1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk"); 74 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 75 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 76 77 // Temporary flag to disable rescheduling. 78 static cl::opt<bool> 79 EnableRescheduling("twoaddr-reschedule", 80 cl::desc("Coalesce copies by rescheduling (default=true)"), 81 cl::init(true), cl::Hidden); 82 83 // Limit the number of dataflow edges to traverse when evaluating the benefit 84 // of commuting operands. 85 static cl::opt<unsigned> MaxDataFlowEdge( 86 "dataflow-edge-limit", cl::Hidden, cl::init(3), 87 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 88 "the benefit of commuting operands")); 89 90 namespace { 91 92 class TwoAddressInstructionPass : public MachineFunctionPass { 93 MachineFunction *MF; 94 const TargetInstrInfo *TII; 95 const TargetRegisterInfo *TRI; 96 const InstrItineraryData *InstrItins; 97 MachineRegisterInfo *MRI; 98 LiveVariables *LV; 99 LiveIntervals *LIS; 100 AliasAnalysis *AA; 101 CodeGenOpt::Level OptLevel; 102 103 // The current basic block being processed. 104 MachineBasicBlock *MBB; 105 106 // Keep track the distance of a MI from the start of the current basic block. 107 DenseMap<MachineInstr*, unsigned> DistanceMap; 108 109 // Set of already processed instructions in the current block. 110 SmallPtrSet<MachineInstr*, 8> Processed; 111 112 // Set of instructions converted to three-address by target and then sunk 113 // down current basic block. 114 SmallPtrSet<MachineInstr*, 8> SunkInstrs; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies from physical registers to virtual 118 // registers. e.g. v1024 = move r0. 119 DenseMap<unsigned, unsigned> SrcRegMap; 120 121 // A map from virtual registers to physical registers which are likely targets 122 // to be coalesced to due to copies to physical registers from virtual 123 // registers. e.g. r1 = move v1024. 124 DenseMap<unsigned, unsigned> DstRegMap; 125 126 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, 127 MachineBasicBlock::iterator OldPos); 128 129 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); 130 131 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); 132 133 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 134 MachineInstr *MI, unsigned Dist); 135 136 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 137 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 138 139 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); 140 141 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, 143 unsigned RegA, unsigned RegB, unsigned Dist); 144 145 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); 146 147 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 148 MachineBasicBlock::iterator &nmi, 149 unsigned Reg); 150 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 151 MachineBasicBlock::iterator &nmi, 152 unsigned Reg); 153 154 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 155 MachineBasicBlock::iterator &nmi, 156 unsigned SrcIdx, unsigned DstIdx, 157 unsigned Dist, bool shouldOnlyCommute); 158 159 bool tryInstructionCommute(MachineInstr *MI, 160 unsigned DstOpIdx, 161 unsigned BaseOpIdx, 162 bool BaseOpKilled, 163 unsigned Dist); 164 void scanUses(unsigned DstReg); 165 166 void processCopy(MachineInstr *MI); 167 168 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 169 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 170 171 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 172 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 173 void eliminateRegSequence(MachineBasicBlock::iterator&); 174 175 public: 176 static char ID; // Pass identification, replacement for typeid 177 178 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 179 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 180 } 181 182 void getAnalysisUsage(AnalysisUsage &AU) const override { 183 AU.setPreservesCFG(); 184 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 185 AU.addUsedIfAvailable<LiveVariables>(); 186 AU.addPreserved<LiveVariables>(); 187 AU.addPreserved<SlotIndexes>(); 188 AU.addPreserved<LiveIntervals>(); 189 AU.addPreservedID(MachineLoopInfoID); 190 AU.addPreservedID(MachineDominatorsID); 191 MachineFunctionPass::getAnalysisUsage(AU); 192 } 193 194 /// Pass entry point. 195 bool runOnMachineFunction(MachineFunction&) override; 196 }; 197 198 } // end anonymous namespace 199 200 char TwoAddressInstructionPass::ID = 0; 201 202 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 203 204 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 205 "Two-Address instruction pass", false, false) 206 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 207 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 208 "Two-Address instruction pass", false, false) 209 210 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); 211 212 /// A two-address instruction has been converted to a three-address instruction 213 /// to avoid clobbering a register. Try to sink it past the instruction that 214 /// would kill the above mentioned register to reduce register pressure. 215 bool TwoAddressInstructionPass:: 216 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, 217 MachineBasicBlock::iterator OldPos) { 218 // FIXME: Shouldn't we be trying to do this before we three-addressify the 219 // instruction? After this transformation is done, we no longer need 220 // the instruction to be in three-address form. 221 222 // Check if it's safe to move this instruction. 223 bool SeenStore = true; // Be conservative. 