xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/VirtRegMap.cpp (revision 29f37e9bcc67d5d94c9d6bbbcf2717e16bf25c4e)
1  //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the VirtRegMap class.
10  //
11  // It also contains implementations of the Spiller interface, which, given a
12  // virtual register map and a machine function, eliminates all virtual
13  // references by replacing them with physical register references - adding spill
14  // code as necessary.
15  //
16  //===----------------------------------------------------------------------===//
17  
18  #include "llvm/CodeGen/VirtRegMap.h"
19  #include "LiveDebugVariables.h"
20  #include "llvm/ADT/SmallVector.h"
21  #include "llvm/ADT/Statistic.h"
22  #include "llvm/CodeGen/LiveInterval.h"
23  #include "llvm/CodeGen/LiveIntervals.h"
24  #include "llvm/CodeGen/LiveStacks.h"
25  #include "llvm/CodeGen/MachineBasicBlock.h"
26  #include "llvm/CodeGen/MachineFrameInfo.h"
27  #include "llvm/CodeGen/MachineFunction.h"
28  #include "llvm/CodeGen/MachineFunctionPass.h"
29  #include "llvm/CodeGen/MachineInstr.h"
30  #include "llvm/CodeGen/MachineOperand.h"
31  #include "llvm/CodeGen/MachineRegisterInfo.h"
32  #include "llvm/CodeGen/SlotIndexes.h"
33  #include "llvm/CodeGen/TargetInstrInfo.h"
34  #include "llvm/CodeGen/TargetOpcodes.h"
35  #include "llvm/CodeGen/TargetRegisterInfo.h"
36  #include "llvm/CodeGen/TargetSubtargetInfo.h"
37  #include "llvm/Config/llvm-config.h"
38  #include "llvm/MC/LaneBitmask.h"
39  #include "llvm/Pass.h"
40  #include "llvm/Support/Compiler.h"
41  #include "llvm/Support/Debug.h"
42  #include "llvm/Support/raw_ostream.h"
43  #include <cassert>
44  #include <iterator>
45  #include <utility>
46  
47  using namespace llvm;
48  
49  #define DEBUG_TYPE "regalloc"
50  
51  STATISTIC(NumSpillSlots, "Number of spill slots allocated");
52  STATISTIC(NumIdCopies,   "Number of identity moves eliminated after rewriting");
53  
54  //===----------------------------------------------------------------------===//
55  //  VirtRegMap implementation
56  //===----------------------------------------------------------------------===//
57  
58  char VirtRegMap::ID = 0;
59  
60  INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
61  
62  bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
63    MRI = &mf.getRegInfo();
64    TII = mf.getSubtarget().getInstrInfo();
65    TRI = mf.getSubtarget().getRegisterInfo();
66    MF = &mf;
67  
68    Virt2PhysMap.clear();
69    Virt2StackSlotMap.clear();
70    Virt2SplitMap.clear();
71  
72    grow();
73    return false;
74  }
75  
76  void VirtRegMap::grow() {
77    unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
78    Virt2PhysMap.resize(NumRegs);
79    Virt2StackSlotMap.resize(NumRegs);
80    Virt2SplitMap.resize(NumRegs);
81  }
82  
83  void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
84    assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
85    assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
86           "attempt to assign physical register to already mapped "
87           "virtual register");
88    assert(!getRegInfo().isReserved(physReg) &&
89           "Attempt to map virtReg to a reserved physReg");
90    Virt2PhysMap[virtReg.id()] = physReg;
91  }
92  
93  unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
94    unsigned Size = TRI->getSpillSize(*RC);
95    Align Alignment = TRI->getSpillAlign(*RC);
96    int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
97    ++NumSpillSlots;
98    return SS;
99  }
100  
101  bool VirtRegMap::hasPreferredPhys(Register VirtReg) {
102    Register Hint = MRI->getSimpleHint(VirtReg);
103    if (!Hint.isValid())
104      return false;
105    if (Hint.isVirtual())
106      Hint = getPhys(Hint);
107    return getPhys(VirtReg) == Hint;
108  }
109  
110  bool VirtRegMap::hasKnownPreference(Register VirtReg) {
111    std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
112    if (Register::isPhysicalRegister(Hint.second))
113      return true;
114    if (Register::isVirtualRegister(Hint.second))
115      return hasPhys(Hint.second);
116    return false;
117  }
118  
119  int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
120    assert(virtReg.isVirtual());
121    assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
122           "attempt to assign stack slot to already spilled register");
123    const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
124    return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
125  }
126  
127  void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
128    assert(virtReg.isVirtual());
129    assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
