 176 class VirtRegRewriter : public MachineFunctionPass { 177 MachineFunction *MF; 178 const TargetRegisterInfo *TRI; 179 const TargetInstrInfo *TII; 180 MachineRegisterInfo *MRI; 181 SlotIndexes *Indexes; 182 LiveIntervals *LIS; 183 VirtRegMap *VRM; 184 185 void rewrite(); 186 void addMBBLiveIns(); 187 bool readsUndefSubreg(const MachineOperand &MO) const; 188 void addLiveInsForSubRanges(const LiveInterval &LI, Register PhysReg) const; 189 void handleIdentityCopy(MachineInstr &MI) const; 190 void expandCopyBundle(MachineInstr &MI) const; 191 bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const; 192 193 public: 194 static char ID; 195 196 VirtRegRewriter() : MachineFunctionPass(ID) {} 197 198 void getAnalysisUsage(AnalysisUsage &AU) const override; 199 200 bool runOnMachineFunction(MachineFunction&) override; 201 202 MachineFunctionProperties getSetProperties() const override { 203 return MachineFunctionProperties().set( 204 MachineFunctionProperties::Property::NoVRegs); 205 } 206 }; 207 208 } // end anonymous namespace 209 210 char VirtRegRewriter::ID = 0; 211 212 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; 213 214 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", 215 "Virtual Register Rewriter", false, false) 216 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 217 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 218 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 219 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 220 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 221 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", 222 "Virtual Register Rewriter", false, false) 223 224 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { 225 AU.setPreservesCFG(); 226 AU.addRequired<LiveIntervals>(); 227 AU.addRequired<SlotIndexes>(); 228 AU.addPreserved<SlotIndexes>(); 229 AU.addRequired<LiveDebugVariables>(); 230 AU.addRequired<LiveStacks>(); 231 AU.addPreserved<LiveStacks>(); 232 AU.addRequired<VirtRegMap>(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 } 235 236 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { 237 MF = &fn; 238 TRI = MF->getSubtarget().getRegisterInfo(); 239 TII = MF->getSubtarget().getInstrInfo(); 240 MRI = &MF->getRegInfo(); 241 Indexes = &getAnalysis<SlotIndexes>(); 242 LIS = &getAnalysis<LiveIntervals>(); 243 VRM = &getAnalysis<VirtRegMap>(); 244 LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" 245 << "********** Function: " << MF->getName() << '\n'); 246 LLVM_DEBUG(VRM->dump()); 247 248 // Add kill flags while we still have virtual registers. 249 LIS->addKillFlags(VRM); 250 251 // Live-in lists on basic blocks are required for physregs. 252 addMBBLiveIns(); 253 254 // Rewrite virtual registers. 255 rewrite(); 256 257 // Write out new DBG_VALUE instructions. 258 getAnalysis<LiveDebugVariables>().emitDebugValues(VRM); 259 260 // All machine operands and other references to virtual registers have been 261 // replaced. Remove the virtual registers and release all the transient data. 262 VRM->clearAllVirt(); 263 MRI->clearVirtRegs(); 264 return true; 265 } 266 267 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, 268 Register PhysReg) const { 269 assert(!LI.empty()); 270 assert(LI.hasSubRanges()); 271 272 using SubRangeIteratorPair = 273 std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>; 274 275 SmallVector<SubRangeIteratorPair, 4> SubRanges; 276 SlotIndex First; 277 SlotIndex Last; 278 for (const LiveInterval::SubRange &SR : LI.subranges()) { 279 SubRanges.push_back(std::make_pair(&SR, SR.begin())); 280 if (!First.isValid() || SR.segments.front().start < First) 281 First = SR.segments.front().start; 282 if (!Last.isValid() || SR.segments.back().end > Last) 283 Last = SR.segments.back().end; 284 } 285 286 // Check all mbb start positions between First and Last while 287 // simulatenously advancing an iterator for each subrange. 288 for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First); 289 MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { 290 SlotIndex MBBBegin = MBBI->first; 291 // Advance all subrange iterators so that their end position is just 292 // behind MBBBegin (or the iterator is at the end). 293 LaneBitmask LaneMask; 294 for (auto &RangeIterPair : SubRanges) { 295 const LiveInterval::SubRange *SR = RangeIterPair.first; 296 LiveInterval::const_iterator &SRI = RangeIterPair.second; 297 while (SRI != SR->end() && SRI->end <= MBBBegin) 298 ++SRI; 299 if (SRI == SR->end()) 300 continue; 301 if (SRI->start <= MBBBegin) 302 LaneMask |= SR->LaneMask; 303 } 304 if (LaneMask.none()) 305 continue; 306 MachineBasicBlock *MBB = MBBI->second; 307 MBB->addLiveIn(PhysReg, LaneMask); 308 } 309 } 310 311 // Compute MBB live-in lists from virtual register live ranges and their 312 // assignments. 313 void VirtRegRewriter::addMBBLiveIns() { 314 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { 315 Register VirtReg = Register::index2VirtReg(Idx); 316 if (MRI->reg_nodbg_empty(VirtReg)) 317 continue; 318 LiveInterval &LI = LIS->getInterval(VirtReg); 319 if (LI.empty() || LIS->intervalIsInOneMBB(LI)) 320 continue; 321 // This is a virtual register that is live across basic blocks. Its 322 // assigned PhysReg must be marked as live-in to those blocks. 