224 if (!MI->isSafeToMove(AA, SeenStore)) 225 return false; 226 227 unsigned DefReg = 0; 228 SmallSet<unsigned, 4> UseRegs; 229 230 for (const MachineOperand &MO : MI->operands()) { 231 if (!MO.isReg()) 232 continue; 233 Register MOReg = MO.getReg(); 234 if (!MOReg) 235 continue; 236 if (MO.isUse() && MOReg != SavedReg) 237 UseRegs.insert(MO.getReg()); 238 if (!MO.isDef()) 239 continue; 240 if (MO.isImplicit()) 241 // Don't try to move it if it implicitly defines a register. 242 return false; 243 if (DefReg) 244 // For now, don't move any instructions that define multiple registers. 245 return false; 246 DefReg = MO.getReg(); 247 } 248 249 // Find the instruction that kills SavedReg. 250 MachineInstr *KillMI = nullptr; 251 if (LIS) { 252 LiveInterval &LI = LIS->getInterval(SavedReg); 253 assert(LI.end() != LI.begin() && 254 "Reg should not have empty live interval."); 255 256 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 257 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 258 if (I != LI.end() && I->start < MBBEndIdx) 259 return false; 260 261 --I; 262 KillMI = LIS->getInstructionFromIndex(I->end); 263 } 264 if (!KillMI) { 265 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { 266 if (!UseMO.isKill()) 267 continue; 268 KillMI = UseMO.getParent(); 269 break; 270 } 271 } 272 273 // If we find the instruction that kills SavedReg, and it is in an 274 // appropriate location, we can try to sink the current instruction 275 // past it. 276 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || 277 MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator()) 278 return false; 279 280 // If any of the definitions are used by another instruction between the 281 // position and the kill use, then it's not safe to sink it. 282 // 283 // FIXME: This can be sped up if there is an easy way to query whether an 284 // instruction is before or after another instruction. Then we can use 285 // MachineRegisterInfo def / use instead. 286 MachineOperand *KillMO = nullptr; 287 MachineBasicBlock::iterator KillPos = KillMI; 288 ++KillPos; 289 290 unsigned NumVisited = 0; 291 for (MachineInstr &OtherMI : make_range(std::next(OldPos), KillPos)) { 292 // Debug instructions cannot be counted against the limit. 293 if (OtherMI.isDebugInstr()) 294 continue; 295 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost. 296 return false; 297 ++NumVisited; 298 for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) { 299 MachineOperand &MO = OtherMI.getOperand(i); 300 if (!MO.isReg()) 301 continue; 302 Register MOReg = MO.getReg(); 303 if (!MOReg) 304 continue; 305 if (DefReg == MOReg) 306 return false; 307 308 if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) { 309 if (&OtherMI == KillMI && MOReg == SavedReg) 310 // Save the operand that kills the register. We want to unset the kill 311 // marker if we can sink MI past it. 312 KillMO = &MO; 313 else if (UseRegs.count(MOReg)) 314 // One of the uses is killed before the destination. 315 return false; 316 } 317 } 318 } 319 assert(KillMO && "Didn't find kill"); 320 321 if (!LIS) { 322 // Update kill and LV information. 323 KillMO->setIsKill(false); 324 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); 325 KillMO->setIsKill(true); 326 327 if (LV) 328 LV->replaceKillInstruction(SavedReg, *KillMI, *MI); 329 } 330 331 // Move instruction to its destination. 332 MBB->remove(MI); 333 MBB->insert(KillPos, MI); 334 335 if (LIS) 336 LIS->handleMove(*MI); 337 338 ++Num3AddrSunk; 339 return true; 340 } 341 342 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 343 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, 344 const MachineRegisterInfo *MRI) { 345 MachineInstr *Ret = nullptr; 346 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 347 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 348 continue; 349 if (!Ret) 350 Ret = &DefMI; 351 else if (Ret != &DefMI) 352 return nullptr; 353 } 354 return Ret; 355 } 356 357 /// Check if there is a reversed copy chain from FromReg to ToReg: 358 /// %Tmp1 = copy %Tmp2; 359 /// %FromReg = copy %Tmp1; 360 /// %ToReg = add %FromReg ... 361 /// %Tmp2 = copy %ToReg; 362 /// MaxLen specifies the maximum length of the copy chain the func 363 /// can walk through. 364 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, 365 int Maxlen) { 366 unsigned TmpReg = FromReg; 367 for (int i = 0; i < Maxlen; i++) { 368 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 369 if (!Def || !Def->isCopy()) 370 return false; 371 372 TmpReg = Def->getOperand(1).getReg(); 373 374 if (TmpReg == ToReg) 375 return true; 376 } 377 return false; 378 } 379 380 /// Return true if there are no intervening uses between the last instruction 381 /// in the MBB that defines the specified register and the two-address 382 /// instruction which is being processed. It also returns the last def location 383 /// by reference. 384 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, 385 unsigned &LastDef) { 386 LastDef = 0; 387 unsigned LastUse = Dist; 388 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 389 MachineInstr *MI = MO.getParent(); 390 if (MI->getParent() != MBB || MI->isDebugValue()) 391 continue; 392 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 393 if (DI == DistanceMap.end()) 394 continue; 395 if (MO.isUse() && DI->second < LastUse) 396 LastUse = DI->second; 397 if (MO.isDef() && DI->second > LastDef) 398 LastDef = DI->second; 399 } 400 401 return !(LastUse > LastDef && LastUse < Dist); 402 } 403 404 /// Return true if the specified MI is a copy instruction or an extract_subreg 405 /// instruction. It also returns the source and destination registers and 406 /// whether they are physical registers by reference. 