xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TwoAddressInstructionPass.cpp (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
11 // from:
12 //
13 //     A = B op C
14 //
15 // to:
16 //
17 //     A = B
18 //     A op= C
19 //
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
22 // virtual registers.
23 //
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/Passes.h"
47 #include "llvm/CodeGen/SlotIndexes.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetOpcodes.h"
50 #include "llvm/CodeGen/TargetRegisterInfo.h"
51 #include "llvm/CodeGen/TargetSubtargetInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/CodeGen.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Target/TargetMachine.h"
61 #include <cassert>
62 #include <iterator>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "twoaddressinstruction"
68 
69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
70 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
71 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
73 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
74 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
75 
76 // Temporary flag to disable rescheduling.
77 static cl::opt<bool>
78 EnableRescheduling("twoaddr-reschedule",
79                    cl::desc("Coalesce copies by rescheduling (default=true)"),
80                    cl::init(true), cl::Hidden);
81 
82 // Limit the number of dataflow edges to traverse when evaluating the benefit
83 // of commuting operands.
84 static cl::opt<unsigned> MaxDataFlowEdge(
85     "dataflow-edge-limit", cl::Hidden, cl::init(3),
86     cl::desc("Maximum number of dataflow edges to traverse when evaluating "
87              "the benefit of commuting operands"));
88 
89 namespace {
90 
91 class TwoAddressInstructionPass : public MachineFunctionPass {
92   MachineFunction *MF;
93   const TargetInstrInfo *TII;
94   const TargetRegisterInfo *TRI;
95   const InstrItineraryData *InstrItins;
96   MachineRegisterInfo *MRI;
97   LiveVariables *LV;
98   LiveIntervals *LIS;
99   AliasAnalysis *AA;
100   CodeGenOpt::Level OptLevel;
101 
102   // The current basic block being processed.
103   MachineBasicBlock *MBB;
104 
105   // Keep track the distance of a MI from the start of the current basic block.
106   DenseMap<MachineInstr*, unsigned> DistanceMap;
107 
108   // Set of already processed instructions in the current block.
109   SmallPtrSet<MachineInstr*, 8> Processed;
110 
111   // A map from virtual registers to physical registers which are likely targets
112   // to be coalesced to due to copies from physical registers to virtual
113   // registers. e.g. v1024 = move r0.
114   DenseMap<Register, Register> SrcRegMap;
115 
116   // A map from virtual registers to physical registers which are likely targets
117   // to be coalesced to due to copies to physical registers from virtual
118   // registers. e.g. r1 = move v1024.
119   DenseMap<Register, Register> DstRegMap;
120 
121   bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen);
122 
123   bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef);
124 
125   bool isProfitableToCommute(Register RegA, Register RegB, Register RegC,
126                              MachineInstr *MI, unsigned Dist);
127 
128   bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
129                           unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
130 
131   bool isProfitableToConv3Addr(Register RegA, Register RegB);
132 
133   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
134                           MachineBasicBlock::iterator &nmi, Register RegA,
135                           Register RegB, unsigned Dist);
136 
137   bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI);
138 
139   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
140                              MachineBasicBlock::iterator &nmi, Register Reg);
141   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
142                              MachineBasicBlock::iterator &nmi, Register Reg);
143 
144   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
145                                MachineBasicBlock::iterator &nmi,
146                                unsigned SrcIdx, unsigned DstIdx,
147                                unsigned Dist, bool shouldOnlyCommute);
148 
149   bool tryInstructionCommute(MachineInstr *MI,
150                              unsigned DstOpIdx,
151                              unsigned BaseOpIdx,
152                              bool BaseOpKilled,
153                              unsigned Dist);
154   void scanUses(Register DstReg);
155 
156   void processCopy(MachineInstr *MI);
157 
158   using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
159   using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
160 
161   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
162   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
163   void eliminateRegSequence(MachineBasicBlock::iterator&);
164 
165 public:
166   static char ID; // Pass identification, replacement for typeid
167 
168   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
169     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
170   }
171 
172   void getAnalysisUsage(AnalysisUsage &AU) const override {
173     AU.setPreservesCFG();
174     AU.addUsedIfAvailable<AAResultsWrapperPass>();
175     AU.addUsedIfAvailable<LiveVariables>();
176     AU.addPreserved<LiveVariables>();
177     AU.addPreserved<SlotIndexes>();
178     AU.addPreserved<LiveIntervals>();
179     AU.addPreservedID(MachineLoopInfoID);
180     AU.addPreservedID(MachineDominatorsID);
181     MachineFunctionPass::getAnalysisUsage(AU);
182   }
183 
184   /// Pass entry point.
185   bool runOnMachineFunction(MachineFunction&) override;
186 };
187 
188 } // end anonymous namespace
189 
190 char TwoAddressInstructionPass::ID = 0;
191 
192 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
193 
194 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
195                 "Two-Address instruction pass", false, false)
196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
197 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
198                 "Two-Address instruction pass", false, false)
199 
200 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS);
201 
202 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
203 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB,
204                                   const MachineRegisterInfo *MRI) {
205   MachineInstr *Ret = nullptr;
206   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
207     if (DefMI.getParent() != BB || DefMI.isDebugValue())
208       continue;
209     if (!Ret)
210       Ret = &DefMI;
211     else if (Ret != &DefMI)
212       return nullptr;
213   }
214   return Ret;
215 }
216 
217 /// Check if there is a reversed copy chain from FromReg to ToReg:
218 /// %Tmp1 = copy %Tmp2;
219 /// %FromReg = copy %Tmp1;
220 /// %ToReg = add %FromReg ...
221 /// %Tmp2 = copy %ToReg;
222 /// MaxLen specifies the maximum length of the copy chain the func
223 /// can walk through.
224 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg,
225                                                int Maxlen) {
226   Register TmpReg = FromReg;
227   for (int i = 0; i < Maxlen; i++) {
228     MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
229     if (!Def || !Def->isCopy())
230       return false;
231 
232     TmpReg = Def->getOperand(1).getReg();
233 
234     if (TmpReg == ToReg)
235       return true;
236   }
237   return false;
238 }
239 
240 /// Return true if there are no intervening uses between the last instruction
241 /// in the MBB that defines the specified register and the two-address
242 /// instruction which is being processed. It also returns the last def location
243 /// by reference.
244 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist,
245                                                   unsigned &LastDef) {
246   LastDef = 0;
247   unsigned LastUse = Dist;
248   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
249     MachineInstr *MI = MO.getParent();
250     if (MI->getParent() != MBB || MI->isDebugValue())
251       continue;
252     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
253     if (DI == DistanceMap.end())
254       continue;
255     if (MO.isUse() && DI->second < LastUse)
256       LastUse = DI->second;
257     if (MO.isDef() && DI->second > LastDef)
258       LastDef = DI->second;
259   }
260 
261   return !(LastUse > LastDef && LastUse < Dist);
262 }
263 
264 /// Return true if the specified MI is a copy instruction or an extract_subreg
265 /// instruction. It also returns the source and destination registers and
266 /// whether they are physical registers by reference.
