1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveVariables.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/Passes.h" 46 #include "llvm/CodeGen/SlotIndexes.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetOpcodes.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/MCInstrDesc.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "twoaddressinstruction" 66 67 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 68 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 69 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 70 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 71 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 72 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 73 74 // Temporary flag to disable rescheduling. 75 static cl::opt<bool> 76 EnableRescheduling("twoaddr-reschedule", 77 cl::desc("Coalesce copies by rescheduling (default=true)"), 78 cl::init(true), cl::Hidden); 79 80 // Limit the number of dataflow edges to traverse when evaluating the benefit 81 // of commuting operands. 82 static cl::opt<unsigned> MaxDataFlowEdge( 83 "dataflow-edge-limit", cl::Hidden, cl::init(3), 84 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 85 "the benefit of commuting operands")); 86 87 namespace { 88 89 class TwoAddressInstructionPass : public MachineFunctionPass { 90 MachineFunction *MF; 91 const TargetInstrInfo *TII; 92 const TargetRegisterInfo *TRI; 93 const InstrItineraryData *InstrItins; 94 MachineRegisterInfo *MRI; 95 LiveVariables *LV; 96 LiveIntervals *LIS; 97 AliasAnalysis *AA; 98 CodeGenOpt::Level OptLevel; 99 100 // The current basic block being processed. 101 MachineBasicBlock *MBB; 102 103 // Keep track the distance of a MI from the start of the current basic block. 104 DenseMap<MachineInstr*, unsigned> DistanceMap; 105 106 // Set of already processed instructions in the current block. 107 SmallPtrSet<MachineInstr*, 8> Processed; 108 109 // A map from virtual registers to physical registers which are likely targets 110 // to be coalesced to due to copies from physical registers to virtual 111 // registers. e.g. v1024 = move r0. 112 DenseMap<Register, Register> SrcRegMap; 113 114 // A map from virtual registers to physical registers which are likely targets 115 // to be coalesced to due to copies to physical registers from virtual 116 // registers. e.g. r1 = move v1024. 117 DenseMap<Register, Register> DstRegMap; 118 119 void removeClobberedSrcRegMap(MachineInstr *MI); 120 121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 126 MachineInstr *MI, unsigned Dist); 127 128 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 129 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 130 131 bool isProfitableToConv3Addr(Register RegA, Register RegB); 132 133 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, Register RegA, 135 Register RegB, unsigned &Dist); 136 137 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 138 139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 140 MachineBasicBlock::iterator &nmi, Register Reg); 141 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 144 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 145 MachineBasicBlock::iterator &nmi, 146 unsigned SrcIdx, unsigned DstIdx, 147 unsigned &Dist, bool shouldOnlyCommute); 148 149 bool tryInstructionCommute(MachineInstr *MI, 150 unsigned DstOpIdx, 151 unsigned BaseOpIdx, 152 bool BaseOpKilled, 153 unsigned Dist); 154 void scanUses(Register DstReg); 155 156 void processCopy(MachineInstr *MI); 157 158 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 159 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 160 161 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 162 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 163 void eliminateRegSequence(MachineBasicBlock::iterator&); 164 bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands); 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 170 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 171 } 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesCFG(); 175 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 176 AU.addUsedIfAvailable<LiveVariables>(); 177 AU.addPreserved<LiveVariables>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addPreserved<LiveIntervals>(); 180 AU.addPreservedID(MachineLoopInfoID); 181 AU.addPreservedID(MachineDominatorsID); 182 MachineFunctionPass::getAnalysisUsage(AU); 183 } 184 185 /// Pass entry point. 186 bool runOnMachineFunction(MachineFunction&) override; 187 }; 188 189 } // end anonymous namespace 190 191 char TwoAddressInstructionPass::ID = 0; 192 193 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 194 195 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 196 "Two-Address instruction pass", false, false) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 199 "Two-Address instruction pass", false, false) 200 201 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 202 203 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 204 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 205 const MachineRegisterInfo *MRI) { 206 MachineInstr *Ret = nullptr; 207 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 208 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 209 continue; 210 if (!Ret) 211 Ret = &DefMI; 212 else if (Ret != &DefMI) 213 return nullptr; 214 } 215 return Ret; 216 } 217 218 /// Check if there is a reversed copy chain from FromReg to ToReg: 219 /// %Tmp1 = copy %Tmp2; 220 /// %FromReg = copy %Tmp1; 221 /// %ToReg = add %FromReg ... 222 /// %Tmp2 = copy %ToReg; 223 /// MaxLen specifies the maximum length of the copy chain the func 224 /// can walk through. 225 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 226 int Maxlen) { 227 Register TmpReg = FromReg; 228 for (int i = 0; i < Maxlen; i++) { 229 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 230 if (!Def || !Def->isCopy()) 231 return false; 232 233 TmpReg = Def->getOperand(1).getReg(); 234 235 if (TmpReg == ToReg) 236 return true; 237 } 238 return false; 239 } 240 241 /// Return true if there are no intervening uses between the last instruction 242 /// in the MBB that defines the specified register and the two-address 243 /// instruction which is being processed. It also returns the last def location 244 /// by reference. 245 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 246 unsigned &LastDef) { 247 LastDef = 0; 248 unsigned LastUse = Dist; 249 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 250 MachineInstr *MI = MO.getParent(); 251 if (MI->getParent() != MBB || MI->isDebugValue()) 252 continue; 253 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 254 if (DI == DistanceMap.end()) 255 continue; 256 if (MO.isUse() && DI->second < LastUse) 257 LastUse = DI->second; 258 if (MO.isDef() && DI->second > LastDef) 259 LastDef = DI->second; 260 } 261 262 return !(LastUse > LastDef && LastUse < Dist); 263 } 264 265 /// Return true if the specified MI is a copy instruction or an extract_subreg 266 /// instruction. It also returns the source and destination registers and 267 /// whether they are physical registers by reference. 268 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 269 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 270 bool &IsDstPhys) { 271 SrcReg = 0; 272 DstReg = 0; 273 if (MI.isCopy()) { 274 DstReg = MI.getOperand(0).getReg(); 275 SrcReg = MI.getOperand(1).getReg(); 276 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 277 DstReg = MI.getOperand(0).getReg(); 278 SrcReg = MI.getOperand(2).getReg(); 279 } else { 280 return false; 281 } 282 283 IsSrcPhys = SrcReg.isPhysical(); 284 IsDstPhys = DstReg.isPhysical(); 285 return true; 286 } 287 288 /// Test if the given register value, which is used by the 289 /// given instruction, is killed by the given instruction. 290 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 291 LiveIntervals *LIS) { 292 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 293 // FIXME: Sometimes tryInstructionTransform() will add instructions and 294 // test whether they can be folded before keeping them. In this case it 295 // sets a kill before recursively calling tryInstructionTransform() again. 