130           "attempt to assign stack slot to already spilled register");
131    assert((SS >= 0 ||
132            (SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
133           "illegal fixed frame index");
134    Virt2StackSlotMap[virtReg.id()] = SS;
135  }
136  
137  void VirtRegMap::print(raw_ostream &OS, const Module*) const {
138    OS << "********** REGISTER MAP **********\n";
139    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
140      unsigned Reg = Register::index2VirtReg(i);
141      if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
142        OS << '[' << printReg(Reg, TRI) << " -> "
143           << printReg(Virt2PhysMap[Reg], TRI) << "] "
144           << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
145      }
146    }
147  
148    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
149      unsigned Reg = Register::index2VirtReg(i);
150      if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
151        OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
152           << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
153      }
154    }
155    OS << '\n';
156  }
157  
158  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
159  LLVM_DUMP_METHOD void VirtRegMap::dump() const {
160    print(dbgs());
161  }
162  #endif
163  
164  //===----------------------------------------------------------------------===//
165  //                              VirtRegRewriter
166  //===----------------------------------------------------------------------===//
167  //
168  // The VirtRegRewriter is the last of the register allocator passes.
169  // It rewrites virtual registers to physical registers as specified in the
170  // VirtRegMap analysis. It also updates live-in information on basic blocks
171  // according to LiveIntervals.
172  //
173  namespace {
174  
175  class VirtRegRewriter : public MachineFunctionPass {
176    MachineFunction *MF;
177    const TargetRegisterInfo *TRI;
178    const TargetInstrInfo *TII;
179    MachineRegisterInfo *MRI;
180    SlotIndexes *Indexes;
181    LiveIntervals *LIS;
182    VirtRegMap *VRM;
183  
184    void rewrite();
185    void addMBBLiveIns();
186    bool readsUndefSubreg(const MachineOperand &MO) const;
187    void addLiveInsForSubRanges(const LiveInterval &LI, Register PhysReg) const;
188    void handleIdentityCopy(MachineInstr &MI) const;
189    void expandCopyBundle(MachineInstr &MI) const;
190    bool subRegLiveThrough(const MachineInstr &MI, Register SuperPhysReg) const;
191  
192  public:
193    static char ID;
194  
195    VirtRegRewriter() : MachineFunctionPass(ID) {}
196  
197    void getAnalysisUsage(AnalysisUsage &AU) const override;
198  
199    bool runOnMachineFunction(MachineFunction&) override;
200  
201    MachineFunctionProperties getSetProperties() const override {
202      return MachineFunctionProperties().set(
203          MachineFunctionProperties::Property::NoVRegs);
204    }
205  };
206  
207  } // end anonymous namespace
208  
209  char VirtRegRewriter::ID = 0;
210  
211  char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
212  
213  INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
214                        "Virtual Register Rewriter", false, false)
215  INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
216  INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
217  INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
218  INITIALIZE_PASS_DEPENDENCY(LiveStacks)
219  INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
220  INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
221                      "Virtual Register Rewriter", false, false)
222  
223  void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
224    AU.setPreservesCFG();
225    AU.addRequired<LiveIntervals>();
226    AU.addRequired<SlotIndexes>();
227    AU.addPreserved<SlotIndexes>();
228    AU.addRequired<LiveDebugVariables>();
229    AU.addRequired<LiveStacks>();
230    AU.addPreserved<LiveStacks>();
231    AU.addRequired<VirtRegMap>();
232    MachineFunctionPass::getAnalysisUsage(AU);
233  }
234  
235  bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
236    MF = &fn;
237    TRI = MF->getSubtarget().getRegisterInfo();
238    TII = MF->getSubtarget().getInstrInfo();
239    MRI = &MF->getRegInfo();
240    Indexes = &getAnalysis<SlotIndexes>();
241    LIS = &getAnalysis<LiveIntervals>();
242    VRM = &getAnalysis<VirtRegMap>();
243    LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
244                      << "********** Function: " << MF->getName() << '\n');
245    LLVM_DEBUG(VRM->dump());
246  
247    // Add kill flags while we still have virtual registers.