267 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
268                         Register &SrcReg, Register &DstReg, bool &IsSrcPhys,
269                         bool &IsDstPhys) {
270   SrcReg = 0;
271   DstReg = 0;
272   if (MI.isCopy()) {
273     DstReg = MI.getOperand(0).getReg();
274     SrcReg = MI.getOperand(1).getReg();
275   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
276     DstReg = MI.getOperand(0).getReg();
277     SrcReg = MI.getOperand(2).getReg();
278   } else {
279     return false;
280   }
281 
282   IsSrcPhys = SrcReg.isPhysical();
283   IsDstPhys = DstReg.isPhysical();
284   return true;
285 }
286 
287 /// Test if the given register value, which is used by the
288 /// given instruction, is killed by the given instruction.
289 static bool isPlainlyKilled(MachineInstr *MI, Register Reg,
290                             LiveIntervals *LIS) {
291   if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) {
292     // FIXME: Sometimes tryInstructionTransform() will add instructions and
293     // test whether they can be folded before keeping them. In this case it
294     // sets a kill before recursively calling tryInstructionTransform() again.
295     // If there is no interval available, we assume that this instruction is
296     // one of those. A kill flag is manually inserted on the operand so the
297     // check below will handle it.
298     LiveInterval &LI = LIS->getInterval(Reg);
299     // This is to match the kill flag version where undefs don't have kill
300     // flags.
301     if (!LI.hasAtLeastOneValue())
302       return false;
303 
304     SlotIndex useIdx = LIS->getInstructionIndex(*MI);
305     LiveInterval::const_iterator I = LI.find(useIdx);
306     assert(I != LI.end() && "Reg must be live-in to use.");
307     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
308   }
309 
310   return MI->killsRegister(Reg);
311 }
312 
313 /// Test if the given register value, which is used by the given
314 /// instruction, is killed by the given instruction. This looks through
315 /// coalescable copies to see if the original value is potentially not killed.
316 ///
317 /// For example, in this code:
318 ///
319 ///   %reg1034 = copy %reg1024
320 ///   %reg1035 = copy killed %reg1025
321 ///   %reg1036 = add killed %reg1034, killed %reg1035
322 ///
323 /// %reg1034 is not considered to be killed, since it is copied from a
324 /// register which is not killed. Treating it as not killed lets the
325 /// normal heuristics commute the (two-address) add, which lets
326 /// coalescing eliminate the extra copy.
327 ///
328 /// If allowFalsePositives is true then likely kills are treated as kills even
329 /// if it can't be proven that they are kills.
330 static bool isKilled(MachineInstr &MI, Register Reg,
331                      const MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
332                      LiveIntervals *LIS, bool allowFalsePositives) {
333   MachineInstr *DefMI = &MI;
334   while (true) {
335     // All uses of physical registers are likely to be kills.
336     if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg)))
337       return true;
338     if (!isPlainlyKilled(DefMI, Reg, LIS))
339       return false;
340     if (Reg.isPhysical())
341       return true;
342     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
343     // If there are multiple defs, we can't do a simple analysis, so just
344     // go with what the kill flag says.
345     if (std::next(Begin) != MRI->def_end())
346       return true;
347     DefMI = Begin->getParent();
348     bool IsSrcPhys, IsDstPhys;
349     Register SrcReg, DstReg;
350     // If the def is something other than a copy, then it isn't going to
351     // be coalesced, so follow the kill flag.
352     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
353       return true;
354     Reg = SrcReg;
355   }
356 }
357 
358 /// Return true if the specified MI uses the specified register as a two-address
359 /// use. If so, return the destination register by reference.
360 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) {
361   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
362     const MachineOperand &MO = MI.getOperand(i);
363     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
364       continue;
365     unsigned ti;
366     if (MI.isRegTiedToDefOperand(i, &ti)) {
367       DstReg = MI.getOperand(ti).getReg();
368       return true;
369     }
370   }
371   return false;
372 }
373 
374 /// Given a register, if has a single in-basic block use, return the use
375 /// instruction if it's a copy or a two-address use.
376 static MachineInstr *
377 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB,
378                        MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
379                        bool &IsCopy, Register &DstReg, bool &IsDstPhys) {
380   if (!MRI->hasOneNonDBGUse(Reg))
381     // None or more than one use.
382     return nullptr;
383   MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
384   if (UseMI.getParent() != MBB)
385     return nullptr;
386   Register SrcReg;
387   bool IsSrcPhys;
388   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
389     IsCopy = true;
390     return &UseMI;
391   }
392   IsDstPhys = false;
393   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
394     IsDstPhys = DstReg.isPhysical();
395     return &UseMI;
396   }
397   return nullptr;
398 }
399 
400 /// Return the physical register the specified virtual register might be mapped
401 /// to.
402 static MCRegister getMappedReg(Register Reg,
403                                DenseMap<Register, Register> &RegMap) {
404   while (Reg.isVirtual()) {
405     DenseMap<Register, Register>::iterator SI = RegMap.find(Reg);
406     if (SI == RegMap.end())
407       return 0;
408     Reg = SI->second;
409   }
410   if (Reg.isPhysical())
411     return Reg;
412   return 0;
413 }
414 
415 /// Return true if the two registers are equal or aliased.
416 static bool regsAreCompatible(Register RegA, Register RegB,
417                               const TargetRegisterInfo *TRI) {
418   if (RegA == RegB)
419     return true;
420   if (!RegA || !RegB)
421     return false;
422   return TRI->regsOverlap(RegA, RegB);
423 }
424 
425 // Returns true if Reg is equal or aliased to at least one register in Set.
426 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg,
427                            const TargetRegisterInfo *TRI) {
428   for (unsigned R : Set)
429     if (TRI->regsOverlap(R, Reg))
430       return true;
431 
432   return false;
433 }
434 
435 /// Return true if it's potentially profitable to commute the two-address
436 /// instruction that's being processed.
437 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA,
438                                                       Register RegB,
439                                                       Register RegC,
440                                                       MachineInstr *MI,
441                                                       unsigned Dist) {
442   if (OptLevel == CodeGenOpt::None)
443     return false;
444 
445   // Determine if it's profitable to commute this two address instruction. In
446   // general, we want no uses between this instruction and the definition of
447   // the two-address register.
448   // e.g.
449   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
450   // %reg1029 = COPY %reg1028
451   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
452   // insert => %reg1030 = COPY %reg1028
453   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
454   // In this case, it might not be possible to coalesce the second COPY
455   // instruction if the first one is coalesced. So it would be profitable to
456   // commute it:
457   // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
458   // %reg1029 = COPY %reg1028
459   // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
460   // insert => %reg1030 = COPY %reg1029
461   // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
462 
463   if (!isPlainlyKilled(MI, RegC, LIS))
464     return false;
465 
466   // Ok, we have something like:
467   // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
468   // let's see if it's worth commuting it.
469 
470   // Look for situations like this:
471   // %reg1024 = MOV r1
472   // %reg1025 = MOV r0
473   // %reg1026 = ADD %reg1024, %reg1025
474   // r0            = MOV %reg1026
475   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
476   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
477   if (ToRegA) {
478     MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
479     MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
480     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
481     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
482 
483     // Compute if any of the following are true:
484     // -RegB is not tied to a register and RegC is compatible with RegA.
