1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<Register, Register> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<Register, Register> DstRegMap; 120 121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 126 MachineInstr *MI, unsigned Dist); 127 128 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 129 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 130 131 bool isProfitableToConv3Addr(Register RegA, Register RegB); 132 133 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, Register RegA, 135 Register RegB, unsigned Dist); 136 137 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 138 139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 140 MachineBasicBlock::iterator &nmi, Register Reg); 141 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 144 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 145 MachineBasicBlock::iterator &nmi, 146 unsigned SrcIdx, unsigned DstIdx, 147 unsigned Dist, bool shouldOnlyCommute); 148 149 bool tryInstructionCommute(MachineInstr *MI, 150 unsigned DstOpIdx, 151 unsigned BaseOpIdx, 152 bool BaseOpKilled, 153 unsigned Dist); 154 void scanUses(Register DstReg); 155 156 void processCopy(MachineInstr *MI); 157 158 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 159 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 160 161 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 162 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 163 void eliminateRegSequence(MachineBasicBlock::iterator&); 164 165 public: 166 static char ID; // Pass identification, replacement for typeid 167 168 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 169 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 170 } 171 172 void getAnalysisUsage(AnalysisUsage &AU) const override { 173 AU.setPreservesCFG(); 174 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 175 AU.addUsedIfAvailable<LiveVariables>(); 176 AU.addPreserved<LiveVariables>(); 177 AU.addPreserved<SlotIndexes>(); 178 AU.addPreserved<LiveIntervals>(); 179 AU.addPreservedID(MachineLoopInfoID); 180 AU.addPreservedID(MachineDominatorsID); 181 MachineFunctionPass::getAnalysisUsage(AU); 182 } 183 184 /// Pass entry point. 185 bool runOnMachineFunction(MachineFunction&) override; 186 }; 187 188 } // end anonymous namespace 189 190 char TwoAddressInstructionPass::ID = 0; 191 192 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 193 194 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 195 "Two-Address instruction pass", false, false) 196 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 197 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 198 "Two-Address instruction pass", false, false) 199 200 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 201 202 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 203 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 204 const MachineRegisterInfo *MRI) { 205 MachineInstr *Ret = nullptr; 206 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 207 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 208 continue; 209 if (!Ret) 210 Ret = &DefMI; 211 else if (Ret != &DefMI) 212 return nullptr; 213 } 214 return Ret; 215 } 216 217 /// Check if there is a reversed copy chain from FromReg to ToReg: 218 /// %Tmp1 = copy %Tmp2; 219 /// %FromReg = copy %Tmp1; 220 /// %ToReg = add %FromReg ... 221 /// %Tmp2 = copy %ToReg; 222 /// MaxLen specifies the maximum length of the copy chain the func 223 /// can walk through. 224 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 225 int Maxlen) { 226 Register TmpReg = FromReg; 227 for (int i = 0; i < Maxlen; i++) { 228 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 229 if (!Def || !Def->isCopy()) 230 return false; 231 232 TmpReg = Def->getOperand(1).getReg(); 233 234 if (TmpReg == ToReg) 235 return true; 236 } 237 return false; 238 } 239 240 /// Return true if there are no intervening uses between the last instruction 241 /// in the MBB that defines the specified register and the two-address 242 /// instruction which is being processed. It also returns the last def location 243 /// by reference. 244 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 245 unsigned &LastDef) { 246 LastDef = 0; 247 unsigned LastUse = Dist; 248 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 249 MachineInstr *MI = MO.getParent(); 250 if (MI->getParent() != MBB || MI->isDebugValue()) 251 continue; 252 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 253 if (DI == DistanceMap.end()) 254 continue; 255 if (MO.isUse() && DI->second < LastUse) 256 LastUse = DI->second; 257 if (MO.isDef() && DI->second > LastDef) 258 LastDef = DI->second; 259 } 260 261 return !(LastUse > LastDef && LastUse < Dist); 262 } 263 264 /// Return true if the specified MI is a copy instruction or an extract_subreg 265 /// instruction. It also returns the source and destination registers and 266 /// whether they are physical registers by reference. 267 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 268 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 269 bool &IsDstPhys) { 270 SrcReg = 0; 271 DstReg = 0; 272 if (MI.isCopy()) { 273 DstReg = MI.getOperand(0).getReg(); 274 SrcReg = MI.getOperand(1).getReg(); 275 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 276 DstReg = MI.getOperand(0).getReg(); 277 SrcReg = MI.getOperand(2).getReg(); 278 } else { 279 return false; 280 } 281 282 IsSrcPhys = SrcReg.isPhysical(); 283 IsDstPhys = DstReg.isPhysical(); 284 return true; 285 } 286 287 /// Test if the given register value, which is used by the 288 /// given instruction, is killed by the given instruction. 289 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 290 LiveIntervals *LIS) { 291 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 292 // FIXME: Sometimes tryInstructionTransform() will add instructions and 293 // test whether they can be folded before keeping them. In this case it 294 // sets a kill before recursively calling tryInstructionTransform() again. 295 // If there is no interval available, we assume that this instruction is 296 // one of those. A kill flag is manually inserted on the operand so the 297 // check below will handle it. 298 LiveInterval &LI = LIS->getInterval(Reg); 299 // This is to match the kill flag version where undefs don't have kill 300 // flags. 301 if (!LI.hasAtLeastOneValue()) 302 return false; 303 304 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 305 LiveInterval::const_iterator I = LI.find(useIdx); 306 assert(I != LI.end() && "Reg must be live-in to use."); 307 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 308 } 309 310 return MI->killsRegister(Reg); 311 } 312 313 /// Test if the given register value, which is used by the given 314 /// instruction, is killed by the given instruction. This looks through 315 /// coalescable copies to see if the original value is potentially not killed. 