248    LIS->addKillFlags(VRM);
249  
250    // Live-in lists on basic blocks are required for physregs.
251    addMBBLiveIns();
252  
253    // Rewrite virtual registers.
254    rewrite();
255  
256    // Write out new DBG_VALUE instructions.
257    getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
258  
259    // All machine operands and other references to virtual registers have been
260    // replaced. Remove the virtual registers and release all the transient data.
261    VRM->clearAllVirt();
262    MRI->clearVirtRegs();
263    return true;
264  }
265  
266  void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
267                                               Register PhysReg) const {
268    assert(!LI.empty());
269    assert(LI.hasSubRanges());
270  
271    using SubRangeIteratorPair =
272        std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
273  
274    SmallVector<SubRangeIteratorPair, 4> SubRanges;
275    SlotIndex First;
276    SlotIndex Last;
277    for (const LiveInterval::SubRange &SR : LI.subranges()) {
278      SubRanges.push_back(std::make_pair(&SR, SR.begin()));
279      if (!First.isValid() || SR.segments.front().start < First)
280        First = SR.segments.front().start;
281      if (!Last.isValid() || SR.segments.back().end > Last)
282        Last = SR.segments.back().end;
283    }
284  
285    // Check all mbb start positions between First and Last while
286    // simulatenously advancing an iterator for each subrange.
287    for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
288         MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
289      SlotIndex MBBBegin = MBBI->first;
290      // Advance all subrange iterators so that their end position is just
291      // behind MBBBegin (or the iterator is at the end).
292      LaneBitmask LaneMask;
293      for (auto &RangeIterPair : SubRanges) {
294        const LiveInterval::SubRange *SR = RangeIterPair.first;
295        LiveInterval::const_iterator &SRI = RangeIterPair.second;
296        while (SRI != SR->end() && SRI->end <= MBBBegin)
297          ++SRI;
298        if (SRI == SR->end())
299          continue;
300        if (SRI->start <= MBBBegin)
301          LaneMask |= SR->LaneMask;
302      }
303      if (LaneMask.none())
304        continue;
305      MachineBasicBlock *MBB = MBBI->second;
306      MBB->addLiveIn(PhysReg, LaneMask);
307    }
308  }
309  
310  // Compute MBB live-in lists from virtual register live ranges and their
311  // assignments.
312  void VirtRegRewriter::addMBBLiveIns() {
313    for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
314      Register VirtReg = Register::index2VirtReg(Idx);
315      if (MRI->reg_nodbg_empty(VirtReg))
316        continue;
317      LiveInterval &LI = LIS->getInterval(VirtReg);
318      if (LI.empty() || LIS->intervalIsInOneMBB(LI))
319        continue;
320      // This is a virtual register that is live across basic blocks. Its
321      // assigned PhysReg must be marked as live-in to those blocks.
322      Register PhysReg = VRM->getPhys(VirtReg);
323      assert(PhysReg != VirtRegMap::NO_PHYS_REG && "Unmapped virtual register.");
324  
325      if (LI.hasSubRanges()) {
326        addLiveInsForSubRanges(LI, PhysReg);
327      } else {
328        // Go over MBB begin positions and see if we have segments covering them.
329        // The following works because segments and the MBBIndex list are both
330        // sorted by slot indexes.
331        SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
332        for (const auto &Seg : LI) {
333          I = Indexes->advanceMBBIndex(I, Seg.start);
334          for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
335            MachineBasicBlock *MBB = I->second;
336            MBB->addLiveIn(PhysReg);
337          }
338        }
339      }
340    }
341  
342    // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
343    // each MBB's LiveIns set before calling addLiveIn on them.
344    for (MachineBasicBlock &MBB : *MF)
345      MBB.sortUniqueLiveIns();
346  }
347  
348  /// Returns true if the given machine operand \p MO only reads undefined lanes.
349  /// The function only works for use operands with a subregister set.
350  bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
351    // Shortcut if the operand is already marked undef.