296 // If there is no interval available, we assume that this instruction is 297 // one of those. A kill flag is manually inserted on the operand so the 298 // check below will handle it. 299 LiveInterval &LI = LIS->getInterval(Reg); 300 // This is to match the kill flag version where undefs don't have kill 301 // flags. 302 if (!LI.hasAtLeastOneValue()) 303 return false; 304 305 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 306 LiveInterval::const_iterator I = LI.find(useIdx); 307 assert(I != LI.end() && "Reg must be live-in to use."); 308 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 309 } 310 311 return MI->killsRegister(Reg); 312 } 313 314 /// Test if the given register value, which is used by the given 315 /// instruction, is killed by the given instruction. This looks through 316 /// coalescable copies to see if the original value is potentially not killed. 317 /// 318 /// For example, in this code: 319 /// 320 /// %reg1034 = copy %reg1024 321 /// %reg1035 = copy killed %reg1025 322 /// %reg1036 = add killed %reg1034, killed %reg1035 323 /// 324 /// %reg1034 is not considered to be killed, since it is copied from a 325 /// register which is not killed. Treating it as not killed lets the 326 /// normal heuristics commute the (two-address) add, which lets 327 /// coalescing eliminate the extra copy. 328 /// 329 /// If allowFalsePositives is true then likely kills are treated as kills even 330 /// if it can't be proven that they are kills. 331 static bool isKilled(MachineInstr &MI, Register Reg, 332 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 333 LiveIntervals *LIS, bool allowFalsePositives) { 334 MachineInstr *DefMI = &MI; 335 while (true) { 336 // All uses of physical registers are likely to be kills. 337 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 338 return true; 339 if (!isPlainlyKilled(DefMI, Reg, LIS)) 340 return false; 341 if (Reg.isPhysical()) 342 return true; 343 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 344 // If there are multiple defs, we can't do a simple analysis, so just 345 // go with what the kill flag says. 346 if (std::next(Begin) != MRI->def_end()) 347 return true; 348 DefMI = Begin->getParent(); 349 bool IsSrcPhys, IsDstPhys; 350 Register SrcReg, DstReg; 351 // If the def is something other than a copy, then it isn't going to 352 // be coalesced, so follow the kill flag. 353 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 354 return true; 355 Reg = SrcReg; 356 } 357 } 358 359 /// Return true if the specified MI uses the specified register as a two-address 360 /// use. If so, return the destination register by reference. 361 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 362 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 363 const MachineOperand &MO = MI.getOperand(i); 364 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 365 continue; 366 unsigned ti; 367 if (MI.isRegTiedToDefOperand(i, &ti)) { 368 DstReg = MI.getOperand(ti).getReg(); 369 return true; 370 } 371 } 372 return false; 373 } 374 375 /// Given a register, if all its uses are in the same basic block, return the 376 /// last use instruction if it's a copy or a two-address use. 377 static MachineInstr * 378 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 379 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 380 bool &IsCopy, Register &DstReg, bool &IsDstPhys, 381 LiveIntervals *LIS) { 382 MachineOperand *UseOp = nullptr; 383 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 384 MachineInstr *MI = MO.getParent(); 385 if (MI->getParent() != MBB) 386 return nullptr; 387 if (isPlainlyKilled(MI, Reg, LIS)) 388 UseOp = &MO; 389 } 390 if (!UseOp) 391 return nullptr; 392 MachineInstr &UseMI = *UseOp->getParent(); 393 394 Register SrcReg; 395 bool IsSrcPhys; 396 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 397 IsCopy = true; 398 return &UseMI; 399 } 400 IsDstPhys = false; 401 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 402 IsDstPhys = DstReg.isPhysical(); 403 return &UseMI; 404 } 405 if (UseMI.isCommutable()) { 406 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 407 unsigned Src2 = UseMI.getOperandNo(UseOp); 408 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 409 MachineOperand &MO = UseMI.getOperand(Src1); 410 if (MO.isReg() && MO.isUse() && 411 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 412 IsDstPhys = DstReg.isPhysical(); 413 return &UseMI; 414 } 415 } 416 } 417 return nullptr; 418 } 419 420 /// Return the physical register the specified virtual register might be mapped 421 /// to. 422 static MCRegister getMappedReg(Register Reg, 423 DenseMap<Register, Register> &RegMap) { 424 while (Reg.isVirtual()) { 425 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 426 if (SI == RegMap.end()) 427 return 0; 428 Reg = SI->second; 429 } 430 if (Reg.isPhysical()) 431 return Reg; 432 return 0; 433 } 434 435 /// Return true if the two registers are equal or aliased. 436 static bool regsAreCompatible(Register RegA, Register RegB, 437 const TargetRegisterInfo *TRI) { 438 if (RegA == RegB) 439 return true; 440 if (!RegA || !RegB) 441 return false; 442 return TRI->regsOverlap(RegA, RegB); 443 } 444 445 /// From RegMap remove entries mapped to a physical register which overlaps MO. 446 static void removeMapRegEntry(const MachineOperand &MO, 447 DenseMap<Register, Register> &RegMap, 448 const TargetRegisterInfo *TRI) { 449 assert( 450 (MO.isReg() || MO.isRegMask()) && 451 "removeMapRegEntry must be called with a register or regmask operand."); 452 453 SmallVector<Register, 2> Srcs; 454 for (auto SI : RegMap) { 455 Register ToReg = SI.second; 456 if (ToReg.isVirtual()) 457 continue; 458 459 if (MO.isReg()) { 460 Register Reg = MO.getReg(); 461 if (TRI->regsOverlap(ToReg, Reg)) 462 Srcs.push_back(SI.first); 463 } else if (MO.clobbersPhysReg(ToReg)) 464 Srcs.push_back(SI.first); 465 } 466 467 for (auto SrcReg : Srcs) 468 RegMap.erase(SrcReg); 469 } 470 471 /// If a physical register is clobbered, old entries mapped to it should be 472 /// deleted. For example 473 /// 474 /// %2:gr64 = COPY killed $rdx 475 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 476 /// 477 /// After the MUL instruction, $rdx contains different value than in the COPY 478 /// instruction. So %2 should not map to $rdx after MUL. 479 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 480 if (MI->isCopy()) { 481 // If a virtual register is copied to its mapped physical register, it 482 // doesn't change the potential coalescing between them, so we don't remove 483 // entries mapped to the physical register. For example 484 // 485 // %100 = COPY $r8 486 // ... 487 // $r8 = COPY %100 488 // 489 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 490 // destroy the content of $r8, and should not impact SrcRegMap. 491 Register Dst = MI->getOperand(0).getReg(); 492 if (!Dst || Dst.isVirtual()) 493 return; 494 495 Register Src = MI->getOperand(1).getReg(); 496 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 497 return; 498 } 499 500 for (const MachineOperand &MO : MI->operands()) { 501 if (MO.isRegMask()) { 502 removeMapRegEntry(MO, SrcRegMap, TRI); 503 continue; 504 } 505 if (!MO.isReg() || !MO.isDef()) 506 continue; 507 Register Reg = MO.getReg(); 508 if (!Reg || Reg.isVirtual()) 509 continue; 510 removeMapRegEntry(MO, SrcRegMap, TRI); 511 } 512 } 513 514 // Returns true if Reg is equal or aliased to at least one register in Set. 515 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 516 const TargetRegisterInfo *TRI) { 517 for (unsigned R : Set) 518 if (TRI->regsOverlap(R, Reg)) 519 return true; 520 521 return false; 522 } 523 524 /// Return true if it's potentially profitable to commute the two-address 525 /// instruction that's being processed. 526 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 527 Register RegB, 528 Register RegC, 529 MachineInstr *MI, 530 unsigned Dist) { 531 if (OptLevel == CodeGenOpt::None) 532 return false; 533 534 // Determine if it's profitable to commute this two address instruction. In 535 // general, we want no uses between this instruction and the definition of 536 // the two-address register. 