485     // -RegB is tied to the wrong physical register, but RegC is.
486     // -RegB is tied to the wrong physical register, and RegC isn't tied.
487     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
488       return true;
489     // Don't compute if any of the following are true:
490     // -RegC is not tied to a register and RegB is compatible with RegA.
491     // -RegC is tied to the wrong physical register, but RegB is.
492     // -RegC is tied to the wrong physical register, and RegB isn't tied.
493     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
494       return false;
495   }
496 
497   // If there is a use of RegC between its last def (could be livein) and this
498   // instruction, then bail.
499   unsigned LastDefC = 0;
500   if (!noUseAfterLastDef(RegC, Dist, LastDefC))
501     return false;
502 
503   // If there is a use of RegB between its last def (could be livein) and this
504   // instruction, then go ahead and make this transformation.
505   unsigned LastDefB = 0;
506   if (!noUseAfterLastDef(RegB, Dist, LastDefB))
507     return true;
508 
509   // Look for situation like this:
510   // %reg101 = MOV %reg100
511   // %reg102 = ...
512   // %reg103 = ADD %reg102, %reg101
513   // ... = %reg103 ...
514   // %reg100 = MOV %reg103
515   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
516   // to eliminate an otherwise unavoidable copy.
517   // FIXME:
518   // We can extend the logic further: If an pair of operands in an insn has
519   // been merged, the insn could be regarded as a virtual copy, and the virtual
520   // copy could also be used to construct a copy chain.
521   // To more generally minimize register copies, ideally the logic of two addr
522   // instruction pass should be integrated with register allocation pass where
523   // interference graph is available.
524   if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge))
525     return true;
526 
527   if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge))
528     return false;
529 
530   // Look for other target specific commute preference.
531   bool Commute;
532   if (TII->hasCommutePreference(*MI, Commute))
533     return Commute;
534 
535   // Since there are no intervening uses for both registers, then commute
536   // if the def of RegC is closer. Its live interval is shorter.
537   return LastDefB && LastDefC && LastDefC > LastDefB;
538 }
539 
540 /// Commute a two-address instruction and update the basic block, distance map,
541 /// and live variables if needed. Return true if it is successful.
542 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
543                                                    unsigned DstIdx,
544                                                    unsigned RegBIdx,
545                                                    unsigned RegCIdx,
546                                                    unsigned Dist) {
547   Register RegC = MI->getOperand(RegCIdx).getReg();
548   LLVM_DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
549   MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
550 
551   if (NewMI == nullptr) {
552     LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
553     return false;
554   }
555 
556   LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
557   assert(NewMI == MI &&
558          "TargetInstrInfo::commuteInstruction() should not return a new "
559          "instruction unless it was requested.");
560 
561   // Update source register map.
562   MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
563   if (FromRegC) {
564     Register RegA = MI->getOperand(DstIdx).getReg();
565     SrcRegMap[RegA] = FromRegC;
566   }
567 
568   return true;
569 }
570 
571 /// Return true if it is profitable to convert the given 2-address instruction
572 /// to a 3-address one.
573 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA,
574                                                         Register RegB) {
575   // Look for situations like this:
576   // %reg1024 = MOV r1
577   // %reg1025 = MOV r0
578   // %reg1026 = ADD %reg1024, %reg1025
579   // r2            = MOV %reg1026
580   // Turn ADD into a 3-address instruction to avoid a copy.
581   MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
582   if (!FromRegB)
583     return false;
584   MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
585   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
586 }
587 
588 /// Convert the specified two-address instruction into a three address one.
589 /// Return true if this transformation was successful.
590 bool TwoAddressInstructionPass::convertInstTo3Addr(
591     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
592     Register RegA, Register RegB, unsigned Dist) {
593   // FIXME: Why does convertToThreeAddress() need an iterator reference?
594   MachineFunction::iterator MFI = MBB->getIterator();
595   MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV);
596   assert(MBB->getIterator() == MFI &&
597          "convertToThreeAddress changed iterator reference");
598   if (!NewMI)
599     return false;
600 
601   LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
602   LLVM_DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
603 
604   if (LIS)
605     LIS->ReplaceMachineInstrInMaps(*mi, *NewMI);
606 
607   // If the old instruction is debug value tracked, an update is required.
608   if (auto OldInstrNum = mi->peekDebugInstrNum()) {
609     // Sanity check.
610     assert(mi->getNumExplicitDefs() == 1);
611     assert(NewMI->getNumExplicitDefs() == 1);
612 
613     // Find the old and new def location.
614     auto OldIt = mi->defs().begin();
615     auto NewIt = NewMI->defs().begin();
616     unsigned OldIdx = mi->getOperandNo(OldIt);
617     unsigned NewIdx = NewMI->getOperandNo(NewIt);
618 
619     // Record that one def has been replaced by the other.
620     unsigned NewInstrNum = NewMI->getDebugInstrNum();
621     MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx),
622                                    std::make_pair(NewInstrNum, NewIdx));
623   }
624 
625   MBB->erase(mi); // Nuke the old inst.
626 
627   DistanceMap.insert(std::make_pair(NewMI, Dist));
628   mi = NewMI;
629   nmi = std::next(mi);
630 
631   // Update source and destination register maps.
632   SrcRegMap.erase(RegA);
633   DstRegMap.erase(RegB);
634   return true;
635 }
636 
637 /// Scan forward recursively for only uses, update maps if the use is a copy or
638 /// a two-address instruction.
639 void TwoAddressInstructionPass::scanUses(Register DstReg) {
640   SmallVector<Register, 4> VirtRegPairs;
641   bool IsDstPhys;
642   bool IsCopy = false;
643   Register NewReg;
644   Register Reg = DstReg;
645   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
646                                                       NewReg, IsDstPhys)) {
647     if (IsCopy && !Processed.insert(UseMI).second)
648       break;
649 
650     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
651     if (DI != DistanceMap.end())
652       // Earlier in the same MBB.Reached via a back edge.
653       break;
654 
655     if (IsDstPhys) {
656       VirtRegPairs.push_back(NewReg);
657       break;
658     }
659     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
660     if (!isNew)
661       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
662     VirtRegPairs.push_back(NewReg);
663     Reg = NewReg;
664   }
665 
666   if (!VirtRegPairs.empty()) {
667     unsigned ToReg = VirtRegPairs.back();
668     VirtRegPairs.pop_back();
669     while (!VirtRegPairs.empty()) {
670       unsigned FromReg = VirtRegPairs.back();
671       VirtRegPairs.pop_back();
672       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
673       if (!isNew)
674         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
675       ToReg = FromReg;
676     }
677     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
678     if (!isNew)
679       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
680   }
681 }
682 
683 /// If the specified instruction is not yet processed, process it if it's a
684 /// copy. For a copy instruction, we find the physical registers the
685 /// source and destination registers might be mapped to. These are kept in
686 /// point-to maps used to determine future optimizations. e.g.