316 /// 317 /// For example, in this code: 318 /// 319 /// %reg1034 = copy %reg1024 320 /// %reg1035 = copy killed %reg1025 321 /// %reg1036 = add killed %reg1034, killed %reg1035 322 /// 323 /// %reg1034 is not considered to be killed, since it is copied from a 324 /// register which is not killed. Treating it as not killed lets the 325 /// normal heuristics commute the (two-address) add, which lets 326 /// coalescing eliminate the extra copy. 327 /// 328 /// If allowFalsePositives is true then likely kills are treated as kills even 329 /// if it can't be proven that they are kills. 330 static bool isKilled(MachineInstr &MI, Register Reg, 331 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 332 LiveIntervals *LIS, bool allowFalsePositives) { 333 MachineInstr *DefMI = &MI; 334 while (true) { 335 // All uses of physical registers are likely to be kills. 336 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 337 return true; 338 if (!isPlainlyKilled(DefMI, Reg, LIS)) 339 return false; 340 if (Reg.isPhysical()) 341 return true; 342 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 343 // If there are multiple defs, we can't do a simple analysis, so just 344 // go with what the kill flag says. 345 if (std::next(Begin) != MRI->def_end()) 346 return true; 347 DefMI = Begin->getParent(); 348 bool IsSrcPhys, IsDstPhys; 349 Register SrcReg, DstReg; 350 // If the def is something other than a copy, then it isn't going to 351 // be coalesced, so follow the kill flag. 352 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 353 return true; 354 Reg = SrcReg; 355 } 356 } 357 358 /// Return true if the specified MI uses the specified register as a two-address 359 /// use. If so, return the destination register by reference. 360 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 361 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 362 const MachineOperand &MO = MI.getOperand(i); 363 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 364 continue; 365 unsigned ti; 366 if (MI.isRegTiedToDefOperand(i, &ti)) { 367 DstReg = MI.getOperand(ti).getReg(); 368 return true; 369 } 370 } 371 return false; 372 } 373 374 /// Given a register, if has a single in-basic block use, return the use 375 /// instruction if it's a copy or a two-address use. 376 static MachineInstr * 377 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 378 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 379 bool &IsCopy, Register &DstReg, bool &IsDstPhys) { 380 if (!MRI->hasOneNonDBGUse(Reg)) 381 // None or more than one use. 382 return nullptr; 383 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 384 if (UseMI.getParent() != MBB) 385 return nullptr; 386 Register SrcReg; 387 bool IsSrcPhys; 388 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 389 IsCopy = true; 390 return &UseMI; 391 } 392 IsDstPhys = false; 393 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 394 IsDstPhys = DstReg.isPhysical(); 395 return &UseMI; 396 } 397 return nullptr; 398 } 399 400 /// Return the physical register the specified virtual register might be mapped 401 /// to. 402 static MCRegister getMappedReg(Register Reg, 403 DenseMap<Register, Register> &RegMap) { 404 while (Reg.isVirtual()) { 405 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 406 if (SI == RegMap.end()) 407 return 0; 408 Reg = SI->second; 409 } 410 if (Reg.isPhysical()) 411 return Reg; 412 return 0; 413 } 414 415 /// Return true if the two registers are equal or aliased. 416 static bool regsAreCompatible(Register RegA, Register RegB, 417 const TargetRegisterInfo *TRI) { 418 if (RegA == RegB) 419 return true; 420 if (!RegA || !RegB) 421 return false; 422 return TRI->regsOverlap(RegA, RegB); 423 } 424 425 // Returns true if Reg is equal or aliased to at least one register in Set. 426 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 427 const TargetRegisterInfo *TRI) { 428 for (unsigned R : Set) 429 if (TRI->regsOverlap(R, Reg)) 430 return true; 431 432 return false; 433 } 434 435 /// Return true if it's potentially profitable to commute the two-address 436 /// instruction that's being processed. 437 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 438 Register RegB, 439 Register RegC, 440 MachineInstr *MI, 441 unsigned Dist) { 442 if (OptLevel == CodeGenOpt::None) 443 return false; 444 445 // Determine if it's profitable to commute this two address instruction. In 446 // general, we want no uses between this instruction and the definition of 447 // the two-address register. 448 // e.g. 449 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 450 // %reg1029 = COPY %reg1028 451 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 452 // insert => %reg1030 = COPY %reg1028 453 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 454 // In this case, it might not be possible to coalesce the second COPY 455 // instruction if the first one is coalesced. So it would be profitable to 456 // commute it: 457 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 458 // %reg1029 = COPY %reg1028 459 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 460 // insert => %reg1030 = COPY %reg1029 461 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 462 463 if (!isPlainlyKilled(MI, RegC, LIS)) 464 return false; 465 466 // Ok, we have something like: 467 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 468 // let's see if it's worth commuting it. 469 470 // Look for situations like this: 471 // %reg1024 = MOV r1 472 // %reg1025 = MOV r0 473 // %reg1026 = ADD %reg1024, %reg1025 474 // r0 = MOV %reg1026 475 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 476 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 477 if (ToRegA) { 478 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 479 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 480 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 481 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 482 483 // Compute if any of the following are true: 484 // -RegB is not tied to a register and RegC is compatible with RegA. 485 // -RegB is tied to the wrong physical register, but RegC is. 486 // -RegB is tied to the wrong physical register, and RegC isn't tied. 487 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 488 return true; 489 // Don't compute if any of the following are true: 490 // -RegC is not tied to a register and RegB is compatible with RegA. 491 // -RegC is tied to the wrong physical register, but RegB is. 492 // -RegC is tied to the wrong physical register, and RegB isn't tied. 493 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 494 return false; 495 } 496 497 // If there is a use of RegC between its last def (could be livein) and this 498 // instruction, then bail. 499 unsigned LastDefC = 0; 500 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 501 return false; 502 503 // If there is a use of RegB between its last def (could be livein) and this 504 // instruction, then go ahead and make this transformation. 505 unsigned LastDefB = 0; 506 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 507 return true; 508 509 // Look for situation like this: 510 // %reg101 = MOV %reg100 511 // %reg102 = ... 