407 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 408 unsigned &SrcReg, unsigned &DstReg, 409 bool &IsSrcPhys, bool &IsDstPhys) { 410 SrcReg = 0; 411 DstReg = 0; 412 if (MI.isCopy()) { 413 DstReg = MI.getOperand(0).getReg(); 414 SrcReg = MI.getOperand(1).getReg(); 415 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 416 DstReg = MI.getOperand(0).getReg(); 417 SrcReg = MI.getOperand(2).getReg(); 418 } else 419 return false; 420 421 IsSrcPhys = Register::isPhysicalRegister(SrcReg); 422 IsDstPhys = Register::isPhysicalRegister(DstReg); 423 return true; 424 } 425 426 /// Test if the given register value, which is used by the 427 /// given instruction, is killed by the given instruction. 428 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, 429 LiveIntervals *LIS) { 430 if (LIS && Register::isVirtualRegister(Reg) && !LIS->isNotInMIMap(*MI)) { 431 // FIXME: Sometimes tryInstructionTransform() will add instructions and 432 // test whether they can be folded before keeping them. In this case it 433 // sets a kill before recursively calling tryInstructionTransform() again. 434 // If there is no interval available, we assume that this instruction is 435 // one of those. A kill flag is manually inserted on the operand so the 436 // check below will handle it. 437 LiveInterval &LI = LIS->getInterval(Reg); 438 // This is to match the kill flag version where undefs don't have kill 439 // flags. 440 if (!LI.hasAtLeastOneValue()) 441 return false; 442 443 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 444 LiveInterval::const_iterator I = LI.find(useIdx); 445 assert(I != LI.end() && "Reg must be live-in to use."); 446 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 447 } 448 449 return MI->killsRegister(Reg); 450 } 451 452 /// Test if the given register value, which is used by the given 453 /// instruction, is killed by the given instruction. This looks through 454 /// coalescable copies to see if the original value is potentially not killed. 455 /// 456 /// For example, in this code: 457 /// 458 /// %reg1034 = copy %reg1024 459 /// %reg1035 = copy killed %reg1025 460 /// %reg1036 = add killed %reg1034, killed %reg1035 461 /// 462 /// %reg1034 is not considered to be killed, since it is copied from a 463 /// register which is not killed. Treating it as not killed lets the 464 /// normal heuristics commute the (two-address) add, which lets 465 /// coalescing eliminate the extra copy. 466 /// 467 /// If allowFalsePositives is true then likely kills are treated as kills even 468 /// if it can't be proven that they are kills. 469 static bool isKilled(MachineInstr &MI, unsigned Reg, 470 const MachineRegisterInfo *MRI, 471 const TargetInstrInfo *TII, 472 LiveIntervals *LIS, 473 bool allowFalsePositives) { 474 MachineInstr *DefMI = &MI; 475 while (true) { 476 // All uses of physical registers are likely to be kills. 477 if (Register::isPhysicalRegister(Reg) && 478 (allowFalsePositives || MRI->hasOneUse(Reg))) 479 return true; 480 if (!isPlainlyKilled(DefMI, Reg, LIS)) 481 return false; 482 if (Register::isPhysicalRegister(Reg)) 483 return true; 484 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 485 // If there are multiple defs, we can't do a simple analysis, so just 486 // go with what the kill flag says. 487 if (std::next(Begin) != MRI->def_end()) 488 return true; 489 DefMI = Begin->getParent(); 490 bool IsSrcPhys, IsDstPhys; 491 unsigned SrcReg, DstReg; 492 // If the def is something other than a copy, then it isn't going to 493 // be coalesced, so follow the kill flag. 494 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 495 return true; 496 Reg = SrcReg; 497 } 498 } 499 500 /// Return true if the specified MI uses the specified register as a two-address 501 /// use. If so, return the destination register by reference. 502 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { 503 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 504 const MachineOperand &MO = MI.getOperand(i); 505 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 506 continue; 507 unsigned ti; 508 if (MI.isRegTiedToDefOperand(i, &ti)) { 509 DstReg = MI.getOperand(ti).getReg(); 510 return true; 511 } 512 } 513 return false; 514 } 515 516 /// Given a register, if has a single in-basic block use, return the use 517 /// instruction if it's a copy or a two-address use. 518 static 519 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, 520 MachineRegisterInfo *MRI, 521 const TargetInstrInfo *TII, 522 bool &IsCopy, 523 unsigned &DstReg, bool &IsDstPhys) { 524 if (!MRI->hasOneNonDBGUse(Reg)) 525 // None or more than one use. 526 return nullptr; 527 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); 528 if (UseMI.getParent() != MBB) 529 return nullptr; 530 unsigned SrcReg; 531 bool IsSrcPhys; 532 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 533 IsCopy = true; 534 return &UseMI; 535 } 536 IsDstPhys = false; 537 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 538 IsDstPhys = Register::isPhysicalRegister(DstReg); 539 return &UseMI; 540 } 541 return nullptr; 542 } 543 544 /// Return the physical register the specified virtual register might be mapped 545 /// to. 546 static unsigned 547 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { 548 while (Register::isVirtualRegister(Reg)) { 549 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); 550 if (SI == RegMap.end()) 551 return 0; 552 Reg = SI->second; 553 } 554 if (Register::isPhysicalRegister(Reg)) 555 return Reg; 556 return 0; 557 } 558 559 /// Return true if the two registers are equal or aliased. 560 static bool 561 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { 562 if (RegA == RegB) 563 return true; 564 if (!RegA || !RegB) 565 return false; 566 return TRI->regsOverlap(RegA, RegB); 567 } 568 569 // Returns true if Reg is equal or aliased to at least one register in Set. 570 static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg, 571 const TargetRegisterInfo *TRI) { 572 for (unsigned R : Set) 573 if (TRI->regsOverlap(R, Reg)) 574 return true; 575 576 return false; 577 } 578 579 /// Return true if it's potentially profitable to commute the two-address 580 /// instruction that's being processed. 