687 /// v1024 = mov r0
688 /// v1025 = mov r1
689 /// v1026 = add v1024, v1025
690 /// r1    = mov r1026
691 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
692 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
693 /// potentially joined with r1 on the output side. It's worthwhile to commute
694 /// 'add' to eliminate a copy.
695 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
696   if (Processed.count(MI))
697     return;
698 
699   bool IsSrcPhys, IsDstPhys;
700   Register SrcReg, DstReg;
701   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
702     return;
703 
704   if (IsDstPhys && !IsSrcPhys) {
705     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
706   } else if (!IsDstPhys && IsSrcPhys) {
707     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
708     if (!isNew)
709       assert(SrcRegMap[DstReg] == SrcReg &&
710              "Can't map to two src physical registers!");
711 
712     scanUses(DstReg);
713   }
714 
715   Processed.insert(MI);
716 }
717 
718 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
719 /// consider moving the instruction below the kill instruction in order to
720 /// eliminate the need for the copy.
721 bool TwoAddressInstructionPass::rescheduleMIBelowKill(
722     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
723     Register Reg) {
724   // Bail immediately if we don't have LV or LIS available. We use them to find
725   // kills efficiently.
726   if (!LV && !LIS)
727     return false;
728 
729   MachineInstr *MI = &*mi;
730   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
731   if (DI == DistanceMap.end())
732     // Must be created from unfolded load. Don't waste time trying this.
733     return false;
734 
735   MachineInstr *KillMI = nullptr;
736   if (LIS) {
737     LiveInterval &LI = LIS->getInterval(Reg);
738     assert(LI.end() != LI.begin() &&
739            "Reg should not have empty live interval.");
740 
741     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
742     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
743     if (I != LI.end() && I->start < MBBEndIdx)
744       return false;
745 
746     --I;
747     KillMI = LIS->getInstructionFromIndex(I->end);
748   } else {
749     KillMI = LV->getVarInfo(Reg).findKill(MBB);
750   }
751   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
752     // Don't mess with copies, they may be coalesced later.
753     return false;
754 
755   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
756       KillMI->isBranch() || KillMI->isTerminator())
757     // Don't move pass calls, etc.
758     return false;
759 
760   Register DstReg;
761   if (isTwoAddrUse(*KillMI, Reg, DstReg))
762     return false;
763 
764   bool SeenStore = true;
765   if (!MI->isSafeToMove(AA, SeenStore))
766     return false;
767 
768   if (TII->getInstrLatency(InstrItins, *MI) > 1)
769     // FIXME: Needs more sophisticated heuristics.
770     return false;
771 
772   SmallVector<Register, 2> Uses;
773   SmallVector<Register, 2> Kills;
774   SmallVector<Register, 2> Defs;
775   for (const MachineOperand &MO : MI->operands()) {
776     if (!MO.isReg())
777       continue;
778     Register MOReg = MO.getReg();
779     if (!MOReg)
780       continue;
781     if (MO.isDef())
782       Defs.push_back(MOReg);
783     else {
784       Uses.push_back(MOReg);
785       if (MOReg != Reg && (MO.isKill() ||
786                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
787         Kills.push_back(MOReg);
788     }
789   }
790 
791   // Move the copies connected to MI down as well.
792   MachineBasicBlock::iterator Begin = MI;
793   MachineBasicBlock::iterator AfterMI = std::next(Begin);
794   MachineBasicBlock::iterator End = AfterMI;
795   while (End != MBB->end()) {
796     End = skipDebugInstructionsForward(End, MBB->end());
797     if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI))
798       Defs.push_back(End->getOperand(0).getReg());
799     else
800       break;
801     ++End;
802   }
803 
804   // Check if the reschedule will not break dependencies.
805   unsigned NumVisited = 0;
806   MachineBasicBlock::iterator KillPos = KillMI;
807   ++KillPos;
808   for (MachineInstr &OtherMI : make_range(End, KillPos)) {
809     // Debug or pseudo instructions cannot be counted against the limit.
810     if (OtherMI.isDebugOrPseudoInstr())
811       continue;
812     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
813       return false;
814     ++NumVisited;
815     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
816         OtherMI.isBranch() || OtherMI.isTerminator())
817       // Don't move pass calls, etc.
818       return false;
819     for (const MachineOperand &MO : OtherMI.operands()) {
820       if (!MO.isReg())
821         continue;
822       Register MOReg = MO.getReg();
823       if (!MOReg)
824         continue;
825       if (MO.isDef()) {
826         if (regOverlapsSet(Uses, MOReg, TRI))
827           // Physical register use would be clobbered.
828           return false;
829         if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI))
830           // May clobber a physical register def.
831           // FIXME: This may be too conservative. It's ok if the instruction
832           // is sunken completely below the use.
833           return false;
834       } else {
835         if (regOverlapsSet(Defs, MOReg, TRI))
836           return false;
837         bool isKill =
838             MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS));
839         if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) ||
840                              regOverlapsSet(Kills, MOReg, TRI)))
841           // Don't want to extend other live ranges and update kills.
842           return false;
843         if (MOReg == Reg && !isKill)
844           // We can't schedule across a use of the register in question.
845           return false;
846         // Ensure that if this is register in question, its the kill we expect.
847         assert((MOReg != Reg || &OtherMI == KillMI) &&
848                "Found multiple kills of a register in a basic block");
849       }
850     }
851   }
852 
853   // Move debug info as well.
854   while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
855     --Begin;
856 
857   nmi = End;
858   MachineBasicBlock::iterator InsertPos = KillPos;
859   if (LIS) {
860     // We have to move the copies first so that the MBB is still well-formed
861     // when calling handleMove().
862     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
863       auto CopyMI = MBBI++;
864       MBB->splice(InsertPos, MBB, CopyMI);
865       LIS->handleMove(*CopyMI);
866       InsertPos = CopyMI;
867     }
868     End = std::next(MachineBasicBlock::iterator(MI));
869   }
870 
871   // Copies following MI may have been moved as well.
872   MBB->splice(InsertPos, MBB, Begin, End);
873   DistanceMap.erase(DI);
874 
875   // Update live variables
876   if (LIS) {
877     LIS->handleMove(*MI);
878   } else {
879     LV->removeVirtualRegisterKilled(Reg, *KillMI);
880     LV->addVirtualRegisterKilled(Reg, *MI);
881   }
882 
883   LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
884   return true;
885 }
886 
887 /// Return true if the re-scheduling will put the given instruction too close
888 /// to the defs of its register dependencies.
889 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist,
890                                               MachineInstr *MI) {
891   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
892     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
893       continue;
894     if (&DefMI == MI)
895       return true; // MI is defining something KillMI uses
896     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
897     if (DDI == DistanceMap.end())
898       return true;  // Below MI
899     unsigned DefDist = DDI->second;
900     assert(Dist > DefDist && "Visited def already?");
901     if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
902       return true;
903   }
904   return false;
905 }
906 
907 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
908 /// consider moving the kill instruction above the current two-address
909 /// instruction in order to eliminate the need for the copy.