512 // %reg103 = ADD %reg102, %reg101 513 // ... = %reg103 ... 514 // %reg100 = MOV %reg103 515 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 516 // to eliminate an otherwise unavoidable copy. 517 // FIXME: 518 // We can extend the logic further: If an pair of operands in an insn has 519 // been merged, the insn could be regarded as a virtual copy, and the virtual 520 // copy could also be used to construct a copy chain. 521 // To more generally minimize register copies, ideally the logic of two addr 522 // instruction pass should be integrated with register allocation pass where 523 // interference graph is available. 524 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 525 return true; 526 527 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 528 return false; 529 530 // Since there are no intervening uses for both registers, then commute 531 // if the def of RegC is closer. Its live interval is shorter. 532 return LastDefB && LastDefC && LastDefC > LastDefB; 533 } 534 535 /// Commute a two-address instruction and update the basic block, distance map, 536 /// and live variables if needed. Return true if it is successful. 537 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 538 unsigned DstIdx, 539 unsigned RegBIdx, 540 unsigned RegCIdx, 541 unsigned Dist) { 542 Register RegC = MI->getOperand(RegCIdx).getReg(); 543 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 544 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 545 546 if (NewMI == nullptr) { 547 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 548 return false; 549 } 550 551 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 552 assert(NewMI == MI && 553 "TargetInstrInfo::commuteInstruction() should not return a new " 554 "instruction unless it was requested."); 555 556 // Update source register map. 557 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 558 if (FromRegC) { 559 Register RegA = MI->getOperand(DstIdx).getReg(); 560 SrcRegMap[RegA] = FromRegC; 561 } 562 563 return true; 564 } 565 566 /// Return true if it is profitable to convert the given 2-address instruction 567 /// to a 3-address one. 568 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 569 Register RegB) { 570 // Look for situations like this: 571 // %reg1024 = MOV r1 572 // %reg1025 = MOV r0 573 // %reg1026 = ADD %reg1024, %reg1025 574 // r2 = MOV %reg1026 575 // Turn ADD into a 3-address instruction to avoid a copy. 576 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 577 if (!FromRegB) 578 return false; 579 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 580 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 581 } 582 583 /// Convert the specified two-address instruction into a three address one. 584 /// Return true if this transformation was successful. 585 bool TwoAddressInstructionPass::convertInstTo3Addr( 586 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 587 Register RegA, Register RegB, unsigned Dist) { 588 // FIXME: Why does convertToThreeAddress() need an iterator reference? 589 MachineFunction::iterator MFI = MBB->getIterator(); 590 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 591 assert(MBB->getIterator() == MFI && 592 "convertToThreeAddress changed iterator reference"); 593 if (!NewMI) 594 return false; 595 596 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 597 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 598 599 if (LIS) 600 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 601 602 // If the old instruction is debug value tracked, an update is required. 603 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 604 // Sanity check. 605 assert(mi->getNumExplicitDefs() == 1); 606 assert(NewMI->getNumExplicitDefs() == 1); 607 608 // Find the old and new def location. 609 auto OldIt = mi->defs().begin(); 610 auto NewIt = NewMI->defs().begin(); 611 unsigned OldIdx = mi->getOperandNo(OldIt); 612 unsigned NewIdx = NewMI->getOperandNo(NewIt); 613 614 // Record that one def has been replaced by the other. 615 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 616 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 617 std::make_pair(NewInstrNum, NewIdx)); 618 } 619 620 MBB->erase(mi); // Nuke the old inst. 621 622 DistanceMap.insert(std::make_pair(NewMI, Dist)); 623 mi = NewMI; 624 nmi = std::next(mi); 625 626 // Update source and destination register maps. 627 SrcRegMap.erase(RegA); 628 DstRegMap.erase(RegB); 629 return true; 630 } 631 632 /// Scan forward recursively for only uses, update maps if the use is a copy or 633 /// a two-address instruction. 634 void TwoAddressInstructionPass::scanUses(Register DstReg) { 635 SmallVector<Register, 4> VirtRegPairs; 636 bool IsDstPhys; 637 bool IsCopy = false; 638 Register NewReg; 639 Register Reg = DstReg; 640 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 641 NewReg, IsDstPhys)) { 642 if (IsCopy && !Processed.insert(UseMI).second) 643 break; 644 645 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 646 if (DI != DistanceMap.end()) 647 // Earlier in the same MBB.Reached via a back edge. 648 break; 649 650 if (IsDstPhys) { 651 VirtRegPairs.push_back(NewReg); 652 break; 653 } 654 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 655 if (!isNew) 656 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 657 VirtRegPairs.push_back(NewReg); 658 Reg = NewReg; 659 } 660 661 if (!VirtRegPairs.empty()) { 662 unsigned ToReg = VirtRegPairs.back(); 663 VirtRegPairs.pop_back(); 664 while (!VirtRegPairs.empty()) { 665 unsigned FromReg = VirtRegPairs.back(); 666 VirtRegPairs.pop_back(); 667 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 668 if (!isNew) 669 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 670 ToReg = FromReg; 671 } 672 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 673 if (!isNew) 674 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 675 } 676 } 677 678 /// If the specified instruction is not yet processed, process it if it's a 679 /// copy. For a copy instruction, we find the physical registers the 680 /// source and destination registers might be mapped to. These are kept in 681 /// point-to maps used to determine future optimizations. e.g. 682 /// v1024 = mov r0 683 /// v1025 = mov r1 684 /// v1026 = add v1024, v1025 685 /// r1 = mov r1026 686 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 687 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 688 /// potentially joined with r1 on the output side. It's worthwhile to commute 689 /// 'add' to eliminate a copy. 690 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 691 if (Processed.count(MI)) 692 return; 693 694 bool IsSrcPhys, IsDstPhys; 695 Register SrcReg, DstReg; 696 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 697 return; 698 699 if (IsDstPhys && !IsSrcPhys) { 700 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 701 } else if (!IsDstPhys && IsSrcPhys) { 702 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 703 if (!isNew) 704 assert(SrcRegMap[DstReg] == SrcReg && 705 "Can't map to two src physical registers!"); 706 707 scanUses(DstReg); 708 } 709 710 Processed.insert(MI); 711 } 712 713 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 714 /// consider moving the instruction below the kill instruction in order to 715 /// eliminate the need for the copy. 716 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 717 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 718 Register Reg) { 719 // Bail immediately if we don't have LV or LIS available. We use them to find 720 // kills efficiently. 