537 // e.g. 538 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 539 // %reg1029 = COPY %reg1028 540 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 541 // insert => %reg1030 = COPY %reg1028 542 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 543 // In this case, it might not be possible to coalesce the second COPY 544 // instruction if the first one is coalesced. So it would be profitable to 545 // commute it: 546 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 547 // %reg1029 = COPY %reg1028 548 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 549 // insert => %reg1030 = COPY %reg1029 550 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 551 552 if (!isPlainlyKilled(MI, RegC, LIS)) 553 return false; 554 555 // Ok, we have something like: 556 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 557 // let's see if it's worth commuting it. 558 559 // Look for situations like this: 560 // %reg1024 = MOV r1 561 // %reg1025 = MOV r0 562 // %reg1026 = ADD %reg1024, %reg1025 563 // r0 = MOV %reg1026 564 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 565 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 566 if (ToRegA) { 567 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 568 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 569 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 570 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 571 572 // Compute if any of the following are true: 573 // -RegB is not tied to a register and RegC is compatible with RegA. 574 // -RegB is tied to the wrong physical register, but RegC is. 575 // -RegB is tied to the wrong physical register, and RegC isn't tied. 576 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 577 return true; 578 // Don't compute if any of the following are true: 579 // -RegC is not tied to a register and RegB is compatible with RegA. 580 // -RegC is tied to the wrong physical register, but RegB is. 581 // -RegC is tied to the wrong physical register, and RegB isn't tied. 582 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 583 return false; 584 } 585 586 // If there is a use of RegC between its last def (could be livein) and this 587 // instruction, then bail. 588 unsigned LastDefC = 0; 589 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 590 return false; 591 592 // If there is a use of RegB between its last def (could be livein) and this 593 // instruction, then go ahead and make this transformation. 594 unsigned LastDefB = 0; 595 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 596 return true; 597 598 // Look for situation like this: 599 // %reg101 = MOV %reg100 600 // %reg102 = ... 601 // %reg103 = ADD %reg102, %reg101 602 // ... = %reg103 ... 603 // %reg100 = MOV %reg103 604 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 605 // to eliminate an otherwise unavoidable copy. 606 // FIXME: 607 // We can extend the logic further: If an pair of operands in an insn has 608 // been merged, the insn could be regarded as a virtual copy, and the virtual 609 // copy could also be used to construct a copy chain. 610 // To more generally minimize register copies, ideally the logic of two addr 611 // instruction pass should be integrated with register allocation pass where 612 // interference graph is available. 613 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 614 return true; 615 616 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 617 return false; 618 619 // Look for other target specific commute preference. 620 bool Commute; 621 if (TII->hasCommutePreference(*MI, Commute)) 622 return Commute; 623 624 // Since there are no intervening uses for both registers, then commute 625 // if the def of RegC is closer. Its live interval is shorter. 626 return LastDefB && LastDefC && LastDefC > LastDefB; 627 } 628 629 /// Commute a two-address instruction and update the basic block, distance map, 630 /// and live variables if needed. Return true if it is successful. 631 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 632 unsigned DstIdx, 633 unsigned RegBIdx, 634 unsigned RegCIdx, 635 unsigned Dist) { 636 Register RegC = MI->getOperand(RegCIdx).getReg(); 637 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 638 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 639 640 if (NewMI == nullptr) { 641 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 642 return false; 643 } 644 645 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 646 assert(NewMI == MI && 647 "TargetInstrInfo::commuteInstruction() should not return a new " 648 "instruction unless it was requested."); 649 650 // Update source register map. 651 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 652 if (FromRegC) { 653 Register RegA = MI->getOperand(DstIdx).getReg(); 654 SrcRegMap[RegA] = FromRegC; 655 } 656 657 return true; 658 } 659 660 /// Return true if it is profitable to convert the given 2-address instruction 661 /// to a 3-address one. 662 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 663 Register RegB) { 664 // Look for situations like this: 665 // %reg1024 = MOV r1 666 // %reg1025 = MOV r0 667 // %reg1026 = ADD %reg1024, %reg1025 668 // r2 = MOV %reg1026 669 // Turn ADD into a 3-address instruction to avoid a copy. 670 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 671 if (!FromRegB) 672 return false; 673 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 674 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 675 } 676 677 /// Convert the specified two-address instruction into a three address one. 678 /// Return true if this transformation was successful. 679 bool TwoAddressInstructionPass::convertInstTo3Addr( 680 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 681 Register RegA, Register RegB, unsigned &Dist) { 682 MachineInstrSpan MIS(mi, MBB); 683 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS); 684 if (!NewMI) 685 return false; 686 687 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 688 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 689 690 // If the old instruction is debug value tracked, an update is required. 691 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 692 assert(mi->getNumExplicitDefs() == 1); 693 assert(NewMI->getNumExplicitDefs() == 1); 694 695 // Find the old and new def location. 696 auto OldIt = mi->defs().begin(); 697 auto NewIt = NewMI->defs().begin(); 698 unsigned OldIdx = mi->getOperandNo(OldIt); 699 unsigned NewIdx = NewMI->getOperandNo(NewIt); 700 701 // Record that one def has been replaced by the other. 702 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 703 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 704 std::make_pair(NewInstrNum, NewIdx)); 705 } 706 707 MBB->erase(mi); // Nuke the old inst. 708 709 for (MachineInstr &MI : MIS) 710 DistanceMap.insert(std::make_pair(&MI, Dist++)); 711 Dist--; 712 mi = NewMI; 713 nmi = std::next(mi); 714 715 // Update source and destination register maps. 716 SrcRegMap.erase(RegA); 717 DstRegMap.erase(RegB); 718 return true; 719 } 720 721 /// Scan forward recursively for only uses, update maps if the use is a copy or 722 /// a two-address instruction. 723 void TwoAddressInstructionPass::scanUses(Register DstReg) { 724 SmallVector<Register, 4> VirtRegPairs; 725 bool IsDstPhys; 726 bool IsCopy = false; 727 Register NewReg; 728 Register Reg = DstReg; 729 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 730 NewReg, IsDstPhys, LIS)) { 731 if (IsCopy && !Processed.insert(UseMI).second) 732 break; 733 734 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 735 if (DI != DistanceMap.end()) 736 // Earlier in the same MBB.Reached via a back edge. 737 break; 738 739 if (IsDstPhys) { 740 VirtRegPairs.push_back(NewReg); 741 break; 742 } 743 SrcRegMap[NewReg] = Reg; 744 VirtRegPairs.push_back(NewReg); 745 Reg = NewReg; 746 } 747 748 if (!VirtRegPairs.empty()) { 749 unsigned ToReg = VirtRegPairs.back(); 750 VirtRegPairs.pop_back(); 751 while (!VirtRegPairs.empty()) { 752 unsigned FromReg = VirtRegPairs.pop_back_val(); 753 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 754 if (!isNew) 755 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 756 ToReg = FromReg; 757 } 758 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 759 if (!isNew) 760 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 761 } 762 } 763 764 /// If the specified instruction is not yet processed, process it if it's a 765 /// copy. For a copy instruction, we find the physical registers the 766 /// source and destination registers might be mapped to. These are kept in 767 /// point-to maps used to determine future optimizations. e.g. 768 /// v1024 = mov r0 769 /// v1025 = mov r1 770 /// v1026 = add v1024, v1025 771 /// r1 = mov r1026 772 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 773 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 774 /// potentially joined with r1 on the output side. It's worthwhile to commute 775 /// 'add' to eliminate a copy. 776 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 777 if (Processed.count(MI)) 778 return; 779 780 bool IsSrcPhys, IsDstPhys; 781 Register SrcReg, DstReg; 782 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 783 return; 784 785 if (IsDstPhys && !IsSrcPhys) { 786 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 787 } else if (!IsDstPhys && IsSrcPhys) { 788 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 789 if (!isNew) 790 assert(SrcRegMap[DstReg] == SrcReg && 791 "Can't map to two src physical registers!"); 792 793 scanUses(DstReg); 794 } 795 796 Processed.insert(MI); 797 } 798 799 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 800 /// consider moving the instruction below the kill instruction in order to 801 /// eliminate the need for the copy. 802 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 803 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 804 Register Reg) { 805 // Bail immediately if we don't have LV or LIS available. We use them to find 806 // kills efficiently. 807 if (!LV && !LIS) 808 return false; 809 810 MachineInstr *MI = &*mi; 811 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 812 if (DI == DistanceMap.end()) 813 // Must be created from unfolded load. Don't waste time trying this. 814 return false; 815 816 MachineInstr *KillMI = nullptr; 817 if (LIS) { 818 LiveInterval &LI = LIS->getInterval(Reg); 819 assert(LI.end() != LI.begin() && 820 "Reg should not have empty live interval."); 821 822 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 823 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 824 if (I != LI.end() && I->start < MBBEndIdx) 825 return false; 826 827 --I; 828 KillMI = LIS->getInstructionFromIndex(I->end); 829 } else { 830 KillMI = LV->getVarInfo(Reg).findKill(MBB); 831 } 832 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 833 // Don't mess with copies, they may be coalesced later. 834 return false; 835 836 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 837 KillMI->isBranch() || KillMI->isTerminator()) 838 // Don't move pass calls, etc. 839 return false; 840 841 Register DstReg; 842 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 843 return false; 844 845 bool SeenStore = true; 846 if (!MI->isSafeToMove(AA, SeenStore)) 847 return false; 848 849 if (TII->getInstrLatency(InstrItins, *MI) > 1) 850 // FIXME: Needs more sophisticated heuristics. 851 return false; 852 853 SmallVector<Register, 2> Uses; 854 SmallVector<Register, 2> Kills; 855 SmallVector<Register, 2> Defs; 856 for (const MachineOperand &MO : MI->operands()) { 857 if (!MO.isReg()) 858 continue; 859 Register MOReg = MO.getReg(); 860 if (!MOReg) 861 continue; 862 if (MO.isDef()) 863 Defs.push_back(MOReg); 864 else { 865 Uses.push_back(MOReg); 866 if (MOReg != Reg && (MO.isKill() || 867 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 868 Kills.push_back(MOReg); 869 } 870 } 871 872 // Move the copies connected to MI down as well. 873 MachineBasicBlock::iterator Begin = MI; 874 MachineBasicBlock::iterator AfterMI = std::next(Begin); 875 MachineBasicBlock::iterator End = AfterMI; 876 while (End != MBB->end()) { 877 End = skipDebugInstructionsForward(End, MBB->end()); 878 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 879 Defs.push_back(End->getOperand(0).getReg()); 880 else 881 break; 882 ++End; 883 } 884 885 // Check if the reschedule will not break dependencies. 886 unsigned NumVisited = 0; 887 MachineBasicBlock::iterator KillPos = KillMI; 888 ++KillPos; 889 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 890 // Debug or pseudo instructions cannot be counted against the limit. 891 if (OtherMI.isDebugOrPseudoInstr()) 892 continue; 893 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 894 return false; 895 ++NumVisited; 896 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 897 OtherMI.isBranch() || OtherMI.isTerminator()) 898 // Don't move pass calls, etc. 899 return false; 900 for (const MachineOperand &MO : OtherMI.operands()) { 901 if (!MO.isReg()) 902 continue; 903 Register MOReg = MO.getReg(); 904 if (!MOReg) 905 continue; 906 if (MO.isDef()) { 907 if (regOverlapsSet(Uses, MOReg, TRI)) 908 // Physical register use would be clobbered. 909 return false; 910 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 911 // May clobber a physical register def. 912 // FIXME: This may be too conservative. It's ok if the instruction 913 // is sunken completely below the use. 914 return false; 915 } else { 916 if (regOverlapsSet(Defs, MOReg, TRI)) 917 return false; 918 bool isKill = 919 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 920 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 921 regOverlapsSet(Kills, MOReg, TRI))) 922 // Don't want to extend other live ranges and update kills. 923 return false; 924 if (MOReg == Reg && !isKill) 925 // We can't schedule across a use of the register in question. 926 return false; 927 // Ensure that if this is register in question, its the kill we expect. 928 assert((MOReg != Reg || &OtherMI == KillMI) && 929 "Found multiple kills of a register in a basic block"); 930 } 931 } 932 } 933 934 // Move debug info as well. 935 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 936 --Begin; 937 938 nmi = End; 939 MachineBasicBlock::iterator InsertPos = KillPos; 940 if (LIS) { 941 // We have to move the copies (and any interleaved debug instructions) 942 // first so that the MBB is still well-formed when calling handleMove(). 943 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 944 auto CopyMI = MBBI++; 945 MBB->splice(InsertPos, MBB, CopyMI); 946 if (!CopyMI->isDebugOrPseudoInstr()) 947 LIS->handleMove(*CopyMI); 948 InsertPos = CopyMI; 949 } 950 End = std::next(MachineBasicBlock::iterator(MI)); 951 } 952 953 // Copies following MI may have been moved as well. 954 MBB->splice(InsertPos, MBB, Begin, End); 955 DistanceMap.erase(DI); 956 957 // Update live variables 958 if (LIS) { 959 LIS->handleMove(*MI); 960 } else { 961 LV->removeVirtualRegisterKilled(Reg, *KillMI); 962 LV->addVirtualRegisterKilled(Reg, *MI); 963 } 964 965 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 966 return true; 967 } 968 969 /// Return true if the re-scheduling will put the given instruction too close 970 /// to the defs of its register dependencies. 971 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 972 MachineInstr *MI) { 973 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 974 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 975 continue; 976 if (&DefMI == MI) 977 return true; // MI is defining something KillMI uses 978 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 979 if (DDI == DistanceMap.end()) 980 return true; // Below MI 981 unsigned DefDist = DDI->second; 982 assert(Dist > DefDist && "Visited def already?"); 983 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 984 return true; 985 } 986 return false; 987 } 988 989 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 990 /// consider moving the kill instruction above the current two-address 991 /// instruction in order to eliminate the need for the copy. 992 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 993 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 994 Register Reg) { 995 // Bail immediately if we don't have LV or LIS available. We use them to find 996 // kills efficiently. 997 if (!LV && !LIS) 998 return false; 999 1000 MachineInstr *MI = &*mi; 1001 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1002 if (DI == DistanceMap.end()) 1003 // Must be created from unfolded load. Don't waste time trying this. 1004 return false; 1005 1006 MachineInstr *KillMI = nullptr; 1007 if (LIS) { 1008 LiveInterval &LI = LIS->getInterval(Reg); 1009 assert(LI.end() != LI.begin() && 1010 "Reg should not have empty live interval."); 1011 1012 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1013 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1014 if (I != LI.end() && I->start < MBBEndIdx) 1015 return false; 1016 1017 --I; 1018 KillMI = LIS->getInstructionFromIndex(I->end); 1019 } else { 1020 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1021 } 1022 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1023 // Don't mess with copies, they may be coalesced later. 