910 bool TwoAddressInstructionPass::rescheduleKillAboveMI(
911     MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
912     Register Reg) {
913   // Bail immediately if we don't have LV or LIS available. We use them to find
914   // kills efficiently.
915   if (!LV && !LIS)
916     return false;
917 
918   MachineInstr *MI = &*mi;
919   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
920   if (DI == DistanceMap.end())
921     // Must be created from unfolded load. Don't waste time trying this.
922     return false;
923 
924   MachineInstr *KillMI = nullptr;
925   if (LIS) {
926     LiveInterval &LI = LIS->getInterval(Reg);
927     assert(LI.end() != LI.begin() &&
928            "Reg should not have empty live interval.");
929 
930     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
931     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
932     if (I != LI.end() && I->start < MBBEndIdx)
933       return false;
934 
935     --I;
936     KillMI = LIS->getInstructionFromIndex(I->end);
937   } else {
938     KillMI = LV->getVarInfo(Reg).findKill(MBB);
939   }
940   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
941     // Don't mess with copies, they may be coalesced later.
942     return false;
943 
944   Register DstReg;
945   if (isTwoAddrUse(*KillMI, Reg, DstReg))
946     return false;
947 
948   bool SeenStore = true;
949   if (!KillMI->isSafeToMove(AA, SeenStore))
950     return false;
951 
952   SmallVector<Register, 2> Uses;
953   SmallVector<Register, 2> Kills;
954   SmallVector<Register, 2> Defs;
955   SmallVector<Register, 2> LiveDefs;
956   for (const MachineOperand &MO : KillMI->operands()) {
957     if (!MO.isReg())
958       continue;
959     Register MOReg = MO.getReg();
960     if (MO.isUse()) {
961       if (!MOReg)
962         continue;
963       if (isDefTooClose(MOReg, DI->second, MI))
964         return false;
965       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
966       if (MOReg == Reg && !isKill)
967         return false;
968       Uses.push_back(MOReg);
969       if (isKill && MOReg != Reg)
970         Kills.push_back(MOReg);
971     } else if (MOReg.isPhysical()) {
972       Defs.push_back(MOReg);
973       if (!MO.isDead())
974         LiveDefs.push_back(MOReg);
975     }
976   }
977 
978   // Check if the reschedule will not break depedencies.
979   unsigned NumVisited = 0;
980   for (MachineInstr &OtherMI :
981        make_range(mi, MachineBasicBlock::iterator(KillMI))) {
982     // Debug or pseudo instructions cannot be counted against the limit.
983     if (OtherMI.isDebugOrPseudoInstr())
984       continue;
985     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
986       return false;
987     ++NumVisited;
988     if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
989         OtherMI.isBranch() || OtherMI.isTerminator())
990       // Don't move pass calls, etc.
991       return false;
992     SmallVector<Register, 2> OtherDefs;
993     for (const MachineOperand &MO : OtherMI.operands()) {
994       if (!MO.isReg())
995         continue;
996       Register MOReg = MO.getReg();
997       if (!MOReg)
998         continue;
999       if (MO.isUse()) {
1000         if (regOverlapsSet(Defs, MOReg, TRI))
1001           // Moving KillMI can clobber the physical register if the def has
1002           // not been seen.
1003           return false;
1004         if (regOverlapsSet(Kills, MOReg, TRI))
1005           // Don't want to extend other live ranges and update kills.
1006           return false;
1007         if (&OtherMI != MI && MOReg == Reg &&
1008             !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))))
1009           // We can't schedule across a use of the register in question.
1010           return false;
1011       } else {
1012         OtherDefs.push_back(MOReg);
1013       }
1014     }
1015 
1016     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1017       Register MOReg = OtherDefs[i];
1018       if (regOverlapsSet(Uses, MOReg, TRI))
1019         return false;
1020       if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI))
1021         return false;
1022       // Physical register def is seen.
1023       llvm::erase_value(Defs, MOReg);
1024     }
1025   }
1026 
1027   // Move the old kill above MI, don't forget to move debug info as well.
1028   MachineBasicBlock::iterator InsertPos = mi;
1029   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1030     --InsertPos;
1031   MachineBasicBlock::iterator From = KillMI;
1032   MachineBasicBlock::iterator To = std::next(From);
1033   while (std::prev(From)->isDebugInstr())
1034     --From;
1035   MBB->splice(InsertPos, MBB, From, To);
1036 
1037   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1038   DistanceMap.erase(DI);
1039 
1040   // Update live variables
1041   if (LIS) {
1042     LIS->handleMove(*KillMI);
1043   } else {
1044     LV->removeVirtualRegisterKilled(Reg, *KillMI);
1045     LV->addVirtualRegisterKilled(Reg, *MI);
1046   }
1047 
1048   LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1049   return true;
1050 }
1051 
1052 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1053 /// given machine instruction to improve opportunities for coalescing and
1054 /// elimination of a register to register copy.
1055 ///
1056 /// 'DstOpIdx' specifies the index of MI def operand.
1057 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1058 /// operand is killed by the given instruction.
1059 /// The 'Dist' arguments provides the distance of MI from the start of the
1060 /// current basic block and it is used to determine if it is profitable
1061 /// to commute operands in the instruction.
1062 ///
1063 /// Returns true if the transformation happened. Otherwise, returns false.
1064 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1065                                                       unsigned DstOpIdx,
1066                                                       unsigned BaseOpIdx,
1067                                                       bool BaseOpKilled,
1068                                                       unsigned Dist) {
1069   if (!MI->isCommutable())
1070     return false;
1071 
1072   bool MadeChange = false;
1073   Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1074   Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1075   unsigned OpsNum = MI->getDesc().getNumOperands();
1076   unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1077   for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1078     // The call of findCommutedOpIndices below only checks if BaseOpIdx
1079     // and OtherOpIdx are commutable, it does not really search for
1080     // other commutable operands and does not change the values of passed
1081     // variables.
1082     if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1083         !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1084       continue;
1085 
1086     Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1087     bool AggressiveCommute = false;
1088 
1089     // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1090     // operands. This makes the live ranges of DstOp and OtherOp joinable.
1091     bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false);
1092     bool DoCommute = !BaseOpKilled && OtherOpKilled;
1093 
1094     if (!DoCommute &&
1095         isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1096       DoCommute = true;
1097       AggressiveCommute = true;
1098     }
1099 
1100     // If it's profitable to commute, try to do so.
1101     if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1102                                         Dist)) {
1103       MadeChange = true;
1104       ++NumCommuted;
1105       if (AggressiveCommute)
1106         ++NumAggrCommuted;
1107 
1108       // There might be more than two commutable operands, update BaseOp and
1109       // continue scanning.
1110       // FIXME: This assumes that the new instruction's operands are in the
1111       // same positions and were simply swapped.
1112       BaseOpReg = OtherOpReg;
1113       BaseOpKilled = OtherOpKilled;
1114       // Resamples OpsNum in case the number of operands was reduced. This
1115       // happens with X86.