721 if (!LV && !LIS) 722 return false; 723 724 MachineInstr *MI = &*mi; 725 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 726 if (DI == DistanceMap.end()) 727 // Must be created from unfolded load. Don't waste time trying this. 728 return false; 729 730 MachineInstr *KillMI = nullptr; 731 if (LIS) { 732 LiveInterval &LI = LIS->getInterval(Reg); 733 assert(LI.end() != LI.begin() && 734 "Reg should not have empty live interval."); 735 736 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 737 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 738 if (I != LI.end() && I->start < MBBEndIdx) 739 return false; 740 741 --I; 742 KillMI = LIS->getInstructionFromIndex(I->end); 743 } else { 744 KillMI = LV->getVarInfo(Reg).findKill(MBB); 745 } 746 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 747 // Don't mess with copies, they may be coalesced later. 748 return false; 749 750 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 751 KillMI->isBranch() || KillMI->isTerminator()) 752 // Don't move pass calls, etc. 753 return false; 754 755 Register DstReg; 756 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 757 return false; 758 759 bool SeenStore = true; 760 if (!MI->isSafeToMove(AA, SeenStore)) 761 return false; 762 763 if (TII->getInstrLatency(InstrItins, *MI) > 1) 764 // FIXME: Needs more sophisticated heuristics. 765 return false; 766 767 SmallVector<Register, 2> Uses; 768 SmallVector<Register, 2> Kills; 769 SmallVector<Register, 2> Defs; 770 for (const MachineOperand &MO : MI->operands()) { 771 if (!MO.isReg()) 772 continue; 773 Register MOReg = MO.getReg(); 774 if (!MOReg) 775 continue; 776 if (MO.isDef()) 777 Defs.push_back(MOReg); 778 else { 779 Uses.push_back(MOReg); 780 if (MOReg != Reg && (MO.isKill() || 781 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 782 Kills.push_back(MOReg); 783 } 784 } 785 786 // Move the copies connected to MI down as well. 787 MachineBasicBlock::iterator Begin = MI; 788 MachineBasicBlock::iterator AfterMI = std::next(Begin); 789 MachineBasicBlock::iterator End = AfterMI; 790 while (End != MBB->end()) { 791 End = skipDebugInstructionsForward(End, MBB->end()); 792 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 793 Defs.push_back(End->getOperand(0).getReg()); 794 else 795 break; 796 ++End; 797 } 798 799 // Check if the reschedule will not break dependencies. 800 unsigned NumVisited = 0; 801 MachineBasicBlock::iterator KillPos = KillMI; 802 ++KillPos; 803 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 804 // Debug or pseudo instructions cannot be counted against the limit. 805 if (OtherMI.isDebugOrPseudoInstr()) 806 continue; 807 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 808 return false; 809 ++NumVisited; 810 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 811 OtherMI.isBranch() || OtherMI.isTerminator()) 812 // Don't move pass calls, etc. 813 return false; 814 for (const MachineOperand &MO : OtherMI.operands()) { 815 if (!MO.isReg()) 816 continue; 817 Register MOReg = MO.getReg(); 818 if (!MOReg) 819 continue; 820 if (MO.isDef()) { 821 if (regOverlapsSet(Uses, MOReg, TRI)) 822 // Physical register use would be clobbered. 823 return false; 824 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 825 // May clobber a physical register def. 826 // FIXME: This may be too conservative. It's ok if the instruction 827 // is sunken completely below the use. 828 return false; 829 } else { 830 if (regOverlapsSet(Defs, MOReg, TRI)) 831 return false; 832 bool isKill = 833 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 834 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 835 regOverlapsSet(Kills, MOReg, TRI))) 836 // Don't want to extend other live ranges and update kills. 837 return false; 838 if (MOReg == Reg && !isKill) 839 // We can't schedule across a use of the register in question. 840 return false; 841 // Ensure that if this is register in question, its the kill we expect. 842 assert((MOReg != Reg || &OtherMI == KillMI) && 843 "Found multiple kills of a register in a basic block"); 844 } 845 } 846 } 847 848 // Move debug info as well. 849 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 850 --Begin; 851 852 nmi = End; 853 MachineBasicBlock::iterator InsertPos = KillPos; 854 if (LIS) { 855 // We have to move the copies first so that the MBB is still well-formed 856 // when calling handleMove(). 857 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 858 auto CopyMI = MBBI++; 859 MBB->splice(InsertPos, MBB, CopyMI); 860 LIS->handleMove(*CopyMI); 861 InsertPos = CopyMI; 862 } 863 End = std::next(MachineBasicBlock::iterator(MI)); 864 } 865 866 // Copies following MI may have been moved as well. 867 MBB->splice(InsertPos, MBB, Begin, End); 868 DistanceMap.erase(DI); 869 870 // Update live variables 871 if (LIS) { 872 LIS->handleMove(*MI); 873 } else { 874 LV->removeVirtualRegisterKilled(Reg, *KillMI); 875 LV->addVirtualRegisterKilled(Reg, *MI); 876 } 877 878 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 879 return true; 880 } 881 882 /// Return true if the re-scheduling will put the given instruction too close 883 /// to the defs of its register dependencies. 884 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 885 MachineInstr *MI) { 886 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 887 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 888 continue; 889 if (&DefMI == MI) 890 return true; // MI is defining something KillMI uses 891 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 892 if (DDI == DistanceMap.end()) 893 return true; // Below MI 894 unsigned DefDist = DDI->second; 895 assert(Dist > DefDist && "Visited def already?"); 896 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 897 return true; 898 } 899 return false; 900 } 901 902 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 903 /// consider moving the kill instruction above the current two-address 904 /// instruction in order to eliminate the need for the copy. 905 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 906 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 907 Register Reg) { 908 // Bail immediately if we don't have LV or LIS available. We use them to find 909 // kills efficiently. 