352    if (MO.isUndef())
353      return true;
354  
355    Register Reg = MO.getReg();
356    const LiveInterval &LI = LIS->getInterval(Reg);
357    const MachineInstr &MI = *MO.getParent();
358    SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
359    // This code is only meant to handle reading undefined subregisters which
360    // we couldn't properly detect before.
361    assert(LI.liveAt(BaseIndex) &&
362           "Reads of completely dead register should be marked undef already");
363    unsigned SubRegIdx = MO.getSubReg();
364    assert(SubRegIdx != 0 && LI.hasSubRanges());
365    LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
366    // See if any of the relevant subregister liveranges is defined at this point.
367    for (const LiveInterval::SubRange &SR : LI.subranges()) {
368      if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
369        return false;
370    }
371    return true;
372  }
373  
374  void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) const {
375    if (!MI.isIdentityCopy())
376      return;
377    LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
378    ++NumIdCopies;
379  
380    // Copies like:
381    //    %r0 = COPY undef %r0
382    //    %al = COPY %al, implicit-def %eax
383    // give us additional liveness information: The target (super-)register
384    // must not be valid before this point. Replace the COPY with a KILL
385    // instruction to maintain this information.
386    if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
387      MI.setDesc(TII->get(TargetOpcode::KILL));
388      LLVM_DEBUG(dbgs() << "  replace by: " << MI);
389      return;
390    }
391  
392    if (Indexes)
393      Indexes->removeSingleMachineInstrFromMaps(MI);
394    MI.eraseFromBundle();
395    LLVM_DEBUG(dbgs() << "  deleted.\n");
396  }
397  
398  /// The liverange splitting logic sometimes produces bundles of copies when
399  /// subregisters are involved. Expand these into a sequence of copy instructions
400  /// after processing the last in the bundle. Does not update LiveIntervals
401  /// which we shouldn't need for this instruction anymore.
402  void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
403    if (!MI.isCopy())
404      return;
405  
406    if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
407      SmallVector<MachineInstr *, 2> MIs({&MI});
408  
409      // Only do this when the complete bundle is made out of COPYs.
410      MachineBasicBlock &MBB = *MI.getParent();
411      for (MachineBasicBlock::reverse_instr_iterator I =
412           std::next(MI.getReverseIterator()), E = MBB.instr_rend();
413           I != E && I->isBundledWithSucc(); ++I) {
414        if (!I->isCopy())
415          return;
416        MIs.push_back(&*I);
417      }
418      MachineInstr *FirstMI = MIs.back();
419  
420      auto anyRegsAlias = [](const MachineInstr *Dst,
421                             ArrayRef<MachineInstr *> Srcs,
422                             const TargetRegisterInfo *TRI) {
423        for (const MachineInstr *Src : Srcs)
424          if (Src != Dst)
425            if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
426                                 Src->getOperand(1).getReg()))
427              return true;
428        return false;
429      };
430  
431      // If any of the destination registers in the bundle of copies alias any of
432      // the source registers, try to schedule the instructions to avoid any
433      // clobbering.
434      for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
435        for (int I = E; I--; )
436          if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
437            if (I + 1 != E)
438              std::swap(MIs[I], MIs[E - 1]);
439            --E;
440          }
441        if (PrevE == E) {
442          MF->getFunction().getContext().emitError(
443              "register rewriting failed: cycle in copy bundle");
444          break;
445        }
446      }
447  
448      MachineInstr *BundleStart = FirstMI;
449      for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
450        // If instruction is in the middle of the bundle, move it before the
451        // bundle starts, otherwise, just unbundle it. When we get to the last
452        // instruction, the bundle will have been completely undone.
453        if (BundledMI != BundleStart) {
454          BundledMI->removeFromBundle();
455          MBB.insert(FirstMI, BundledMI);
456        } else if (BundledMI->isBundledWithSucc()) {
457          BundledMI->unbundleFromSucc();
458          BundleStart = &*std::next(BundledMI->getIterator());
459        }
460  
461        if (Indexes && BundledMI != FirstMI)
462          Indexes->insertMachineInstrInMaps(*BundledMI);
463      }
464    }
465  }
466  
467  /// Check whether (part of) \p SuperPhysReg is live through \p MI.
468  /// \pre \p MI defines a subregister of a virtual register that
469  /// has been assigned to \p SuperPhysReg.