1116       OpsNum = MI->getDesc().getNumOperands();
1117     }
1118   }
1119   return MadeChange;
1120 }
1121 
1122 /// For the case where an instruction has a single pair of tied register
1123 /// operands, attempt some transformations that may either eliminate the tied
1124 /// operands or improve the opportunities for coalescing away the register copy.
1125 /// Returns true if no copy needs to be inserted to untie mi's operands
1126 /// (either because they were untied, or because mi was rescheduled, and will
1127 /// be visited again later). If the shouldOnlyCommute flag is true, only
1128 /// instruction commutation is attempted.
1129 bool TwoAddressInstructionPass::
1130 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1131                         MachineBasicBlock::iterator &nmi,
1132                         unsigned SrcIdx, unsigned DstIdx,
1133                         unsigned Dist, bool shouldOnlyCommute) {
1134   if (OptLevel == CodeGenOpt::None)
1135     return false;
1136 
1137   MachineInstr &MI = *mi;
1138   Register regA = MI.getOperand(DstIdx).getReg();
1139   Register regB = MI.getOperand(SrcIdx).getReg();
1140 
1141   assert(regB.isVirtual() && "cannot make instruction into two-address form");
1142   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1143 
1144   if (regA.isVirtual())
1145     scanUses(regA);
1146 
1147   bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1148 
1149   // If the instruction is convertible to 3 Addr, instead
1150   // of returning try 3 Addr transformation aggressively and
1151   // use this variable to check later. Because it might be better.
1152   // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1153   // instead of the following code.
1154   //   addl     %esi, %edi
1155   //   movl     %edi, %eax
1156   //   ret
1157   if (Commuted && !MI.isConvertibleTo3Addr())
1158     return false;
1159 
1160   if (shouldOnlyCommute)
1161     return false;
1162 
1163   // If there is one more use of regB later in the same MBB, consider
1164   // re-schedule this MI below it.
1165   if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1166     ++NumReSchedDowns;
1167     return true;
1168   }
1169 
1170   // If we commuted, regB may have changed so we should re-sample it to avoid
1171   // confusing the three address conversion below.
1172   if (Commuted) {
1173     regB = MI.getOperand(SrcIdx).getReg();
1174     regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1175   }
1176 
1177   if (MI.isConvertibleTo3Addr()) {
1178     // This instruction is potentially convertible to a true
1179     // three-address instruction.  Check if it is profitable.
1180     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1181       // Try to convert it.
1182       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1183         ++NumConvertedTo3Addr;
1184         return true; // Done with this instruction.
1185       }
1186     }
1187   }
1188 
1189   // Return if it is commuted but 3 addr conversion is failed.
1190   if (Commuted)
1191     return false;
1192 
1193   // If there is one more use of regB later in the same MBB, consider
1194   // re-schedule it before this MI if it's legal.
1195   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1196     ++NumReSchedUps;
1197     return true;
1198   }
1199 
1200   // If this is an instruction with a load folded into it, try unfolding
1201   // the load, e.g. avoid this:
1202   //   movq %rdx, %rcx
1203   //   addq (%rax), %rcx
1204   // in favor of this:
1205   //   movq (%rax), %rcx
1206   //   addq %rdx, %rcx
1207   // because it's preferable to schedule a load than a register copy.
1208   if (MI.mayLoad() && !regBKilled) {
1209     // Determine if a load can be unfolded.
1210     unsigned LoadRegIndex;
1211     unsigned NewOpc =
1212       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1213                                       /*UnfoldLoad=*/true,
1214                                       /*UnfoldStore=*/false,
1215                                       &LoadRegIndex);
1216     if (NewOpc != 0) {
1217       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1218       if (UnfoldMCID.getNumDefs() == 1) {
1219         // Unfold the load.
1220         LLVM_DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1221         const TargetRegisterClass *RC =
1222           TRI->getAllocatableClass(
1223             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1224         Register Reg = MRI->createVirtualRegister(RC);
1225         SmallVector<MachineInstr *, 2> NewMIs;
1226         if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1227                                       /*UnfoldLoad=*/true,
1228                                       /*UnfoldStore=*/false, NewMIs)) {
1229           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1230           return false;
1231         }
1232         assert(NewMIs.size() == 2 &&
1233                "Unfolded a load into multiple instructions!");
1234         // The load was previously folded, so this is the only use.
1235         NewMIs[1]->addRegisterKilled(Reg, TRI);
1236 
1237         // Tentatively insert the instructions into the block so that they
1238         // look "normal" to the transformation logic.
1239         MBB->insert(mi, NewMIs[0]);
1240         MBB->insert(mi, NewMIs[1]);
1241 
1242         LLVM_DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1243                           << "2addr:    NEW INST: " << *NewMIs[1]);
1244 
1245         // Transform the instruction, now that it no longer has a load.
1246         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1247         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1248         MachineBasicBlock::iterator NewMI = NewMIs[1];
1249         bool TransformResult =
1250           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1251         (void)TransformResult;
1252         assert(!TransformResult &&
1253                "tryInstructionTransform() should return false.");
1254         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1255           // Success, or at least we made an improvement. Keep the unfolded
1256           // instructions and discard the original.
1257           if (LV) {
1258             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1259               MachineOperand &MO = MI.getOperand(i);
1260               if (MO.isReg() && MO.getReg().isVirtual()) {
1261                 if (MO.isUse()) {
1262                   if (MO.isKill()) {
1263                     if (NewMIs[0]->killsRegister(MO.getReg()))
1264                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1265                     else {
1266                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1267                              "Kill missing after load unfold!");
1268                       LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1269                     }
1270                   }
1271                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1272                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1273                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1274                   else {
1275                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1276                            "Dead flag missing after load unfold!");
1277                     LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1278                   }
1279                 }
1280               }
1281             }
1282             LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1283           }
1284 
1285           SmallVector<Register, 4> OrigRegs;
1286           if (LIS) {
1287             for (const MachineOperand &MO : MI.operands()) {
1288               if (MO.isReg())
1289                 OrigRegs.push_back(MO.getReg());
1290             }
1291           }
1292 
1293           MI.eraseFromParent();
1294 
1295           // Update LiveIntervals.
1296           if (LIS) {
1297             MachineBasicBlock::iterator Begin(NewMIs[0]);
1298             MachineBasicBlock::iterator End(NewMIs[1]);
1299             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1300           }
1301 
1302           mi = NewMIs[1];
1303         } else {
1304           // Transforming didn't eliminate the tie and didn't lead to an
1305           // improvement. Clean up the unfolded instructions and keep the
1306           // original.
1307           LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1308           NewMIs[0]->eraseFromParent();
1309           NewMIs[1]->eraseFromParent();
1310         }
1311       }
1312     }
1313   }
1314 
1315   return false;
1316 }
1317 
1318 // Collect tied operands of MI that need to be handled.
1319 // Rewrite trivial cases immediately.
1320 // Return true if any tied operands where found, including the trivial ones.
1321 bool TwoAddressInstructionPass::
1322 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1323   const MCInstrDesc &MCID = MI->getDesc();
1324   bool AnyOps = false;
1325   unsigned NumOps = MI->getNumOperands();
1326 
1327   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1328     unsigned DstIdx = 0;
1329     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1330       continue;
1331     AnyOps = true;
1332     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1333     MachineOperand &DstMO = MI->getOperand(DstIdx);
1334     Register SrcReg = SrcMO.getReg();
1335     Register DstReg = DstMO.getReg();
1336     // Tied constraint already satisfied?