910 if (!LV && !LIS) 911 return false; 912 913 MachineInstr *MI = &*mi; 914 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 915 if (DI == DistanceMap.end()) 916 // Must be created from unfolded load. Don't waste time trying this. 917 return false; 918 919 MachineInstr *KillMI = nullptr; 920 if (LIS) { 921 LiveInterval &LI = LIS->getInterval(Reg); 922 assert(LI.end() != LI.begin() && 923 "Reg should not have empty live interval."); 924 925 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 926 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 927 if (I != LI.end() && I->start < MBBEndIdx) 928 return false; 929 930 --I; 931 KillMI = LIS->getInstructionFromIndex(I->end); 932 } else { 933 KillMI = LV->getVarInfo(Reg).findKill(MBB); 934 } 935 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 936 // Don't mess with copies, they may be coalesced later. 937 return false; 938 939 Register DstReg; 940 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 941 return false; 942 943 bool SeenStore = true; 944 if (!KillMI->isSafeToMove(AA, SeenStore)) 945 return false; 946 947 SmallVector<Register, 2> Uses; 948 SmallVector<Register, 2> Kills; 949 SmallVector<Register, 2> Defs; 950 SmallVector<Register, 2> LiveDefs; 951 for (const MachineOperand &MO : KillMI->operands()) { 952 if (!MO.isReg()) 953 continue; 954 Register MOReg = MO.getReg(); 955 if (MO.isUse()) { 956 if (!MOReg) 957 continue; 958 if (isDefTooClose(MOReg, DI->second, MI)) 959 return false; 960 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 961 if (MOReg == Reg && !isKill) 962 return false; 963 Uses.push_back(MOReg); 964 if (isKill && MOReg != Reg) 965 Kills.push_back(MOReg); 966 } else if (MOReg.isPhysical()) { 967 Defs.push_back(MOReg); 968 if (!MO.isDead()) 969 LiveDefs.push_back(MOReg); 970 } 971 } 972 973 // Check if the reschedule will not break depedencies. 974 unsigned NumVisited = 0; 975 for (MachineInstr &OtherMI : 976 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 977 // Debug or pseudo instructions cannot be counted against the limit. 978 if (OtherMI.isDebugOrPseudoInstr()) 979 continue; 980 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 981 return false; 982 ++NumVisited; 983 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 984 OtherMI.isBranch() || OtherMI.isTerminator()) 985 // Don't move pass calls, etc. 986 return false; 987 SmallVector<Register, 2> OtherDefs; 988 for (const MachineOperand &MO : OtherMI.operands()) { 989 if (!MO.isReg()) 990 continue; 991 Register MOReg = MO.getReg(); 992 if (!MOReg) 993 continue; 994 if (MO.isUse()) { 995 if (regOverlapsSet(Defs, MOReg, TRI)) 996 // Moving KillMI can clobber the physical register if the def has 997 // not been seen. 998 return false; 999 if (regOverlapsSet(Kills, MOReg, TRI)) 1000 // Don't want to extend other live ranges and update kills. 1001 return false; 1002 if (&OtherMI != MI && MOReg == Reg && 1003 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1004 // We can't schedule across a use of the register in question. 1005 return false; 1006 } else { 1007 OtherDefs.push_back(MOReg); 1008 } 1009 } 1010 1011 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1012 Register MOReg = OtherDefs[i]; 1013 if (regOverlapsSet(Uses, MOReg, TRI)) 1014 return false; 1015 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1016 return false; 1017 // Physical register def is seen. 1018 llvm::erase_value(Defs, MOReg); 1019 } 1020 } 1021 1022 // Move the old kill above MI, don't forget to move debug info as well. 1023 MachineBasicBlock::iterator InsertPos = mi; 1024 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1025 --InsertPos; 1026 MachineBasicBlock::iterator From = KillMI; 1027 MachineBasicBlock::iterator To = std::next(From); 1028 while (std::prev(From)->isDebugInstr()) 1029 --From; 1030 MBB->splice(InsertPos, MBB, From, To); 1031 1032 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1033 DistanceMap.erase(DI); 1034 1035 // Update live variables 1036 if (LIS) { 1037 LIS->handleMove(*KillMI); 1038 } else { 1039 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1040 LV->addVirtualRegisterKilled(Reg, *MI); 1041 } 1042 1043 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1044 return true; 1045 } 1046 1047 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1048 /// given machine instruction to improve opportunities for coalescing and 1049 /// elimination of a register to register copy. 1050 /// 1051 /// 'DstOpIdx' specifies the index of MI def operand. 1052 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1053 /// operand is killed by the given instruction. 1054 /// The 'Dist' arguments provides the distance of MI from the start of the 1055 /// current basic block and it is used to determine if it is profitable 1056 /// to commute operands in the instruction. 1057 /// 1058 /// Returns true if the transformation happened. Otherwise, returns false. 1059 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1060 unsigned DstOpIdx, 1061 unsigned BaseOpIdx, 1062 bool BaseOpKilled, 1063 unsigned Dist) { 1064 if (!MI->isCommutable()) 1065 return false; 1066 1067 bool MadeChange = false; 1068 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1069 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1070 unsigned OpsNum = MI->getDesc().getNumOperands(); 1071 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1072 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1073 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1074 // and OtherOpIdx are commutable, it does not really search for 1075 // other commutable operands and does not change the values of passed 1076 // variables. 1077 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1078 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1079 continue; 1080 1081 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1082 bool AggressiveCommute = false; 1083 1084 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1085 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1086 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1087 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1088 1089 if (!DoCommute && 1090 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1091 DoCommute = true; 1092 AggressiveCommute = true; 1093 } 1094 1095 // If it's profitable to commute, try to do so. 1096 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1097 Dist)) { 1098 MadeChange = true; 1099 ++NumCommuted; 1100 if (AggressiveCommute) 1101 ++NumAggrCommuted; 1102 1103 // There might be more than two commutable operands, update BaseOp and 1104 // continue scanning. 1105 // FIXME: This assumes that the new instruction's operands are in the 1106 // same positions and were simply swapped. 1107 BaseOpReg = OtherOpReg; 1108 BaseOpKilled = OtherOpKilled; 1109 // Resamples OpsNum in case the number of operands was reduced. This 1110 // happens with X86. 1111 OpsNum = MI->getDesc().getNumOperands(); 1112 } 1113 } 1114 return MadeChange; 1115 } 1116 1117 /// For the case where an instruction has a single pair of tied register 1118 /// operands, attempt some transformations that may either eliminate the tied 1119 /// operands or improve the opportunities for coalescing away the register copy. 1120 /// Returns true if no copy needs to be inserted to untie mi's operands 1121 /// (either because they were untied, or because mi was rescheduled, and will 1122 /// be visited again later). If the shouldOnlyCommute flag is true, only 1123 /// instruction commutation is attempted. 