1024 return false; 1025 1026 Register DstReg; 1027 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1028 return false; 1029 1030 bool SeenStore = true; 1031 if (!KillMI->isSafeToMove(AA, SeenStore)) 1032 return false; 1033 1034 SmallVector<Register, 2> Uses; 1035 SmallVector<Register, 2> Kills; 1036 SmallVector<Register, 2> Defs; 1037 SmallVector<Register, 2> LiveDefs; 1038 for (const MachineOperand &MO : KillMI->operands()) { 1039 if (!MO.isReg()) 1040 continue; 1041 Register MOReg = MO.getReg(); 1042 if (MO.isUse()) { 1043 if (!MOReg) 1044 continue; 1045 if (isDefTooClose(MOReg, DI->second, MI)) 1046 return false; 1047 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1048 if (MOReg == Reg && !isKill) 1049 return false; 1050 Uses.push_back(MOReg); 1051 if (isKill && MOReg != Reg) 1052 Kills.push_back(MOReg); 1053 } else if (MOReg.isPhysical()) { 1054 Defs.push_back(MOReg); 1055 if (!MO.isDead()) 1056 LiveDefs.push_back(MOReg); 1057 } 1058 } 1059 1060 // Check if the reschedule will not break depedencies. 1061 unsigned NumVisited = 0; 1062 for (MachineInstr &OtherMI : 1063 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1064 // Debug or pseudo instructions cannot be counted against the limit. 1065 if (OtherMI.isDebugOrPseudoInstr()) 1066 continue; 1067 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1068 return false; 1069 ++NumVisited; 1070 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1071 OtherMI.isBranch() || OtherMI.isTerminator()) 1072 // Don't move pass calls, etc. 1073 return false; 1074 SmallVector<Register, 2> OtherDefs; 1075 for (const MachineOperand &MO : OtherMI.operands()) { 1076 if (!MO.isReg()) 1077 continue; 1078 Register MOReg = MO.getReg(); 1079 if (!MOReg) 1080 continue; 1081 if (MO.isUse()) { 1082 if (regOverlapsSet(Defs, MOReg, TRI)) 1083 // Moving KillMI can clobber the physical register if the def has 1084 // not been seen. 1085 return false; 1086 if (regOverlapsSet(Kills, MOReg, TRI)) 1087 // Don't want to extend other live ranges and update kills. 1088 return false; 1089 if (&OtherMI != MI && MOReg == Reg && 1090 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1091 // We can't schedule across a use of the register in question. 1092 return false; 1093 } else { 1094 OtherDefs.push_back(MOReg); 1095 } 1096 } 1097 1098 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1099 Register MOReg = OtherDefs[i]; 1100 if (regOverlapsSet(Uses, MOReg, TRI)) 1101 return false; 1102 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1103 return false; 1104 // Physical register def is seen. 1105 llvm::erase_value(Defs, MOReg); 1106 } 1107 } 1108 1109 // Move the old kill above MI, don't forget to move debug info as well. 1110 MachineBasicBlock::iterator InsertPos = mi; 1111 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1112 --InsertPos; 1113 MachineBasicBlock::iterator From = KillMI; 1114 MachineBasicBlock::iterator To = std::next(From); 1115 while (std::prev(From)->isDebugInstr()) 1116 --From; 1117 MBB->splice(InsertPos, MBB, From, To); 1118 1119 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1120 DistanceMap.erase(DI); 1121 1122 // Update live variables 1123 if (LIS) { 1124 LIS->handleMove(*KillMI); 1125 } else { 1126 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1127 LV->addVirtualRegisterKilled(Reg, *MI); 1128 } 1129 1130 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1131 return true; 1132 } 1133 1134 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1135 /// given machine instruction to improve opportunities for coalescing and 1136 /// elimination of a register to register copy. 1137 /// 1138 /// 'DstOpIdx' specifies the index of MI def operand. 1139 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1140 /// operand is killed by the given instruction. 1141 /// The 'Dist' arguments provides the distance of MI from the start of the 1142 /// current basic block and it is used to determine if it is profitable 1143 /// to commute operands in the instruction. 1144 /// 1145 /// Returns true if the transformation happened. Otherwise, returns false. 1146 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1147 unsigned DstOpIdx, 1148 unsigned BaseOpIdx, 1149 bool BaseOpKilled, 1150 unsigned Dist) { 1151 if (!MI->isCommutable()) 1152 return false; 1153 1154 bool MadeChange = false; 1155 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1156 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1157 unsigned OpsNum = MI->getDesc().getNumOperands(); 1158 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1159 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1160 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1161 // and OtherOpIdx are commutable, it does not really search for 1162 // other commutable operands and does not change the values of passed 1163 // variables. 1164 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1165 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1166 continue; 1167 1168 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1169 bool AggressiveCommute = false; 1170 1171 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1172 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1173 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1174 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1175 1176 if (!DoCommute && 1177 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1178 DoCommute = true; 1179 AggressiveCommute = true; 1180 } 1181 1182 // If it's profitable to commute, try to do so. 1183 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1184 Dist)) { 1185 MadeChange = true; 1186 ++NumCommuted; 1187 if (AggressiveCommute) 1188 ++NumAggrCommuted; 1189 1190 // There might be more than two commutable operands, update BaseOp and 1191 // continue scanning. 1192 // FIXME: This assumes that the new instruction's operands are in the 1193 // same positions and were simply swapped. 1194 BaseOpReg = OtherOpReg; 1195 BaseOpKilled = OtherOpKilled; 1196 // Resamples OpsNum in case the number of operands was reduced. This 1197 // happens with X86. 1198 OpsNum = MI->getDesc().getNumOperands(); 1199 } 1200 } 1201 return MadeChange; 1202 } 1203 1204 /// For the case where an instruction has a single pair of tied register 1205 /// operands, attempt some transformations that may either eliminate the tied 1206 /// operands or improve the opportunities for coalescing away the register copy. 1207 /// Returns true if no copy needs to be inserted to untie mi's operands 1208 /// (either because they were untied, or because mi was rescheduled, and will 1209 /// be visited again later). If the shouldOnlyCommute flag is true, only 1210 /// instruction commutation is attempted. 1211 bool TwoAddressInstructionPass:: 1212 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1213 MachineBasicBlock::iterator &nmi, 1214 unsigned SrcIdx, unsigned DstIdx, 1215 unsigned &Dist, bool shouldOnlyCommute) { 1216 if (OptLevel == CodeGenOpt::None) 1217 return false; 1218 1219 MachineInstr &MI = *mi; 1220 Register regA = MI.getOperand(DstIdx).getReg(); 1221 Register regB = MI.getOperand(SrcIdx).getReg(); 1222 1223 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1224 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1225 1226 if (regA.isVirtual()) 1227 scanUses(regA); 1228 1229 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1230 1231 // If the instruction is convertible to 3 Addr, instead 1232 // of returning try 3 Addr transformation aggressively and 1233 // use this variable to check later. Because it might be better. 1234 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1235 // instead of the following code. 1236 // addl %esi, %edi 1237 // movl %edi, %eax 1238 // ret 1239 if (Commuted && !MI.isConvertibleTo3Addr()) 1240 return false; 1241 1242 if (shouldOnlyCommute) 1243 return false; 1244 1245 // If there is one more use of regB later in the same MBB, consider 1246 // re-schedule this MI below it. 1247 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1248 ++NumReSchedDowns; 1249 return true; 1250 } 1251 1252 // If we commuted, regB may have changed so we should re-sample it to avoid 1253 // confusing the three address conversion below. 