581 bool 582 TwoAddressInstructionPass:: 583 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, 584 MachineInstr *MI, unsigned Dist) { 585 if (OptLevel == CodeGenOpt::None) 586 return false; 587 588 // Determine if it's profitable to commute this two address instruction. In 589 // general, we want no uses between this instruction and the definition of 590 // the two-address register. 591 // e.g. 592 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 593 // %reg1029 = COPY %reg1028 594 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 595 // insert => %reg1030 = COPY %reg1028 596 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 597 // In this case, it might not be possible to coalesce the second COPY 598 // instruction if the first one is coalesced. So it would be profitable to 599 // commute it: 600 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 601 // %reg1029 = COPY %reg1028 602 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 603 // insert => %reg1030 = COPY %reg1029 604 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 605 606 if (!isPlainlyKilled(MI, regC, LIS)) 607 return false; 608 609 // Ok, we have something like: 610 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 611 // let's see if it's worth commuting it. 612 613 // Look for situations like this: 614 // %reg1024 = MOV r1 615 // %reg1025 = MOV r0 616 // %reg1026 = ADD %reg1024, %reg1025 617 // r0 = MOV %reg1026 618 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 619 unsigned ToRegA = getMappedReg(regA, DstRegMap); 620 if (ToRegA) { 621 unsigned FromRegB = getMappedReg(regB, SrcRegMap); 622 unsigned FromRegC = getMappedReg(regC, SrcRegMap); 623 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 624 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 625 626 // Compute if any of the following are true: 627 // -RegB is not tied to a register and RegC is compatible with RegA. 628 // -RegB is tied to the wrong physical register, but RegC is. 629 // -RegB is tied to the wrong physical register, and RegC isn't tied. 630 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 631 return true; 632 // Don't compute if any of the following are true: 633 // -RegC is not tied to a register and RegB is compatible with RegA. 634 // -RegC is tied to the wrong physical register, but RegB is. 635 // -RegC is tied to the wrong physical register, and RegB isn't tied. 636 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 637 return false; 638 } 639 640 // If there is a use of regC between its last def (could be livein) and this 641 // instruction, then bail. 642 unsigned LastDefC = 0; 643 if (!noUseAfterLastDef(regC, Dist, LastDefC)) 644 return false; 645 646 // If there is a use of regB between its last def (could be livein) and this 647 // instruction, then go ahead and make this transformation. 648 unsigned LastDefB = 0; 649 if (!noUseAfterLastDef(regB, Dist, LastDefB)) 650 return true; 651 652 // Look for situation like this: 653 // %reg101 = MOV %reg100 654 // %reg102 = ... 655 // %reg103 = ADD %reg102, %reg101 656 // ... = %reg103 ... 657 // %reg100 = MOV %reg103 658 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 659 // to eliminate an otherwise unavoidable copy. 660 // FIXME: 661 // We can extend the logic further: If an pair of operands in an insn has 662 // been merged, the insn could be regarded as a virtual copy, and the virtual 663 // copy could also be used to construct a copy chain. 664 // To more generally minimize register copies, ideally the logic of two addr 665 // instruction pass should be integrated with register allocation pass where 666 // interference graph is available. 667 if (isRevCopyChain(regC, regA, MaxDataFlowEdge)) 668 return true; 669 670 if (isRevCopyChain(regB, regA, MaxDataFlowEdge)) 671 return false; 672 673 // Since there are no intervening uses for both registers, then commute 674 // if the def of regC is closer. Its live interval is shorter. 675 return LastDefB && LastDefC && LastDefC > LastDefB; 676 } 677 678 /// Commute a two-address instruction and update the basic block, distance map, 679 /// and live variables if needed. Return true if it is successful. 680 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 681 unsigned DstIdx, 682 unsigned RegBIdx, 683 unsigned RegCIdx, 684 unsigned Dist) { 685 Register RegC = MI->getOperand(RegCIdx).getReg(); 686 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 687 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 688 689 if (NewMI == nullptr) { 690 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 691 return false; 692 } 693 694 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 695 assert(NewMI == MI && 696 "TargetInstrInfo::commuteInstruction() should not return a new " 697 "instruction unless it was requested."); 698 699 // Update source register map. 700 unsigned FromRegC = getMappedReg(RegC, SrcRegMap); 701 if (FromRegC) { 702 Register RegA = MI->getOperand(DstIdx).getReg(); 703 SrcRegMap[RegA] = FromRegC; 704 } 705 706 return true; 707 } 708 709 /// Return true if it is profitable to convert the given 2-address instruction 710 /// to a 3-address one. 711 bool 712 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ 713 // Look for situations like this: 714 // %reg1024 = MOV r1 715 // %reg1025 = MOV r0 716 // %reg1026 = ADD %reg1024, %reg1025 717 // r2 = MOV %reg1026 718 // Turn ADD into a 3-address instruction to avoid a copy. 719 unsigned FromRegB = getMappedReg(RegB, SrcRegMap); 720 if (!FromRegB) 721 return false; 722 unsigned ToRegA = getMappedReg(RegA, DstRegMap); 723 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 724 } 725 726 /// Convert the specified two-address instruction into a three address one. 727 /// Return true if this transformation was successful. 