1337     if (SrcReg == DstReg)
1338       continue;
1339 
1340     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1341 
1342     // Deal with undef uses immediately - simply rewrite the src operand.
1343     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1344       // Constrain the DstReg register class if required.
1345       if (DstReg.isVirtual())
1346         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1347                                                              TRI, *MF))
1348           MRI->constrainRegClass(DstReg, RC);
1349       SrcMO.setReg(DstReg);
1350       SrcMO.setSubReg(0);
1351       LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1352       continue;
1353     }
1354     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1355   }
1356   return AnyOps;
1357 }
1358 
1359 // Process a list of tied MI operands that all use the same source register.
1360 // The tied pairs are of the form (SrcIdx, DstIdx).
1361 void
1362 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1363                                             TiedPairList &TiedPairs,
1364                                             unsigned &Dist) {
1365   bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) {
1366                           return MI->getOperand(TP.second).isEarlyClobber();
1367                         }) != TiedPairs.end();
1368 
1369   bool RemovedKillFlag = false;
1370   bool AllUsesCopied = true;
1371   unsigned LastCopiedReg = 0;
1372   SlotIndex LastCopyIdx;
1373   Register RegB = 0;
1374   unsigned SubRegB = 0;
1375   for (auto &TP : TiedPairs) {
1376     unsigned SrcIdx = TP.first;
1377     unsigned DstIdx = TP.second;
1378 
1379     const MachineOperand &DstMO = MI->getOperand(DstIdx);
1380     Register RegA = DstMO.getReg();
1381 
1382     // Grab RegB from the instruction because it may have changed if the
1383     // instruction was commuted.
1384     RegB = MI->getOperand(SrcIdx).getReg();
1385     SubRegB = MI->getOperand(SrcIdx).getSubReg();
1386 
1387     if (RegA == RegB) {
1388       // The register is tied to multiple destinations (or else we would
1389       // not have continued this far), but this use of the register
1390       // already matches the tied destination.  Leave it.
1391       AllUsesCopied = false;
1392       continue;
1393     }
1394     LastCopiedReg = RegA;
1395 
1396     assert(RegB.isVirtual() && "cannot make instruction into two-address form");
1397 
1398 #ifndef NDEBUG
1399     // First, verify that we don't have a use of "a" in the instruction
1400     // (a = b + a for example) because our transformation will not
1401     // work. This should never occur because we are in SSA form.
1402     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1403       assert(i == DstIdx ||
1404              !MI->getOperand(i).isReg() ||
1405              MI->getOperand(i).getReg() != RegA);
1406 #endif
1407 
1408     // Emit a copy.
1409     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1410                                       TII->get(TargetOpcode::COPY), RegA);
1411     // If this operand is folding a truncation, the truncation now moves to the
1412     // copy so that the register classes remain valid for the operands.
1413     MIB.addReg(RegB, 0, SubRegB);
1414     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1415     if (SubRegB) {
1416       if (RegA.isVirtual()) {
1417         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1418                                              SubRegB) &&
1419                "tied subregister must be a truncation");
1420         // The superreg class will not be used to constrain the subreg class.
1421         RC = nullptr;
1422       } else {
1423         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1424                && "tied subregister must be a truncation");
1425       }
1426     }
1427 
1428     // Update DistanceMap.
1429     MachineBasicBlock::iterator PrevMI = MI;
1430     --PrevMI;
1431     DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1432     DistanceMap[MI] = ++Dist;
1433 
1434     if (LIS) {
1435       LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1436 
1437       if (RegA.isVirtual()) {
1438         LiveInterval &LI = LIS->getInterval(RegA);
1439         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1440         SlotIndex endIdx =
1441             LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1442         LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1443       }
1444     }
1445 
1446     LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1447 
1448     MachineOperand &MO = MI->getOperand(SrcIdx);
1449     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1450            "inconsistent operand info for 2-reg pass");
1451     if (MO.isKill()) {
1452       MO.setIsKill(false);
1453       RemovedKillFlag = true;
1454     }
1455 
1456     // Make sure regA is a legal regclass for the SrcIdx operand.
1457     if (RegA.isVirtual() && RegB.isVirtual())
1458       MRI->constrainRegClass(RegA, RC);
1459     MO.setReg(RegA);
1460     // The getMatchingSuper asserts guarantee that the register class projected
1461     // by SubRegB is compatible with RegA with no subregister. So regardless of
1462     // whether the dest oper writes a subreg, the source oper should not.
1463     MO.setSubReg(0);
1464 
1465     // Propagate SrcRegMap.
1466     SrcRegMap[RegA] = RegB;
1467   }
1468 
1469   if (AllUsesCopied) {
1470     bool ReplacedAllUntiedUses = true;
1471     if (!IsEarlyClobber) {
1472       // Replace other (un-tied) uses of regB with LastCopiedReg.
1473       for (MachineOperand &MO : MI->operands()) {
1474         if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1475           if (MO.getSubReg() == SubRegB) {
1476             if (MO.isKill()) {
1477               MO.setIsKill(false);
1478               RemovedKillFlag = true;
1479             }
1480             MO.setReg(LastCopiedReg);
1481             MO.setSubReg(0);
1482           } else {
1483             ReplacedAllUntiedUses = false;
1484           }
1485         }
1486       }
1487     }
1488 
1489     // Update live variables for regB.
1490     if (RemovedKillFlag && ReplacedAllUntiedUses &&
1491         LV && LV->getVarInfo(RegB).removeKill(*MI)) {
1492       MachineBasicBlock::iterator PrevMI = MI;
1493       --PrevMI;
1494       LV->addVirtualRegisterKilled(RegB, *PrevMI);
1495     }
1496 
1497     // Update LiveIntervals.
1498     if (LIS) {
1499       LiveInterval &LI = LIS->getInterval(RegB);
1500       SlotIndex MIIdx = LIS->getInstructionIndex(*MI);
1501       LiveInterval::const_iterator I = LI.find(MIIdx);
1502       assert(I != LI.end() && "RegB must be live-in to use.");
1503 
1504       SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1505       if (I->end == UseIdx)
1506         LI.removeSegment(LastCopyIdx, UseIdx);
1507     }
1508   } else if (RemovedKillFlag) {
1509     // Some tied uses of regB matched their destination registers, so
1510     // regB is still used in this instruction, but a kill flag was
1511     // removed from a different tied use of regB, so now we need to add
1512     // a kill flag to one of the remaining uses of regB.
1513     for (MachineOperand &MO : MI->operands()) {
1514       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1515         MO.setIsKill(true);
1516         break;
1517       }
1518     }
1519   }
1520 }
1521 
1522 /// Reduce two-address instructions to two operands.