1254 if (Commuted) { 1255 regB = MI.getOperand(SrcIdx).getReg(); 1256 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1257 } 1258 1259 if (MI.isConvertibleTo3Addr()) { 1260 // This instruction is potentially convertible to a true 1261 // three-address instruction. Check if it is profitable. 1262 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1263 // Try to convert it. 1264 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1265 ++NumConvertedTo3Addr; 1266 return true; // Done with this instruction. 1267 } 1268 } 1269 } 1270 1271 // Return if it is commuted but 3 addr conversion is failed. 1272 if (Commuted) 1273 return false; 1274 1275 // If there is one more use of regB later in the same MBB, consider 1276 // re-schedule it before this MI if it's legal. 1277 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1278 ++NumReSchedUps; 1279 return true; 1280 } 1281 1282 // If this is an instruction with a load folded into it, try unfolding 1283 // the load, e.g. avoid this: 1284 // movq %rdx, %rcx 1285 // addq (%rax), %rcx 1286 // in favor of this: 1287 // movq (%rax), %rcx 1288 // addq %rdx, %rcx 1289 // because it's preferable to schedule a load than a register copy. 1290 if (MI.mayLoad() && !regBKilled) { 1291 // Determine if a load can be unfolded. 1292 unsigned LoadRegIndex; 1293 unsigned NewOpc = 1294 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1295 /*UnfoldLoad=*/true, 1296 /*UnfoldStore=*/false, 1297 &LoadRegIndex); 1298 if (NewOpc != 0) { 1299 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1300 if (UnfoldMCID.getNumDefs() == 1) { 1301 // Unfold the load. 1302 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1303 const TargetRegisterClass *RC = 1304 TRI->getAllocatableClass( 1305 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1306 Register Reg = MRI->createVirtualRegister(RC); 1307 SmallVector<MachineInstr *, 2> NewMIs; 1308 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1309 /*UnfoldLoad=*/true, 1310 /*UnfoldStore=*/false, NewMIs)) { 1311 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1312 return false; 1313 } 1314 assert(NewMIs.size() == 2 && 1315 "Unfolded a load into multiple instructions!"); 1316 // The load was previously folded, so this is the only use. 1317 NewMIs[1]->addRegisterKilled(Reg, TRI); 1318 1319 // Tentatively insert the instructions into the block so that they 1320 // look "normal" to the transformation logic. 1321 MBB->insert(mi, NewMIs[0]); 1322 MBB->insert(mi, NewMIs[1]); 1323 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1324 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1325 1326 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1327 << "2addr: NEW INST: " << *NewMIs[1]); 1328 1329 // Transform the instruction, now that it no longer has a load. 1330 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1331 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1332 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1333 bool TransformResult = 1334 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1335 (void)TransformResult; 1336 assert(!TransformResult && 1337 "tryInstructionTransform() should return false."); 1338 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1339 // Success, or at least we made an improvement. Keep the unfolded 1340 // instructions and discard the original. 1341 if (LV) { 1342 for (const MachineOperand &MO : MI.operands()) { 1343 if (MO.isReg() && MO.getReg().isVirtual()) { 1344 if (MO.isUse()) { 1345 if (MO.isKill()) { 1346 if (NewMIs[0]->killsRegister(MO.getReg())) 1347 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1348 else { 1349 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1350 "Kill missing after load unfold!"); 1351 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1352 } 1353 } 1354 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1355 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1356 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1357 else { 1358 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1359 "Dead flag missing after load unfold!"); 1360 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1361 } 1362 } 1363 } 1364 } 1365 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1366 } 1367 1368 SmallVector<Register, 4> OrigRegs; 1369 if (LIS) { 1370 for (const MachineOperand &MO : MI.operands()) { 1371 if (MO.isReg()) 1372 OrigRegs.push_back(MO.getReg()); 1373 } 1374 1375 LIS->RemoveMachineInstrFromMaps(MI); 1376 } 1377 1378 MI.eraseFromParent(); 1379 DistanceMap.erase(&MI); 1380 1381 // Update LiveIntervals. 1382 if (LIS) { 1383 MachineBasicBlock::iterator Begin(NewMIs[0]); 1384 MachineBasicBlock::iterator End(NewMIs[1]); 1385 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1386 } 1387 1388 mi = NewMIs[1]; 1389 } else { 1390 // Transforming didn't eliminate the tie and didn't lead to an 1391 // improvement. Clean up the unfolded instructions and keep the 1392 // original. 1393 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1394 NewMIs[0]->eraseFromParent(); 1395 NewMIs[1]->eraseFromParent(); 1396 DistanceMap.erase(NewMIs[0]); 1397 DistanceMap.erase(NewMIs[1]); 1398 Dist--; 1399 } 1400 } 1401 } 1402 } 1403 1404 return false; 1405 } 1406 1407 // Collect tied operands of MI that need to be handled. 1408 // Rewrite trivial cases immediately. 1409 // Return true if any tied operands where found, including the trivial ones. 1410 bool TwoAddressInstructionPass:: 1411 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1412 bool AnyOps = false; 1413 unsigned NumOps = MI->getNumOperands(); 1414 1415 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1416 unsigned DstIdx = 0; 1417 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1418 continue; 1419 AnyOps = true; 1420 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1421 MachineOperand &DstMO = MI->getOperand(DstIdx); 1422 Register SrcReg = SrcMO.getReg(); 1423 Register DstReg = DstMO.getReg(); 1424 // Tied constraint already satisfied? 1425 if (SrcReg == DstReg) 1426 continue; 1427 1428 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1429 1430 // Deal with undef uses immediately - simply rewrite the src operand. 1431 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1432 // Constrain the DstReg register class if required. 1433 if (DstReg.isVirtual()) { 1434 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1435 MRI->constrainRegClass(DstReg, RC); 1436 } 1437 SrcMO.setReg(DstReg); 1438 SrcMO.setSubReg(0); 1439 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1440 continue; 1441 } 1442 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1443 } 1444 return AnyOps; 1445 } 1446 1447 // Process a list of tied MI operands that all use the same source register. 1448 // The tied pairs are of the form (SrcIdx, DstIdx). 1449 void 1450 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1451 TiedPairList &TiedPairs, 1452 unsigned &Dist) { 1453 bool IsEarlyClobber = llvm::any_of(TiedPairs, [MI](auto const &TP) { 1454 return MI->getOperand(TP.second).isEarlyClobber(); 1455 }); 1456 1457 bool RemovedKillFlag = false; 1458 bool AllUsesCopied = true; 1459 unsigned LastCopiedReg = 0; 1460 SlotIndex LastCopyIdx; 1461 Register RegB = 0; 1462 unsigned SubRegB = 0; 1463 for (auto &TP : TiedPairs) { 1464 unsigned SrcIdx = TP.first; 1465 unsigned DstIdx = TP.second; 1466 1467 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1468 Register RegA = DstMO.getReg(); 1469 1470 // Grab RegB from the instruction because it may have changed if the 1471 // instruction was commuted. 