728 bool 729 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, 730 MachineBasicBlock::iterator &nmi, 731 unsigned RegA, unsigned RegB, 732 unsigned Dist) { 733 // FIXME: Why does convertToThreeAddress() need an iterator reference? 734 MachineFunction::iterator MFI = MBB->getIterator(); 735 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); 736 assert(MBB->getIterator() == MFI && 737 "convertToThreeAddress changed iterator reference"); 738 if (!NewMI) 739 return false; 740 741 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 742 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 743 bool Sunk = false; 744 745 if (LIS) 746 LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); 747 748 if (NewMI->findRegisterUseOperand(RegB, false, TRI)) 749 // FIXME: Temporary workaround. If the new instruction doesn't 750 // uses RegB, convertToThreeAddress must have created more 751 // then one instruction. 752 Sunk = sink3AddrInstruction(NewMI, RegB, mi); 753 754 MBB->erase(mi); // Nuke the old inst. 755 756 if (!Sunk) { 757 DistanceMap.insert(std::make_pair(NewMI, Dist)); 758 mi = NewMI; 759 nmi = std::next(mi); 760 } 761 else 762 SunkInstrs.insert(NewMI); 763 764 // Update source and destination register maps. 765 SrcRegMap.erase(RegA); 766 DstRegMap.erase(RegB); 767 return true; 768 } 769 770 /// Scan forward recursively for only uses, update maps if the use is a copy or 771 /// a two-address instruction. 772 void 773 TwoAddressInstructionPass::scanUses(unsigned DstReg) { 774 SmallVector<unsigned, 4> VirtRegPairs; 775 bool IsDstPhys; 776 bool IsCopy = false; 777 unsigned NewReg = 0; 778 unsigned Reg = DstReg; 779 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 780 NewReg, IsDstPhys)) { 781 if (IsCopy && !Processed.insert(UseMI).second) 782 break; 783 784 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 785 if (DI != DistanceMap.end()) 786 // Earlier in the same MBB.Reached via a back edge. 787 break; 788 789 if (IsDstPhys) { 790 VirtRegPairs.push_back(NewReg); 791 break; 792 } 793 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; 794 if (!isNew) 795 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); 796 VirtRegPairs.push_back(NewReg); 797 Reg = NewReg; 798 } 799 800 if (!VirtRegPairs.empty()) { 801 unsigned ToReg = VirtRegPairs.back(); 802 VirtRegPairs.pop_back(); 803 while (!VirtRegPairs.empty()) { 804 unsigned FromReg = VirtRegPairs.back(); 805 VirtRegPairs.pop_back(); 806 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 807 if (!isNew) 808 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 809 ToReg = FromReg; 810 } 811 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 812 if (!isNew) 813 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 814 } 815 } 816 817 /// If the specified instruction is not yet processed, process it if it's a 818 /// copy. For a copy instruction, we find the physical registers the 819 /// source and destination registers might be mapped to. These are kept in 820 /// point-to maps used to determine future optimizations. e.g. 821 /// v1024 = mov r0 822 /// v1025 = mov r1 823 /// v1026 = add v1024, v1025 824 /// r1 = mov r1026 825 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 826 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 827 /// potentially joined with r1 on the output side. It's worthwhile to commute 828 /// 'add' to eliminate a copy. 829 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 830 if (Processed.count(MI)) 831 return; 832 833 bool IsSrcPhys, IsDstPhys; 834 unsigned SrcReg, DstReg; 835 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 836 return; 837 838 if (IsDstPhys && !IsSrcPhys) 839 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 840 else if (!IsDstPhys && IsSrcPhys) { 841 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 842 if (!isNew) 843 assert(SrcRegMap[DstReg] == SrcReg && 844 "Can't map to two src physical registers!"); 845 846 scanUses(DstReg); 847 } 848 849 Processed.insert(MI); 850 } 851 852 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 853 /// consider moving the instruction below the kill instruction in order to 854 /// eliminate the need for the copy. 855 bool TwoAddressInstructionPass:: 856 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 857 MachineBasicBlock::iterator &nmi, 858 unsigned Reg) { 859 // Bail immediately if we don't have LV or LIS available. We use them to find 860 // kills efficiently. 861 if (!LV && !LIS) 862 return false; 863 864 MachineInstr *MI = &*mi; 865 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 866 if (DI == DistanceMap.end()) 867 // Must be created from unfolded load. Don't waste time trying this. 868 return false; 869 870 MachineInstr *KillMI = nullptr; 871 if (LIS) { 872 LiveInterval &LI = LIS->getInterval(Reg); 873 assert(LI.end() != LI.begin() && 874 "Reg should not have empty live interval."); 875 876 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 877 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 878 if (I != LI.end() && I->start < MBBEndIdx) 879 return false; 880 881 --I; 882 KillMI = LIS->getInstructionFromIndex(I->end); 883 } else { 884 KillMI = LV->getVarInfo(Reg).findKill(MBB); 885 } 886 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 887 // Don't mess with copies, they may be coalesced later. 