1124 bool TwoAddressInstructionPass:: 1125 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1126 MachineBasicBlock::iterator &nmi, 1127 unsigned SrcIdx, unsigned DstIdx, 1128 unsigned Dist, bool shouldOnlyCommute) { 1129 if (OptLevel == CodeGenOpt::None) 1130 return false; 1131 1132 MachineInstr &MI = *mi; 1133 Register regA = MI.getOperand(DstIdx).getReg(); 1134 Register regB = MI.getOperand(SrcIdx).getReg(); 1135 1136 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1137 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1138 1139 if (regA.isVirtual()) 1140 scanUses(regA); 1141 1142 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1143 1144 // If the instruction is convertible to 3 Addr, instead 1145 // of returning try 3 Addr transformation aggressively and 1146 // use this variable to check later. Because it might be better. 1147 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1148 // instead of the following code. 1149 // addl %esi, %edi 1150 // movl %edi, %eax 1151 // ret 1152 if (Commuted && !MI.isConvertibleTo3Addr()) 1153 return false; 1154 1155 if (shouldOnlyCommute) 1156 return false; 1157 1158 // If there is one more use of regB later in the same MBB, consider 1159 // re-schedule this MI below it. 1160 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1161 ++NumReSchedDowns; 1162 return true; 1163 } 1164 1165 // If we commuted, regB may have changed so we should re-sample it to avoid 1166 // confusing the three address conversion below. 1167 if (Commuted) { 1168 regB = MI.getOperand(SrcIdx).getReg(); 1169 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1170 } 1171 1172 if (MI.isConvertibleTo3Addr()) { 1173 // This instruction is potentially convertible to a true 1174 // three-address instruction. Check if it is profitable. 1175 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1176 // Try to convert it. 1177 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1178 ++NumConvertedTo3Addr; 1179 return true; // Done with this instruction. 1180 } 1181 } 1182 } 1183 1184 // Return if it is commuted but 3 addr conversion is failed. 1185 if (Commuted) 1186 return false; 1187 1188 // If there is one more use of regB later in the same MBB, consider 1189 // re-schedule it before this MI if it's legal. 1190 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1191 ++NumReSchedUps; 1192 return true; 1193 } 1194 1195 // If this is an instruction with a load folded into it, try unfolding 1196 // the load, e.g. avoid this: 1197 // movq %rdx, %rcx 1198 // addq (%rax), %rcx 1199 // in favor of this: 1200 // movq (%rax), %rcx 1201 // addq %rdx, %rcx 1202 // because it's preferable to schedule a load than a register copy. 1203 if (MI.mayLoad() && !regBKilled) { 1204 // Determine if a load can be unfolded. 1205 unsigned LoadRegIndex; 1206 unsigned NewOpc = 1207 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1208 /*UnfoldLoad=*/true, 1209 /*UnfoldStore=*/false, 1210 &LoadRegIndex); 1211 if (NewOpc != 0) { 1212 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1213 if (UnfoldMCID.getNumDefs() == 1) { 1214 // Unfold the load. 1215 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1216 const TargetRegisterClass *RC = 1217 TRI->getAllocatableClass( 1218 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1219 Register Reg = MRI->createVirtualRegister(RC); 1220 SmallVector<MachineInstr *, 2> NewMIs; 1221 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1222 /*UnfoldLoad=*/true, 1223 /*UnfoldStore=*/false, NewMIs)) { 1224 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1225 return false; 1226 } 1227 assert(NewMIs.size() == 2 && 1228 "Unfolded a load into multiple instructions!"); 1229 // The load was previously folded, so this is the only use. 1230 NewMIs[1]->addRegisterKilled(Reg, TRI); 1231 1232 // Tentatively insert the instructions into the block so that they 1233 // look "normal" to the transformation logic. 1234 MBB->insert(mi, NewMIs[0]); 1235 MBB->insert(mi, NewMIs[1]); 1236 1237 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1238 << "2addr: NEW INST: " << *NewMIs[1]); 1239 1240 // Transform the instruction, now that it no longer has a load. 1241 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1242 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1243 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1244 bool TransformResult = 1245 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1246 (void)TransformResult; 1247 assert(!TransformResult && 1248 "tryInstructionTransform() should return false."); 1249 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1250 // Success, or at least we made an improvement. Keep the unfolded 1251 // instructions and discard the original. 1252 if (LV) { 1253 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1254 MachineOperand &MO = MI.getOperand(i); 1255 if (MO.isReg() && MO.getReg().isVirtual()) { 1256 if (MO.isUse()) { 1257 if (MO.isKill()) { 1258 if (NewMIs[0]->killsRegister(MO.getReg())) 1259 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1260 else { 1261 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1262 "Kill missing after load unfold!"); 1263 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1264 } 1265 } 1266 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1267 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1268 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1269 else { 1270 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1271 "Dead flag missing after load unfold!"); 1272 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1273 } 1274 } 1275 } 1276 } 1277 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1278 } 1279 1280 SmallVector<Register, 4> OrigRegs; 1281 if (LIS) { 1282 for (const MachineOperand &MO : MI.operands()) { 1283 if (MO.isReg()) 1284 OrigRegs.push_back(MO.getReg()); 1285 } 1286 } 1287 1288 MI.eraseFromParent(); 1289 1290 // Update LiveIntervals. 1291 if (LIS) { 1292 MachineBasicBlock::iterator Begin(NewMIs[0]); 1293 MachineBasicBlock::iterator End(NewMIs[1]); 1294 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1295 } 1296 1297 mi = NewMIs[1]; 1298 } else { 1299 // Transforming didn't eliminate the tie and didn't lead to an 1300 // improvement. Clean up the unfolded instructions and keep the 1301 // original. 1302 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1303 NewMIs[0]->eraseFromParent(); 1304 NewMIs[1]->eraseFromParent(); 1305 } 1306 } 1307 } 1308 } 1309 1310 return false; 1311 } 1312 1313 // Collect tied operands of MI that need to be handled. 1314 // Rewrite trivial cases immediately. 