323 Register PhysReg = VRM->getPhys(VirtReg); 324 assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register."); 325 326 if (LI.hasSubRanges()) { 327 addLiveInsForSubRanges(LI, PhysReg); 328 } else { 329 // Go over MBB begin positions and see if we have segments covering them. 330 // The following works because segments and the MBBIndex list are both 331 // sorted by slot indexes. 332 SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); 333 for (const auto &Seg : LI) { 334 I = Indexes->advanceMBBIndex(I, Seg.start); 335 for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { 336 MachineBasicBlock *MBB = I->second; 337 MBB->addLiveIn(PhysReg); 338 } 339 } 340 } 341 } 342 343 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in 344 // each MBB's LiveIns set before calling addLiveIn on them. 345 for (MachineBasicBlock &MBB : *MF) 346 MBB.sortUniqueLiveIns(); 347 } 348 349 /// Returns true if the given machine operand \p MO only reads undefined lanes. 350 /// The function only works for use operands with a subregister set. 351 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { 352 // Shortcut if the operand is already marked undef. 353 if (MO.isUndef()) 354 return true; 355 356 Register Reg = MO.getReg(); 357 const LiveInterval &LI = LIS->getInterval(Reg); 358 const MachineInstr &MI = *MO.getParent(); 359 SlotIndex BaseIndex = LIS->getInstructionIndex(MI); 360 // This code is only meant to handle reading undefined subregisters which 361 // we couldn't properly detect before. 362 assert(LI.liveAt(BaseIndex) && 363 "Reads of completely dead register should be marked undef already"); 364 unsigned SubRegIdx = MO.getSubReg(); 365 assert(SubRegIdx != 0 && LI.hasSubRanges()); 366 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 367 // See if any of the relevant subregister liveranges is defined at this point. 368 for (const LiveInterval::SubRange &SR : LI.subranges()) { 369 if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex)) 370 return false; 371 } 372 return true; 373 } 374 375 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const { 376 if (!MI.isIdentityCopy()) 377 return; 378 LLVM_DEBUG(dbgs() << "Identity copy: " << MI); 379 ++NumIdCopies; 380 381 // Copies like: 382 // %r0 = COPY undef %r0 383 // %al = COPY %al, implicit-def %eax 384 // give us additional liveness information: The target (super-)register 385 // must not be valid before this point. Replace the COPY with a KILL 386 // instruction to maintain this information. 387 if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) { 388 MI.setDesc(TII->get(TargetOpcode::KILL)); 389 LLVM_DEBUG(dbgs() << " replace by: " << MI); 390 return; 391 } 392 393 if (Indexes) 394 Indexes->removeSingleMachineInstrFromMaps(MI); 395 MI.eraseFromBundle(); 396 LLVM_DEBUG(dbgs() << " deleted.\n"); 397 } 398 399 /// The liverange splitting logic sometimes produces bundles of copies when 400 /// subregisters are involved. Expand these into a sequence of copy instructions 401 /// after processing the last in the bundle. Does not update LiveIntervals 402 /// which we shouldn't need for this instruction anymore. 403 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { 404 if (!MI.isCopy() && !MI.isKill()) 405 return; 406 407 if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { 408 SmallVector<MachineInstr *, 2> MIs({&MI}); 409 410 // Only do this when the complete bundle is made out of COPYs and KILLs. 411 MachineBasicBlock &MBB = *MI.getParent(); 412 for (MachineBasicBlock::reverse_instr_iterator I = 413 std::next(MI.getReverseIterator()), E = MBB.instr_rend(); 414 I != E && I->isBundledWithSucc(); ++I) { 415 if (!I->isCopy() && !I->isKill()) 416 return; 417 MIs.push_back(&*I); 418 } 419 MachineInstr *FirstMI = MIs.back(); 420 421 auto anyRegsAlias = [](const MachineInstr *Dst, 422 ArrayRef<MachineInstr *> Srcs, 423 const TargetRegisterInfo *TRI) { 424 for (const MachineInstr *Src : Srcs) 425 if (Src != Dst) 426 if (TRI->regsOverlap(Dst->getOperand(0).getReg(), 427 Src->getOperand(1).getReg())) 428 return true; 429 return false; 430 }; 431 432 // If any of the destination registers in the bundle of copies alias any of 433 // the source registers, try to schedule the instructions to avoid any 434 // clobbering. 435 for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) { 436 for (int I = E; I--; ) 437 if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) { 438 if (I + 1 != E) 439 std::swap(MIs[I], MIs[E - 1]); 440 --E; 441 } 442 if (PrevE == E) { 443 MF->getFunction().getContext().emitError( 444 "register rewriting failed: cycle in copy bundle"); 445 break; 446 } 447 } 448 449 MachineInstr *BundleStart = FirstMI; 450 for (MachineInstr *BundledMI : llvm::reverse(MIs)) { 451 // If instruction is in the middle of the bundle, move it before the 452 // bundle starts, otherwise, just unbundle it. When we get to the last 453 // instruction, the bundle will have been completely undone. 