1472 RegB = MI->getOperand(SrcIdx).getReg(); 1473 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1474 1475 if (RegA == RegB) { 1476 // The register is tied to multiple destinations (or else we would 1477 // not have continued this far), but this use of the register 1478 // already matches the tied destination. Leave it. 1479 AllUsesCopied = false; 1480 continue; 1481 } 1482 LastCopiedReg = RegA; 1483 1484 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1485 1486 #ifndef NDEBUG 1487 // First, verify that we don't have a use of "a" in the instruction 1488 // (a = b + a for example) because our transformation will not 1489 // work. This should never occur because we are in SSA form. 1490 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1491 assert(i == DstIdx || 1492 !MI->getOperand(i).isReg() || 1493 MI->getOperand(i).getReg() != RegA); 1494 #endif 1495 1496 // Emit a copy. 1497 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1498 TII->get(TargetOpcode::COPY), RegA); 1499 // If this operand is folding a truncation, the truncation now moves to the 1500 // copy so that the register classes remain valid for the operands. 1501 MIB.addReg(RegB, 0, SubRegB); 1502 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1503 if (SubRegB) { 1504 if (RegA.isVirtual()) { 1505 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1506 SubRegB) && 1507 "tied subregister must be a truncation"); 1508 // The superreg class will not be used to constrain the subreg class. 1509 RC = nullptr; 1510 } else { 1511 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1512 && "tied subregister must be a truncation"); 1513 } 1514 } 1515 1516 // Update DistanceMap. 1517 MachineBasicBlock::iterator PrevMI = MI; 1518 --PrevMI; 1519 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1520 DistanceMap[MI] = ++Dist; 1521 1522 if (LIS) { 1523 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1524 1525 SlotIndex endIdx = 1526 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1527 if (RegA.isVirtual()) { 1528 LiveInterval &LI = LIS->getInterval(RegA); 1529 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1530 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1531 for (auto &S : LI.subranges()) { 1532 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1533 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1534 } 1535 } else { 1536 for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) { 1537 if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) { 1538 VNInfo *VNI = 1539 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1540 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1541 } 1542 } 1543 } 1544 } 1545 1546 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1547 1548 MachineOperand &MO = MI->getOperand(SrcIdx); 1549 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1550 "inconsistent operand info for 2-reg pass"); 1551 if (MO.isKill()) { 1552 MO.setIsKill(false); 1553 RemovedKillFlag = true; 1554 } 1555 1556 // Make sure regA is a legal regclass for the SrcIdx operand. 1557 if (RegA.isVirtual() && RegB.isVirtual()) 1558 MRI->constrainRegClass(RegA, RC); 1559 MO.setReg(RegA); 1560 // The getMatchingSuper asserts guarantee that the register class projected 1561 // by SubRegB is compatible with RegA with no subregister. So regardless of 1562 // whether the dest oper writes a subreg, the source oper should not. 1563 MO.setSubReg(0); 1564 } 1565 1566 if (AllUsesCopied) { 1567 LaneBitmask RemainingUses = LaneBitmask::getNone(); 1568 // Replace other (un-tied) uses of regB with LastCopiedReg. 1569 for (MachineOperand &MO : MI->operands()) { 1570 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1571 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { 1572 if (MO.isKill()) { 1573 MO.setIsKill(false); 1574 RemovedKillFlag = true; 1575 } 1576 MO.setReg(LastCopiedReg); 1577 MO.setSubReg(0); 1578 } else { 1579 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1580 } 1581 } 1582 } 1583 1584 // Update live variables for regB. 1585 if (RemovedKillFlag && RemainingUses.none() && LV && 1586 LV->getVarInfo(RegB).removeKill(*MI)) { 1587 MachineBasicBlock::iterator PrevMI = MI; 1588 --PrevMI; 1589 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1590 } 1591 1592 if (RemovedKillFlag && RemainingUses.none()) 1593 SrcRegMap[LastCopiedReg] = RegB; 1594 1595 // Update LiveIntervals. 1596 if (LIS) { 1597 SlotIndex UseIdx = LIS->getInstructionIndex(*MI); 1598 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { 1599 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx); 1600 if (!S) 1601 return true; 1602 if ((LaneMask & RemainingUses).any()) 1603 return false; 1604 if (S->end.getBaseIndex() != UseIdx) 1605 return false; 1606 S->end = LastCopyIdx; 1607 return true; 1608 }; 1609 1610 LiveInterval &LI = LIS->getInterval(RegB); 1611 bool ShrinkLI = true; 1612 for (auto &S : LI.subranges()) 1613 ShrinkLI &= Shrink(S, S.LaneMask); 1614 if (ShrinkLI) 1615 Shrink(LI, LaneBitmask::getAll()); 1616 } 1617 } else if (RemovedKillFlag) { 1618 // Some tied uses of regB matched their destination registers, so 1619 // regB is still used in this instruction, but a kill flag was 1620 // removed from a different tied use of regB, so now we need to add 1621 // a kill flag to one of the remaining uses of regB. 1622 for (MachineOperand &MO : MI->operands()) { 1623 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1624 MO.setIsKill(true); 1625 break; 1626 } 1627 } 1628 } 1629 } 1630 1631 // For every tied operand pair this function transforms statepoint from 1632 // RegA = STATEPOINT ... RegB(tied-def N) 1633 // to 1634 // RegB = STATEPOINT ... RegB(tied-def N) 1635 // and replaces all uses of RegA with RegB. 1636 // No extra COPY instruction is necessary because tied use is killed at 1637 // STATEPOINT. 1638 bool TwoAddressInstructionPass::processStatepoint( 1639 MachineInstr *MI, TiedOperandMap &TiedOperands) { 1640 1641 bool NeedCopy = false; 1642 for (auto &TO : TiedOperands) { 1643 Register RegB = TO.first; 1644 if (TO.second.size() != 1) { 1645 NeedCopy = true; 1646 continue; 1647 } 1648 1649 unsigned SrcIdx = TO.second[0].first; 1650 unsigned DstIdx = TO.second[0].second; 1651 1652 MachineOperand &DstMO = MI->getOperand(DstIdx); 1653 Register RegA = DstMO.getReg(); 1654 1655 assert(RegB == MI->getOperand(SrcIdx).getReg()); 1656 1657 if (RegA == RegB) 1658 continue; 1659 1660 // CodeGenPrepare can sink pointer compare past statepoint, which 1661 // breaks assumption that statepoint kills tied-use register when 1662 // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back 1663 // to generic tied register handling to avoid assertion failures. 1664 // TODO: Recompute LIS/LV information for new range here. 1665 if (LIS) { 1666 const auto &UseLI = LIS->getInterval(RegB); 1667 const auto &DefLI = LIS->getInterval(RegA); 1668 if (DefLI.overlaps(UseLI)) { 1669 LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0) 1670 << " UseLI overlaps with DefLI\n"); 1671 NeedCopy = true; 1672 continue; 1673 } 1674 } else if (LV && LV->getVarInfo(RegB).findKill(MI->getParent()) != MI) { 1675 // Note that MachineOperand::isKill does not work here, because it 1676 // is set only on first register use in instruction and for statepoint 1677 // tied-use register will usually be found in preceeding deopt bundle. 1678 LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0) 1679 << " not killed by statepoint\n"); 1680 NeedCopy = true; 1681 continue; 1682 } 1683 1684 if (!MRI->constrainRegClass(RegB, MRI->getRegClass(RegA))) { 1685 LLVM_DEBUG(dbgs() << "MRI: couldn't constrain" << printReg(RegB, TRI, 0) 1686 << " to register class of " << printReg(RegA, TRI, 0) 1687 << '\n'); 1688 NeedCopy = true; 1689 continue; 1690 } 1691 MRI->replaceRegWith(RegA, RegB); 1692 1693 if (LIS) { 1694 VNInfo::Allocator &A = LIS->getVNInfoAllocator(); 1695 LiveInterval &LI = LIS->getInterval(RegB); 1696 LiveInterval &Other = LIS->getInterval(RegA); 1697 SmallVector<VNInfo *> NewVNIs; 1698 for (const VNInfo *VNI : Other.valnos) { 1699 assert(VNI->id == NewVNIs.size() && "assumed"); 1700 NewVNIs.push_back(LI.createValueCopy(VNI, A)); 1701 } 1702 for (auto &S : Other) { 1703 VNInfo *VNI = NewVNIs[S.valno->id]; 1704 LiveRange::Segment NewSeg(S.start, S.end, VNI); 1705 LI.addSegment(NewSeg); 1706 } 1707 LIS->removeInterval(RegA); 1708 } 1709 1710 if (LV) { 1711 if (MI->getOperand(SrcIdx).isKill()) 1712 LV->removeVirtualRegisterKilled(RegB, *MI); 1713 LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(RegB); 1714 LiveVariables::VarInfo &DstInfo = LV->getVarInfo(RegA); 1715 SrcInfo.AliveBlocks |= DstInfo.AliveBlocks; 1716 DstInfo.AliveBlocks.clear(); 1717 for (auto *KillMI : DstInfo.Kills) 1718 LV->addVirtualRegisterKilled(RegB, *KillMI, false); 1719 } 1720 } 1721 return !NeedCopy; 1722 } 1723 1724 /// Reduce two-address instructions to two operands. 