888 return false; 889 890 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 891 KillMI->isBranch() || KillMI->isTerminator()) 892 // Don't move pass calls, etc. 893 return false; 894 895 unsigned DstReg; 896 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 897 return false; 898 899 bool SeenStore = true; 900 if (!MI->isSafeToMove(AA, SeenStore)) 901 return false; 902 903 if (TII->getInstrLatency(InstrItins, *MI) > 1) 904 // FIXME: Needs more sophisticated heuristics. 905 return false; 906 907 SmallVector<unsigned, 2> Uses; 908 SmallVector<unsigned, 2> Kills; 909 SmallVector<unsigned, 2> Defs; 910 for (const MachineOperand &MO : MI->operands()) { 911 if (!MO.isReg()) 912 continue; 913 Register MOReg = MO.getReg(); 914 if (!MOReg) 915 continue; 916 if (MO.isDef()) 917 Defs.push_back(MOReg); 918 else { 919 Uses.push_back(MOReg); 920 if (MOReg != Reg && (MO.isKill() || 921 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 922 Kills.push_back(MOReg); 923 } 924 } 925 926 // Move the copies connected to MI down as well. 927 MachineBasicBlock::iterator Begin = MI; 928 MachineBasicBlock::iterator AfterMI = std::next(Begin); 929 MachineBasicBlock::iterator End = AfterMI; 930 while (End != MBB->end()) { 931 End = skipDebugInstructionsForward(End, MBB->end()); 932 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 933 Defs.push_back(End->getOperand(0).getReg()); 934 else 935 break; 936 ++End; 937 } 938 939 // Check if the reschedule will not break dependencies. 940 unsigned NumVisited = 0; 941 MachineBasicBlock::iterator KillPos = KillMI; 942 ++KillPos; 943 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 944 // Debug instructions cannot be counted against the limit. 945 if (OtherMI.isDebugInstr()) 946 continue; 947 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 948 return false; 949 ++NumVisited; 950 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 951 OtherMI.isBranch() || OtherMI.isTerminator()) 952 // Don't move pass calls, etc. 953 return false; 954 for (const MachineOperand &MO : OtherMI.operands()) { 955 if (!MO.isReg()) 956 continue; 957 Register MOReg = MO.getReg(); 958 if (!MOReg) 959 continue; 960 if (MO.isDef()) { 961 if (regOverlapsSet(Uses, MOReg, TRI)) 962 // Physical register use would be clobbered. 963 return false; 964 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 965 // May clobber a physical register def. 966 // FIXME: This may be too conservative. It's ok if the instruction 967 // is sunken completely below the use. 968 return false; 969 } else { 970 if (regOverlapsSet(Defs, MOReg, TRI)) 971 return false; 972 bool isKill = 973 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 974 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 975 regOverlapsSet(Kills, MOReg, TRI))) 976 // Don't want to extend other live ranges and update kills. 977 return false; 978 if (MOReg == Reg && !isKill) 979 // We can't schedule across a use of the register in question. 980 return false; 981 // Ensure that if this is register in question, its the kill we expect. 982 assert((MOReg != Reg || &OtherMI == KillMI) && 983 "Found multiple kills of a register in a basic block"); 984 } 985 } 986 } 987 988 // Move debug info as well. 989 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 990 --Begin; 991 992 nmi = End; 993 MachineBasicBlock::iterator InsertPos = KillPos; 994 if (LIS) { 995 // We have to move the copies first so that the MBB is still well-formed 996 // when calling handleMove(). 997 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 998 auto CopyMI = MBBI++; 999 MBB->splice(InsertPos, MBB, CopyMI); 1000 LIS->handleMove(*CopyMI); 1001 InsertPos = CopyMI; 1002 } 1003 End = std::next(MachineBasicBlock::iterator(MI)); 1004 } 1005 1006 // Copies following MI may have been moved as well. 1007 MBB->splice(InsertPos, MBB, Begin, End); 1008 DistanceMap.erase(DI); 1009 1010 // Update live variables 1011 if (LIS) { 1012 LIS->handleMove(*MI); 1013 } else { 1014 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1015 LV->addVirtualRegisterKilled(Reg, *MI); 1016 } 1017 1018 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 1019 return true; 1020 } 1021 1022 /// Return true if the re-scheduling will put the given instruction too close 1023 /// to the defs of its register dependencies. 1024 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, 1025 MachineInstr *MI) { 1026 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 1027 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 1028 continue; 1029 if (&DefMI == MI) 1030 return true; // MI is defining something KillMI uses 1031 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 1032 if (DDI == DistanceMap.end()) 1033 return true; // Below MI 1034 unsigned DefDist = DDI->second; 1035 assert(Dist > DefDist && "Visited def already?"); 1036 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 1037 return true; 1038 } 1039 return false; 1040 } 1041 1042 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1043 /// consider moving the kill instruction above the current two-address 1044 /// instruction in order to eliminate the need for the copy. 1045 bool TwoAddressInstructionPass:: 1046 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 1047 MachineBasicBlock::iterator &nmi, 1048 unsigned Reg) { 1049 // Bail immediately if we don't have LV or LIS available. We use them to find 1050 // kills efficiently. 