1315 // Return true if any tied operands where found, including the trivial ones. 1316 bool TwoAddressInstructionPass:: 1317 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1318 const MCInstrDesc &MCID = MI->getDesc(); 1319 bool AnyOps = false; 1320 unsigned NumOps = MI->getNumOperands(); 1321 1322 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1323 unsigned DstIdx = 0; 1324 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1325 continue; 1326 AnyOps = true; 1327 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1328 MachineOperand &DstMO = MI->getOperand(DstIdx); 1329 Register SrcReg = SrcMO.getReg(); 1330 Register DstReg = DstMO.getReg(); 1331 // Tied constraint already satisfied? 1332 if (SrcReg == DstReg) 1333 continue; 1334 1335 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1336 1337 // Deal with undef uses immediately - simply rewrite the src operand. 1338 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1339 // Constrain the DstReg register class if required. 1340 if (DstReg.isVirtual()) 1341 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1342 TRI, *MF)) 1343 MRI->constrainRegClass(DstReg, RC); 1344 SrcMO.setReg(DstReg); 1345 SrcMO.setSubReg(0); 1346 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1347 continue; 1348 } 1349 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1350 } 1351 return AnyOps; 1352 } 1353 1354 // Process a list of tied MI operands that all use the same source register. 1355 // The tied pairs are of the form (SrcIdx, DstIdx). 1356 void 1357 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1358 TiedPairList &TiedPairs, 1359 unsigned &Dist) { 1360 bool IsEarlyClobber = false; 1361 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1362 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1363 IsEarlyClobber |= DstMO.isEarlyClobber(); 1364 } 1365 1366 bool RemovedKillFlag = false; 1367 bool AllUsesCopied = true; 1368 unsigned LastCopiedReg = 0; 1369 SlotIndex LastCopyIdx; 1370 Register RegB = 0; 1371 unsigned SubRegB = 0; 1372 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1373 unsigned SrcIdx = TiedPairs[tpi].first; 1374 unsigned DstIdx = TiedPairs[tpi].second; 1375 1376 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1377 Register RegA = DstMO.getReg(); 1378 1379 // Grab RegB from the instruction because it may have changed if the 1380 // instruction was commuted. 1381 RegB = MI->getOperand(SrcIdx).getReg(); 1382 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1383 1384 if (RegA == RegB) { 1385 // The register is tied to multiple destinations (or else we would 1386 // not have continued this far), but this use of the register 1387 // already matches the tied destination. Leave it. 1388 AllUsesCopied = false; 1389 continue; 1390 } 1391 LastCopiedReg = RegA; 1392 1393 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1394 1395 #ifndef NDEBUG 1396 // First, verify that we don't have a use of "a" in the instruction 1397 // (a = b + a for example) because our transformation will not 1398 // work. This should never occur because we are in SSA form. 1399 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1400 assert(i == DstIdx || 1401 !MI->getOperand(i).isReg() || 1402 MI->getOperand(i).getReg() != RegA); 1403 #endif 1404 1405 // Emit a copy. 1406 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1407 TII->get(TargetOpcode::COPY), RegA); 1408 // If this operand is folding a truncation, the truncation now moves to the 1409 // copy so that the register classes remain valid for the operands. 1410 MIB.addReg(RegB, 0, SubRegB); 1411 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1412 if (SubRegB) { 1413 if (RegA.isVirtual()) { 1414 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1415 SubRegB) && 1416 "tied subregister must be a truncation"); 1417 // The superreg class will not be used to constrain the subreg class. 1418 RC = nullptr; 1419 } else { 1420 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1421 && "tied subregister must be a truncation"); 1422 } 1423 } 1424 1425 // Update DistanceMap. 1426 MachineBasicBlock::iterator PrevMI = MI; 1427 --PrevMI; 1428 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1429 DistanceMap[MI] = ++Dist; 1430 1431 if (LIS) { 1432 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1433 1434 if (RegA.isVirtual()) { 1435 LiveInterval &LI = LIS->getInterval(RegA); 1436 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1437 SlotIndex endIdx = 1438 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1439 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1440 } 1441 } 1442 1443 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1444 1445 MachineOperand &MO = MI->getOperand(SrcIdx); 1446 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1447 "inconsistent operand info for 2-reg pass"); 1448 if (MO.isKill()) { 1449 MO.setIsKill(false); 1450 RemovedKillFlag = true; 1451 } 1452 1453 // Make sure regA is a legal regclass for the SrcIdx operand. 1454 if (RegA.isVirtual() && RegB.isVirtual()) 1455 MRI->constrainRegClass(RegA, RC); 1456 MO.setReg(RegA); 1457 // The getMatchingSuper asserts guarantee that the register class projected 1458 // by SubRegB is compatible with RegA with no subregister. So regardless of 1459 // whether the dest oper writes a subreg, the source oper should not. 1460 MO.setSubReg(0); 1461 1462 // Propagate SrcRegMap. 1463 SrcRegMap[RegA] = RegB; 1464 } 1465 1466 if (AllUsesCopied) { 1467 bool ReplacedAllUntiedUses = true; 1468 if (!IsEarlyClobber) { 1469 // Replace other (un-tied) uses of regB with LastCopiedReg. 1470 for (MachineOperand &MO : MI->operands()) { 1471 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1472 if (MO.getSubReg() == SubRegB) { 1473 if (MO.isKill()) { 1474 MO.setIsKill(false); 1475 RemovedKillFlag = true; 1476 } 1477 MO.setReg(LastCopiedReg); 1478 MO.setSubReg(0); 1479 } else { 1480 ReplacedAllUntiedUses = false; 1481 } 1482 } 1483 } 1484 } 1485 1486 // Update live variables for regB. 1487 if (RemovedKillFlag && ReplacedAllUntiedUses && 1488 LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1489 MachineBasicBlock::iterator PrevMI = MI; 1490 --PrevMI; 1491 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1492 } 1493 1494 // Update LiveIntervals. 1495 if (LIS) { 1496 LiveInterval &LI = LIS->getInterval(RegB); 1497 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1498 LiveInterval::const_iterator I = LI.find(MIIdx); 1499 assert(I != LI.end() && "RegB must be live-in to use."); 1500 1501 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1502 if (I->end == UseIdx) 1503 LI.removeSegment(LastCopyIdx, UseIdx); 1504 } 1505 } else if (RemovedKillFlag) { 1506 // Some tied uses of regB matched their destination registers, so 1507 // regB is still used in this instruction, but a kill flag was 1508 // removed from a different tied use of regB, so now we need to add 1509 // a kill flag to one of the remaining uses of regB. 1510 for (MachineOperand &MO : MI->operands()) { 1511 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1512 MO.setIsKill(true); 1513 break; 1514 } 1515 } 1516 } 1517 } 1518 1519 /// Reduce two-address instructions to two operands. 