1725 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1726 MF = &Func; 1727 const TargetMachine &TM = MF->getTarget(); 1728 MRI = &MF->getRegInfo(); 1729 TII = MF->getSubtarget().getInstrInfo(); 1730 TRI = MF->getSubtarget().getRegisterInfo(); 1731 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1732 LV = getAnalysisIfAvailable<LiveVariables>(); 1733 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1734 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1735 AA = &AAPass->getAAResults(); 1736 else 1737 AA = nullptr; 1738 OptLevel = TM.getOptLevel(); 1739 // Disable optimizations if requested. We cannot skip the whole pass as some 1740 // fixups are necessary for correctness. 1741 if (skipFunction(Func.getFunction())) 1742 OptLevel = CodeGenOpt::None; 1743 1744 bool MadeChange = false; 1745 1746 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1747 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1748 1749 // This pass takes the function out of SSA form. 1750 MRI->leaveSSA(); 1751 1752 // This pass will rewrite the tied-def to meet the RegConstraint. 1753 MF->getProperties() 1754 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1755 1756 TiedOperandMap TiedOperands; 1757 for (MachineBasicBlock &MBBI : *MF) { 1758 MBB = &MBBI; 1759 unsigned Dist = 0; 1760 DistanceMap.clear(); 1761 SrcRegMap.clear(); 1762 DstRegMap.clear(); 1763 Processed.clear(); 1764 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1765 mi != me; ) { 1766 MachineBasicBlock::iterator nmi = std::next(mi); 1767 // Skip debug instructions. 1768 if (mi->isDebugInstr()) { 1769 mi = nmi; 1770 continue; 1771 } 1772 1773 // Expand REG_SEQUENCE instructions. This will position mi at the first 1774 // expanded instruction. 1775 if (mi->isRegSequence()) 1776 eliminateRegSequence(mi); 1777 1778 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1779 1780 processCopy(&*mi); 1781 1782 // First scan through all the tied register uses in this instruction 1783 // and record a list of pairs of tied operands for each register. 1784 if (!collectTiedOperands(&*mi, TiedOperands)) { 1785 removeClobberedSrcRegMap(&*mi); 1786 mi = nmi; 1787 continue; 1788 } 1789 1790 ++NumTwoAddressInstrs; 1791 MadeChange = true; 1792 LLVM_DEBUG(dbgs() << '\t' << *mi); 1793 1794 // If the instruction has a single pair of tied operands, try some 1795 // transformations that may either eliminate the tied operands or 1796 // improve the opportunities for coalescing away the register copy. 1797 if (TiedOperands.size() == 1) { 1798 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1799 = TiedOperands.begin()->second; 1800 if (TiedPairs.size() == 1) { 1801 unsigned SrcIdx = TiedPairs[0].first; 1802 unsigned DstIdx = TiedPairs[0].second; 1803 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1804 Register DstReg = mi->getOperand(DstIdx).getReg(); 1805 if (SrcReg != DstReg && 1806 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1807 // The tied operands have been eliminated or shifted further down 1808 // the block to ease elimination. Continue processing with 'nmi'. 1809 TiedOperands.clear(); 1810 removeClobberedSrcRegMap(&*mi); 1811 mi = nmi; 1812 continue; 1813 } 1814 } 1815 } 1816 1817 if (mi->getOpcode() == TargetOpcode::STATEPOINT && 1818 processStatepoint(&*mi, TiedOperands)) { 1819 TiedOperands.clear(); 1820 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1821 mi = nmi; 1822 continue; 1823 } 1824 1825 // Now iterate over the information collected above. 1826 for (auto &TO : TiedOperands) { 1827 processTiedPairs(&*mi, TO.second, Dist); 1828 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1829 } 1830 1831 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1832 if (mi->isInsertSubreg()) { 1833 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1834 // To %reg:subidx = COPY %subreg 1835 unsigned SubIdx = mi->getOperand(3).getImm(); 1836 mi->removeOperand(3); 1837 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1838 mi->getOperand(0).setSubReg(SubIdx); 1839 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1840 mi->removeOperand(1); 1841 mi->setDesc(TII->get(TargetOpcode::COPY)); 1842 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1843 1844 // Update LiveIntervals. 1845 if (LIS) { 1846 Register Reg = mi->getOperand(0).getReg(); 1847 LiveInterval &LI = LIS->getInterval(Reg); 1848 if (LI.hasSubRanges()) { 1849 // The COPY no longer defines subregs of %reg except for 1850 // %reg.subidx. 1851 LaneBitmask LaneMask = 1852 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg()); 1853 SlotIndex Idx = LIS->getInstructionIndex(*mi); 1854 for (auto &S : LI.subranges()) { 1855 if ((S.LaneMask & LaneMask).none()) { 1856 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx); 1857 LiveRange::iterator DefSeg = std::next(UseSeg); 1858 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno); 1859 } 1860 } 1861 1862 // The COPY no longer has a use of %reg. 1863 LIS->shrinkToUses(&LI); 1864 } else { 1865 // The live interval for Reg did not have subranges but now it needs 1866 // them because we have introduced a subreg def. Recompute it. 1867 LIS->removeInterval(Reg); 1868 LIS->createAndComputeVirtRegInterval(Reg); 1869 } 1870 } 1871 } 1872 1873 // Clear TiedOperands here instead of at the top of the loop 1874 // since most instructions do not have tied operands. 1875 TiedOperands.clear(); 1876 removeClobberedSrcRegMap(&*mi); 1877 mi = nmi; 1878 } 1879 } 1880 1881 return MadeChange; 1882 } 1883 1884 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1885 /// 1886 /// The instruction is turned into a sequence of sub-register copies: 1887 /// 1888 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1889 /// 1890 /// Becomes: 1891 /// 1892 /// undef %dst:ssub0 = COPY %v1 1893 /// %dst:ssub1 = COPY %v2 1894 void TwoAddressInstructionPass:: 1895 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1896 MachineInstr &MI = *MBBI; 1897 Register DstReg = MI.getOperand(0).getReg(); 1898 1899 SmallVector<Register, 4> OrigRegs; 1900 if (LIS) { 1901 OrigRegs.push_back(MI.getOperand(0).getReg()); 1902 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1903 OrigRegs.push_back(MI.getOperand(i).getReg()); 1904 } 1905 1906 bool DefEmitted = false; 1907 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1908 MachineOperand &UseMO = MI.getOperand(i); 1909 Register SrcReg = UseMO.getReg(); 1910 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1911 // Nothing needs to be inserted for undef operands. 1912 if (UseMO.isUndef()) 1913 continue; 1914 1915 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1916 // might insert a COPY that uses SrcReg after is was killed. 1917 bool isKill = UseMO.isKill(); 1918 if (isKill) 1919 for (unsigned j = i + 2; j < e; j += 2) 1920 if (MI.getOperand(j).getReg() == SrcReg) { 1921 MI.getOperand(j).setIsKill(); 1922 UseMO.setIsKill(false); 1923 isKill = false; 1924 break; 1925 } 1926 1927 // Insert the sub-register copy. 1928 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1929 TII->get(TargetOpcode::COPY)) 1930 .addReg(DstReg, RegState::Define, SubIdx) 1931 .add(UseMO); 1932 1933 // The first def needs an undef flag because there is no live register 1934 // before it. 1935 if (!DefEmitted) { 1936 CopyMI->getOperand(0).setIsUndef(true); 1937 // Return an iterator pointing to the first inserted instr. 1938 MBBI = CopyMI; 1939 } 1940 DefEmitted = true; 1941 1942 // Update LiveVariables' kill info. 1943 if (LV && isKill && !SrcReg.isPhysical()) 1944 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1945 1946 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1947 } 1948 1949 MachineBasicBlock::iterator EndMBBI = 1950 std::next(MachineBasicBlock::iterator(MI)); 1951 1952 if (!DefEmitted) { 1953 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1954 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1955 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1956 MI.removeOperand(j); 1957 } else { 1958 if (LIS) 1959 LIS->RemoveMachineInstrFromMaps(MI); 1960 1961 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1962 MI.eraseFromParent(); 1963 } 1964 1965 // Udpate LiveIntervals. 1966 if (LIS) 1967 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1968 } 1969