1051 if (!LV && !LIS) 1052 return false; 1053 1054 MachineInstr *MI = &*mi; 1055 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1056 if (DI == DistanceMap.end()) 1057 // Must be created from unfolded load. Don't waste time trying this. 1058 return false; 1059 1060 MachineInstr *KillMI = nullptr; 1061 if (LIS) { 1062 LiveInterval &LI = LIS->getInterval(Reg); 1063 assert(LI.end() != LI.begin() && 1064 "Reg should not have empty live interval."); 1065 1066 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1067 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1068 if (I != LI.end() && I->start < MBBEndIdx) 1069 return false; 1070 1071 --I; 1072 KillMI = LIS->getInstructionFromIndex(I->end); 1073 } else { 1074 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1075 } 1076 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1077 // Don't mess with copies, they may be coalesced later. 1078 return false; 1079 1080 unsigned DstReg; 1081 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1082 return false; 1083 1084 bool SeenStore = true; 1085 if (!KillMI->isSafeToMove(AA, SeenStore)) 1086 return false; 1087 1088 SmallSet<unsigned, 2> Uses; 1089 SmallSet<unsigned, 2> Kills; 1090 SmallSet<unsigned, 2> Defs; 1091 SmallSet<unsigned, 2> LiveDefs; 1092 for (const MachineOperand &MO : KillMI->operands()) { 1093 if (!MO.isReg()) 1094 continue; 1095 Register MOReg = MO.getReg(); 1096 if (MO.isUse()) { 1097 if (!MOReg) 1098 continue; 1099 if (isDefTooClose(MOReg, DI->second, MI)) 1100 return false; 1101 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1102 if (MOReg == Reg && !isKill) 1103 return false; 1104 Uses.insert(MOReg); 1105 if (isKill && MOReg != Reg) 1106 Kills.insert(MOReg); 1107 } else if (Register::isPhysicalRegister(MOReg)) { 1108 Defs.insert(MOReg); 1109 if (!MO.isDead()) 1110 LiveDefs.insert(MOReg); 1111 } 1112 } 1113 1114 // Check if the reschedule will not break depedencies. 1115 unsigned NumVisited = 0; 1116 for (MachineInstr &OtherMI : 1117 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1118 // Debug instructions cannot be counted against the limit. 1119 if (OtherMI.isDebugInstr()) 1120 continue; 1121 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1122 return false; 1123 ++NumVisited; 1124 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1125 OtherMI.isBranch() || OtherMI.isTerminator()) 1126 // Don't move pass calls, etc. 1127 return false; 1128 SmallVector<unsigned, 2> OtherDefs; 1129 for (const MachineOperand &MO : OtherMI.operands()) { 1130 if (!MO.isReg()) 1131 continue; 1132 Register MOReg = MO.getReg(); 1133 if (!MOReg) 1134 continue; 1135 if (MO.isUse()) { 1136 if (Defs.count(MOReg)) 1137 // Moving KillMI can clobber the physical register if the def has 1138 // not been seen. 1139 return false; 1140 if (Kills.count(MOReg)) 1141 // Don't want to extend other live ranges and update kills. 1142 return false; 1143 if (&OtherMI != MI && MOReg == Reg && 1144 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1145 // We can't schedule across a use of the register in question. 1146 return false; 1147 } else { 1148 OtherDefs.push_back(MOReg); 1149 } 1150 } 1151 1152 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1153 unsigned MOReg = OtherDefs[i]; 1154 if (Uses.count(MOReg)) 1155 return false; 1156 if (Register::isPhysicalRegister(MOReg) && LiveDefs.count(MOReg)) 1157 return false; 1158 // Physical register def is seen. 1159 Defs.erase(MOReg); 1160 } 1161 } 1162 1163 // Move the old kill above MI, don't forget to move debug info as well. 1164 MachineBasicBlock::iterator InsertPos = mi; 1165 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1166 --InsertPos; 1167 MachineBasicBlock::iterator From = KillMI; 1168 MachineBasicBlock::iterator To = std::next(From); 1169 while (std::prev(From)->isDebugInstr()) 1170 --From; 1171 MBB->splice(InsertPos, MBB, From, To); 1172 1173 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1174 DistanceMap.erase(DI); 1175 1176 // Update live variables 1177 if (LIS) { 1178 LIS->handleMove(*KillMI); 1179 } else { 1180 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1181 LV->addVirtualRegisterKilled(Reg, *MI); 1182 } 1183 1184 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1185 return true; 1186 } 1187 1188 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1189 /// given machine instruction to improve opportunities for coalescing and 1190 /// elimination of a register to register copy. 1191 /// 1192 /// 'DstOpIdx' specifies the index of MI def operand. 1193 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1194 /// operand is killed by the given instruction. 1195 /// The 'Dist' arguments provides the distance of MI from the start of the 1196 /// current basic block and it is used to determine if it is profitable 1197 /// to commute operands in the instruction. 1198 /// 1199 /// Returns true if the transformation happened. Otherwise, returns false. 1200 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1201 unsigned DstOpIdx, 1202 unsigned BaseOpIdx, 1203 bool BaseOpKilled, 1204 unsigned Dist) { 1205 if (!MI->isCommutable()) 1206 return false; 1207 1208 bool MadeChange = false; 1209 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1210 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1211 unsigned OpsNum = MI->getDesc().getNumOperands(); 1212 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1213 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1214 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1215 // and OtherOpIdx are commutable, it does not really search for 1216 // other commutable operands and does not change the values of passed 1217 // variables. 