1520 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1521 MF = &Func; 1522 const TargetMachine &TM = MF->getTarget(); 1523 MRI = &MF->getRegInfo(); 1524 TII = MF->getSubtarget().getInstrInfo(); 1525 TRI = MF->getSubtarget().getRegisterInfo(); 1526 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1527 LV = getAnalysisIfAvailable<LiveVariables>(); 1528 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1529 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1530 AA = &AAPass->getAAResults(); 1531 else 1532 AA = nullptr; 1533 OptLevel = TM.getOptLevel(); 1534 // Disable optimizations if requested. We cannot skip the whole pass as some 1535 // fixups are necessary for correctness. 1536 if (skipFunction(Func.getFunction())) 1537 OptLevel = CodeGenOpt::None; 1538 1539 bool MadeChange = false; 1540 1541 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1542 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1543 1544 // This pass takes the function out of SSA form. 1545 MRI->leaveSSA(); 1546 1547 // This pass will rewrite the tied-def to meet the RegConstraint. 1548 MF->getProperties() 1549 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1550 1551 TiedOperandMap TiedOperands; 1552 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1553 MBBI != MBBE; ++MBBI) { 1554 MBB = &*MBBI; 1555 unsigned Dist = 0; 1556 DistanceMap.clear(); 1557 SrcRegMap.clear(); 1558 DstRegMap.clear(); 1559 Processed.clear(); 1560 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1561 mi != me; ) { 1562 MachineBasicBlock::iterator nmi = std::next(mi); 1563 // Skip debug instructions. 1564 if (mi->isDebugInstr()) { 1565 mi = nmi; 1566 continue; 1567 } 1568 1569 // Expand REG_SEQUENCE instructions. This will position mi at the first 1570 // expanded instruction. 1571 if (mi->isRegSequence()) 1572 eliminateRegSequence(mi); 1573 1574 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1575 1576 processCopy(&*mi); 1577 1578 // First scan through all the tied register uses in this instruction 1579 // and record a list of pairs of tied operands for each register. 1580 if (!collectTiedOperands(&*mi, TiedOperands)) { 1581 mi = nmi; 1582 continue; 1583 } 1584 1585 ++NumTwoAddressInstrs; 1586 MadeChange = true; 1587 LLVM_DEBUG(dbgs() << '\t' << *mi); 1588 1589 // If the instruction has a single pair of tied operands, try some 1590 // transformations that may either eliminate the tied operands or 1591 // improve the opportunities for coalescing away the register copy. 1592 if (TiedOperands.size() == 1) { 1593 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1594 = TiedOperands.begin()->second; 1595 if (TiedPairs.size() == 1) { 1596 unsigned SrcIdx = TiedPairs[0].first; 1597 unsigned DstIdx = TiedPairs[0].second; 1598 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1599 Register DstReg = mi->getOperand(DstIdx).getReg(); 1600 if (SrcReg != DstReg && 1601 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1602 // The tied operands have been eliminated or shifted further down 1603 // the block to ease elimination. Continue processing with 'nmi'. 1604 TiedOperands.clear(); 1605 mi = nmi; 1606 continue; 1607 } 1608 } 1609 } 1610 1611 // Now iterate over the information collected above. 1612 for (auto &TO : TiedOperands) { 1613 processTiedPairs(&*mi, TO.second, Dist); 1614 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1615 } 1616 1617 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1618 if (mi->isInsertSubreg()) { 1619 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1620 // To %reg:subidx = COPY %subreg 1621 unsigned SubIdx = mi->getOperand(3).getImm(); 1622 mi->RemoveOperand(3); 1623 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1624 mi->getOperand(0).setSubReg(SubIdx); 1625 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1626 mi->RemoveOperand(1); 1627 mi->setDesc(TII->get(TargetOpcode::COPY)); 1628 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1629 } 1630 1631 // Clear TiedOperands here instead of at the top of the loop 1632 // since most instructions do not have tied operands. 1633 TiedOperands.clear(); 1634 mi = nmi; 1635 } 1636 } 1637 1638 if (LIS) 1639 MF->verify(this, "After two-address instruction pass"); 1640 1641 return MadeChange; 1642 } 1643 1644 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1645 /// 1646 /// The instruction is turned into a sequence of sub-register copies: 1647 /// 1648 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1649 /// 1650 /// Becomes: 1651 /// 1652 /// undef %dst:ssub0 = COPY %v1 1653 /// %dst:ssub1 = COPY %v2 1654 void TwoAddressInstructionPass:: 1655 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1656 MachineInstr &MI = *MBBI; 1657 Register DstReg = MI.getOperand(0).getReg(); 1658 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1659 !(MI.getNumOperands() & 1)) { 1660 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1661 llvm_unreachable(nullptr); 1662 } 1663 1664 SmallVector<Register, 4> OrigRegs; 1665 if (LIS) { 1666 OrigRegs.push_back(MI.getOperand(0).getReg()); 1667 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1668 OrigRegs.push_back(MI.getOperand(i).getReg()); 1669 } 1670 1671 bool DefEmitted = false; 1672 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1673 MachineOperand &UseMO = MI.getOperand(i); 1674 Register SrcReg = UseMO.getReg(); 1675 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1676 // Nothing needs to be inserted for undef operands. 1677 if (UseMO.isUndef()) 1678 continue; 1679 1680 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1681 // might insert a COPY that uses SrcReg after is was killed. 1682 bool isKill = UseMO.isKill(); 1683 if (isKill) 1684 for (unsigned j = i + 2; j < e; j += 2) 1685 if (MI.getOperand(j).getReg() == SrcReg) { 1686 MI.getOperand(j).setIsKill(); 1687 UseMO.setIsKill(false); 1688 isKill = false; 1689 break; 1690 } 1691 1692 // Insert the sub-register copy. 1693 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1694 TII->get(TargetOpcode::COPY)) 1695 .addReg(DstReg, RegState::Define, SubIdx) 1696 .add(UseMO); 1697 1698 // The first def needs an undef flag because there is no live register 1699 // before it. 1700 if (!DefEmitted) { 1701 CopyMI->getOperand(0).setIsUndef(true); 1702 // Return an iterator pointing to the first inserted instr. 1703 MBBI = CopyMI; 1704 } 1705 DefEmitted = true; 1706 1707 // Update LiveVariables' kill info. 1708 if (LV && isKill && !SrcReg.isPhysical()) 1709 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1710 1711 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1712 } 1713 1714 MachineBasicBlock::iterator EndMBBI = 1715 std::next(MachineBasicBlock::iterator(MI)); 1716 1717 if (!DefEmitted) { 1718 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1719 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1720 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1721 MI.RemoveOperand(j); 1722 } else { 1723 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1724 MI.eraseFromParent(); 1725 } 1726 1727 // Udpate LiveIntervals. 1728 if (LIS) 1729 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1730 } 1731