454 if (BundledMI != BundleStart) { 455 BundledMI->removeFromBundle(); 456 MBB.insert(BundleStart, BundledMI); 457 } else if (BundledMI->isBundledWithSucc()) { 458 BundledMI->unbundleFromSucc(); 459 BundleStart = &*std::next(BundledMI->getIterator()); 460 } 461 462 if (Indexes && BundledMI != FirstMI) 463 Indexes->insertMachineInstrInMaps(*BundledMI); 464 } 465 } 466 } 467 468 /// Check whether (part of) \p SuperPhysReg is live through \p MI. 469 /// \pre \p MI defines a subregister of a virtual register that 470 /// has been assigned to \p SuperPhysReg. 471 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, 472 MCRegister SuperPhysReg) const { 473 SlotIndex MIIndex = LIS->getInstructionIndex(MI); 474 SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); 475 SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); 476 for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) { 477 const LiveRange &UnitRange = LIS->getRegUnit(*Unit); 478 // If the regunit is live both before and after MI, 479 // we assume it is live through. 480 // Generally speaking, this is not true, because something like 481 // "RU = op RU" would match that description. 482 // However, we know that we are trying to assess whether 483 // a def of a virtual reg, vreg, is live at the same time of RU. 484 // If we are in the "RU = op RU" situation, that means that vreg 485 // is defined at the same time as RU (i.e., "vreg, RU = op RU"). 486 // Thus, vreg and RU interferes and vreg cannot be assigned to 487 // SuperPhysReg. Therefore, this situation cannot happen. 488 if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses)) 489 return true; 490 } 491 return false; 492 } 493 494 void VirtRegRewriter::rewrite() { 495 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); 496 SmallVector<Register, 8> SuperDeads; 497 SmallVector<Register, 8> SuperDefs; 498 SmallVector<Register, 8> SuperKills; 499 500 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 501 MBBI != MBBE; ++MBBI) { 502 LLVM_DEBUG(MBBI->print(dbgs(), Indexes)); 503 for (MachineBasicBlock::instr_iterator 504 MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) { 505 MachineInstr *MI = &*MII; 506 ++MII; 507 508 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 509 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 510 MachineOperand &MO = *MOI; 511 512 // Make sure MRI knows about registers clobbered by regmasks. 513 if (MO.isRegMask()) 514 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 515 516 if (!MO.isReg() || !MO.getReg().isVirtual()) 517 continue; 518 Register VirtReg = MO.getReg(); 519 MCRegister PhysReg = VRM->getPhys(VirtReg); 520 assert(PhysReg != VirtRegMap::NO_PHYS_REG && 521 "Instruction uses unmapped VirtReg"); 522 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); 523 524 // Preserve semantics of sub-register operands. 525 unsigned SubReg = MO.getSubReg(); 526 if (SubReg != 0) { 527 if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) { 528 // A virtual register kill refers to the whole register, so we may 529 // have to add implicit killed operands for the super-register. A 530 // partial redef always kills and redefines the super-register. 531 if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || 532 (MO.isDef() && subRegLiveThrough(*MI, PhysReg))) 533 SuperKills.push_back(PhysReg); 534 535 if (MO.isDef()) { 536 // Also add implicit defs for the super-register. 537 if (MO.isDead()) 538 SuperDeads.push_back(PhysReg); 539 else 540 SuperDefs.push_back(PhysReg); 541 } 542 } else { 543 if (MO.isUse()) { 544 if (readsUndefSubreg(MO)) 545 // We need to add an <undef> flag if the subregister is 546 // completely undefined (and we are not adding super-register 547 // defs). 548 MO.setIsUndef(true); 549 } else if (!MO.isDead()) { 550 assert(MO.isDef()); 551 } 552 } 553 554 // The def undef and def internal flags only make sense for 555 // sub-register defs, and we are substituting a full physreg. An 556 // implicit killed operand from the SuperKills list will represent the 557 // partial read of the super-register. 558 if (MO.isDef()) { 559 MO.setIsUndef(false); 560 MO.setIsInternalRead(false); 561 } 562 563 // PhysReg operands cannot have subregister indexes. 564 PhysReg = TRI->getSubReg(PhysReg, SubReg); 565 assert(PhysReg.isValid() && "Invalid SubReg for physical register"); 566 MO.setSubReg(0); 567 } 568 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but 569 // we need the inlining here. 570 MO.setReg(PhysReg); 571 MO.setIsRenamable(true); 572 } 573 574 // Add any missing super-register kills after rewriting the whole 575 // instruction. 576 while (!SuperKills.empty()) 577 MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true); 578 579 while (!SuperDeads.empty()) 580 MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true); 581 582 while (!SuperDefs.empty()) 583 MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI); 584 585 LLVM_DEBUG(dbgs() << "> " << *MI); 586 587 expandCopyBundle(*MI); 588 589 // We can remove identity copies right now. 590 handleIdentityCopy(*MI); 591 } 592 } 593 } 594