1523 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1524   MF = &Func;
1525   const TargetMachine &TM = MF->getTarget();
1526   MRI = &MF->getRegInfo();
1527   TII = MF->getSubtarget().getInstrInfo();
1528   TRI = MF->getSubtarget().getRegisterInfo();
1529   InstrItins = MF->getSubtarget().getInstrItineraryData();
1530   LV = getAnalysisIfAvailable<LiveVariables>();
1531   LIS = getAnalysisIfAvailable<LiveIntervals>();
1532   if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1533     AA = &AAPass->getAAResults();
1534   else
1535     AA = nullptr;
1536   OptLevel = TM.getOptLevel();
1537   // Disable optimizations if requested. We cannot skip the whole pass as some
1538   // fixups are necessary for correctness.
1539   if (skipFunction(Func.getFunction()))
1540     OptLevel = CodeGenOpt::None;
1541 
1542   bool MadeChange = false;
1543 
1544   LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1545   LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1546 
1547   // This pass takes the function out of SSA form.
1548   MRI->leaveSSA();
1549 
1550   // This pass will rewrite the tied-def to meet the RegConstraint.
1551   MF->getProperties()
1552       .set(MachineFunctionProperties::Property::TiedOpsRewritten);
1553 
1554   TiedOperandMap TiedOperands;
1555   for (MachineBasicBlock &MBBI : *MF) {
1556     MBB = &MBBI;
1557     unsigned Dist = 0;
1558     DistanceMap.clear();
1559     SrcRegMap.clear();
1560     DstRegMap.clear();
1561     Processed.clear();
1562     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1563          mi != me; ) {
1564       MachineBasicBlock::iterator nmi = std::next(mi);
1565       // Skip debug instructions.
1566       if (mi->isDebugInstr()) {
1567         mi = nmi;
1568         continue;
1569       }
1570 
1571       // Expand REG_SEQUENCE instructions. This will position mi at the first
1572       // expanded instruction.
1573       if (mi->isRegSequence())
1574         eliminateRegSequence(mi);
1575 
1576       DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1577 
1578       processCopy(&*mi);
1579 
1580       // First scan through all the tied register uses in this instruction
1581       // and record a list of pairs of tied operands for each register.
1582       if (!collectTiedOperands(&*mi, TiedOperands)) {
1583         mi = nmi;
1584         continue;
1585       }
1586 
1587       ++NumTwoAddressInstrs;
1588       MadeChange = true;
1589       LLVM_DEBUG(dbgs() << '\t' << *mi);
1590 
1591       // If the instruction has a single pair of tied operands, try some
1592       // transformations that may either eliminate the tied operands or
1593       // improve the opportunities for coalescing away the register copy.
1594       if (TiedOperands.size() == 1) {
1595         SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1596           = TiedOperands.begin()->second;
1597         if (TiedPairs.size() == 1) {
1598           unsigned SrcIdx = TiedPairs[0].first;
1599           unsigned DstIdx = TiedPairs[0].second;
1600           Register SrcReg = mi->getOperand(SrcIdx).getReg();
1601           Register DstReg = mi->getOperand(DstIdx).getReg();
1602           if (SrcReg != DstReg &&
1603               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1604             // The tied operands have been eliminated or shifted further down
1605             // the block to ease elimination. Continue processing with 'nmi'.
1606             TiedOperands.clear();
1607             mi = nmi;
1608             continue;
1609           }
1610         }
1611       }
1612 
1613       // Now iterate over the information collected above.
1614       for (auto &TO : TiedOperands) {
1615         processTiedPairs(&*mi, TO.second, Dist);
1616         LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1617       }
1618 
1619       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1620       if (mi->isInsertSubreg()) {
1621         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1622         // To   %reg:subidx = COPY %subreg
1623         unsigned SubIdx = mi->getOperand(3).getImm();
1624         mi->RemoveOperand(3);
1625         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1626         mi->getOperand(0).setSubReg(SubIdx);
1627         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1628         mi->RemoveOperand(1);
1629         mi->setDesc(TII->get(TargetOpcode::COPY));
1630         LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1631       }
1632 
1633       // Clear TiedOperands here instead of at the top of the loop
1634       // since most instructions do not have tied operands.
1635       TiedOperands.clear();
1636       mi = nmi;
1637     }
1638   }
1639 
1640   if (LIS)
1641     MF->verify(this, "After two-address instruction pass");
1642 
1643   return MadeChange;
1644 }
1645 
1646 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1647 ///
1648 /// The instruction is turned into a sequence of sub-register copies:
1649 ///
1650 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1651 ///
1652 /// Becomes:
1653 ///
1654 ///   undef %dst:ssub0 = COPY %v1
1655 ///   %dst:ssub1 = COPY %v2
1656 void TwoAddressInstructionPass::
1657 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1658   MachineInstr &MI = *MBBI;
1659   Register DstReg = MI.getOperand(0).getReg();
1660   if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() ||
1661       !(MI.getNumOperands() & 1)) {
1662     LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI);
1663     llvm_unreachable(nullptr);
1664   }
1665 
1666   SmallVector<Register, 4> OrigRegs;
1667   if (LIS) {
1668     OrigRegs.push_back(MI.getOperand(0).getReg());
1669     for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1670       OrigRegs.push_back(MI.getOperand(i).getReg());
1671   }
1672 
1673   bool DefEmitted = false;
1674   for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1675     MachineOperand &UseMO = MI.getOperand(i);
1676     Register SrcReg = UseMO.getReg();
1677     unsigned SubIdx = MI.getOperand(i+1).getImm();
1678     // Nothing needs to be inserted for undef operands.
1679     if (UseMO.isUndef())
1680       continue;
1681 
1682     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1683     // might insert a COPY that uses SrcReg after is was killed.
1684     bool isKill = UseMO.isKill();
1685     if (isKill)
1686       for (unsigned j = i + 2; j < e; j += 2)
1687         if (MI.getOperand(j).getReg() == SrcReg) {
1688           MI.getOperand(j).setIsKill();
1689           UseMO.setIsKill(false);
1690           isKill = false;
1691           break;
1692         }
1693 
1694     // Insert the sub-register copy.
1695     MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1696                                    TII->get(TargetOpcode::COPY))
1697                                .addReg(DstReg, RegState::Define, SubIdx)
1698                                .add(UseMO);
1699 
1700     // The first def needs an undef flag because there is no live register
1701     // before it.
1702     if (!DefEmitted) {
1703       CopyMI->getOperand(0).setIsUndef(true);
1704       // Return an iterator pointing to the first inserted instr.
1705       MBBI = CopyMI;
1706     }
1707     DefEmitted = true;
1708 
1709     // Update LiveVariables' kill info.
1710     if (LV && isKill && !SrcReg.isPhysical())
1711       LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1712 
1713     LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1714   }
1715 
1716   MachineBasicBlock::iterator EndMBBI =
1717       std::next(MachineBasicBlock::iterator(MI));
1718 
1719   if (!DefEmitted) {
1720     LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1721     MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1722     for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1723       MI.RemoveOperand(j);
1724   } else {
1725     LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1726     MI.eraseFromParent();
1727   }
1728 
1729   // Udpate LiveIntervals.
1730   if (LIS)
1731     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1732 }
1733