470  bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
471                                          Register SuperPhysReg) const {
472    SlotIndex MIIndex = LIS->getInstructionIndex(MI);
473    SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
474    SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
475    for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
476      const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
477      // If the regunit is live both before and after MI,
478      // we assume it is live through.
479      // Generally speaking, this is not true, because something like
480      // "RU = op RU" would match that description.
481      // However, we know that we are trying to assess whether
482      // a def of a virtual reg, vreg, is live at the same time of RU.
483      // If we are in the "RU = op RU" situation, that means that vreg
484      // is defined at the same time as RU (i.e., "vreg, RU = op RU").
485      // Thus, vreg and RU interferes and vreg cannot be assigned to
486      // SuperPhysReg. Therefore, this situation cannot happen.
487      if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
488        return true;
489    }
490    return false;
491  }
492  
493  void VirtRegRewriter::rewrite() {
494    bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
495    SmallVector<Register, 8> SuperDeads;
496    SmallVector<Register, 8> SuperDefs;
497    SmallVector<Register, 8> SuperKills;
498  
499    for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
500         MBBI != MBBE; ++MBBI) {
501      LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
502      for (MachineBasicBlock::instr_iterator
503             MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
504        MachineInstr *MI = &*MII;
505        ++MII;
506  
507        for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
508             MOE = MI->operands_end(); MOI != MOE; ++MOI) {
509          MachineOperand &MO = *MOI;
510  
511          // Make sure MRI knows about registers clobbered by regmasks.
512          if (MO.isRegMask())
513            MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
514  
515          if (!MO.isReg() || !MO.getReg().isVirtual())
516            continue;
517          Register VirtReg = MO.getReg();
518          Register PhysReg = VRM->getPhys(VirtReg);
519          assert(PhysReg != VirtRegMap::NO_PHYS_REG &&
520                 "Instruction uses unmapped VirtReg");
521          assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
522  
523          // Preserve semantics of sub-register operands.
524          unsigned SubReg = MO.getSubReg();
525          if (SubReg != 0) {
526            if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
527              // A virtual register kill refers to the whole register, so we may
528              // have to add implicit killed operands for the super-register.  A
529              // partial redef always kills and redefines the super-register.
530              if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
531                  (MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
532                SuperKills.push_back(PhysReg);
533  
534              if (MO.isDef()) {
535                // Also add implicit defs for the super-register.
536                if (MO.isDead())
537                  SuperDeads.push_back(PhysReg);
538                else
539                  SuperDefs.push_back(PhysReg);
540              }
541            } else {
542              if (MO.isUse()) {
543                if (readsUndefSubreg(MO))
544                  // We need to add an <undef> flag if the subregister is
545                  // completely undefined (and we are not adding super-register
546                  // defs).
547                  MO.setIsUndef(true);
548              } else if (!MO.isDead()) {
549                assert(MO.isDef());
550              }
551            }
552  
553            // The def undef and def internal flags only make sense for
554            // sub-register defs, and we are substituting a full physreg.  An
555            // implicit killed operand from the SuperKills list will represent the
556            // partial read of the super-register.
557            if (MO.isDef()) {
558              MO.setIsUndef(false);
559              MO.setIsInternalRead(false);
560            }
561  
562            // PhysReg operands cannot have subregister indexes.
563            PhysReg = TRI->getSubReg(PhysReg, SubReg);
564            assert(PhysReg.isValid() && "Invalid SubReg for physical register");
565            MO.setSubReg(0);
566          }
567          // Rewrite. Note we could have used MachineOperand::substPhysReg(), but
568          // we need the inlining here.
569          MO.setReg(PhysReg);
570          MO.setIsRenamable(true);
571        }
572  
573        // Add any missing super-register kills after rewriting the whole
574        // instruction.
575        while (!SuperKills.empty())
576          MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
577  
578        while (!SuperDeads.empty())
579          MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
580  
581        while (!SuperDefs.empty())
582          MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
583  
584        LLVM_DEBUG(dbgs() << "> " << *MI);
585  
586        expandCopyBundle(*MI);
587  
588        // We can remove identity copies right now.
589        handleIdentityCopy(*MI);
590      }
591    }
592  }
593