1218 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1219 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1220 continue; 1221 1222 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1223 bool AggressiveCommute = false; 1224 1225 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1226 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1227 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1228 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1229 1230 if (!DoCommute && 1231 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1232 DoCommute = true; 1233 AggressiveCommute = true; 1234 } 1235 1236 // If it's profitable to commute, try to do so. 1237 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1238 Dist)) { 1239 MadeChange = true; 1240 ++NumCommuted; 1241 if (AggressiveCommute) { 1242 ++NumAggrCommuted; 1243 // There might be more than two commutable operands, update BaseOp and 1244 // continue scanning. 1245 // FIXME: This assumes that the new instruction's operands are in the 1246 // same positions and were simply swapped. 1247 BaseOpReg = OtherOpReg; 1248 BaseOpKilled = OtherOpKilled; 1249 // Resamples OpsNum in case the number of operands was reduced. This 1250 // happens with X86. 1251 OpsNum = MI->getDesc().getNumOperands(); 1252 continue; 1253 } 1254 // If this was a commute based on kill, we won't do better continuing. 1255 return MadeChange; 1256 } 1257 } 1258 return MadeChange; 1259 } 1260 1261 /// For the case where an instruction has a single pair of tied register 1262 /// operands, attempt some transformations that may either eliminate the tied 1263 /// operands or improve the opportunities for coalescing away the register copy. 1264 /// Returns true if no copy needs to be inserted to untie mi's operands 1265 /// (either because they were untied, or because mi was rescheduled, and will 1266 /// be visited again later). If the shouldOnlyCommute flag is true, only 1267 /// instruction commutation is attempted. 1268 bool TwoAddressInstructionPass:: 1269 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1270 MachineBasicBlock::iterator &nmi, 1271 unsigned SrcIdx, unsigned DstIdx, 1272 unsigned Dist, bool shouldOnlyCommute) { 1273 if (OptLevel == CodeGenOpt::None) 1274 return false; 1275 1276 MachineInstr &MI = *mi; 1277 Register regA = MI.getOperand(DstIdx).getReg(); 1278 Register regB = MI.getOperand(SrcIdx).getReg(); 1279 1280 assert(Register::isVirtualRegister(regB) && 1281 "cannot make instruction into two-address form"); 1282 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1283 1284 if (Register::isVirtualRegister(regA)) 1285 scanUses(regA); 1286 1287 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1288 1289 // If the instruction is convertible to 3 Addr, instead 1290 // of returning try 3 Addr transformation aggressively and 1291 // use this variable to check later. Because it might be better. 1292 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1293 // instead of the following code. 1294 // addl %esi, %edi 1295 // movl %edi, %eax 1296 // ret 1297 if (Commuted && !MI.isConvertibleTo3Addr()) 1298 return false; 1299 1300 if (shouldOnlyCommute) 1301 return false; 1302 1303 // If there is one more use of regB later in the same MBB, consider 1304 // re-schedule this MI below it. 1305 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1306 ++NumReSchedDowns; 1307 return true; 1308 } 1309 1310 // If we commuted, regB may have changed so we should re-sample it to avoid 1311 // confusing the three address conversion below. 1312 if (Commuted) { 1313 regB = MI.getOperand(SrcIdx).getReg(); 1314 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1315 } 1316 1317 if (MI.isConvertibleTo3Addr()) { 1318 // This instruction is potentially convertible to a true 1319 // three-address instruction. Check if it is profitable. 1320 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1321 // Try to convert it. 1322 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1323 ++NumConvertedTo3Addr; 1324 return true; // Done with this instruction. 1325 } 1326 } 1327 } 1328 1329 // Return if it is commuted but 3 addr conversion is failed. 1330 if (Commuted) 1331 return false; 1332 1333 // If there is one more use of regB later in the same MBB, consider 1334 // re-schedule it before this MI if it's legal. 1335 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1336 ++NumReSchedUps; 1337 return true; 1338 } 1339 1340 // If this is an instruction with a load folded into it, try unfolding 1341 // the load, e.g. avoid this: 1342 // movq %rdx, %rcx 1343 // addq (%rax), %rcx 1344 // in favor of this: 1345 // movq (%rax), %rcx 1346 // addq %rdx, %rcx 1347 // because it's preferable to schedule a load than a register copy. 1348 if (MI.mayLoad() && !regBKilled) { 1349 // Determine if a load can be unfolded. 1350 unsigned LoadRegIndex; 1351 unsigned NewOpc = 1352 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1353 /*UnfoldLoad=*/true, 1354 /*UnfoldStore=*/false, 1355 &LoadRegIndex); 1356 if (NewOpc != 0) { 1357 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1358 if (UnfoldMCID.getNumDefs() == 1) { 1359 // Unfold the load. 1360 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1361 const TargetRegisterClass *RC = 1362 TRI->getAllocatableClass( 1363 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1364 Register Reg = MRI->createVirtualRegister(RC); 1365 SmallVector<MachineInstr *, 2> NewMIs; 1366 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1367 /*UnfoldLoad=*/true, 1368 /*UnfoldStore=*/false, NewMIs)) { 1369 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1370 return false; 1371 } 1372 assert(NewMIs.size() == 2 && 1373 "Unfolded a load into multiple instructions!"); 1374 // The load was previously folded, so this is the only use. 1375 NewMIs[1]->addRegisterKilled(Reg, TRI); 1376 1377 // Tentatively insert the instructions into the block so that they 1378 // look "normal" to the transformation logic. 1379 MBB->insert(mi, NewMIs[0]); 1380 MBB->insert(mi, NewMIs[1]); 1381 1382 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1383 << "2addr: NEW INST: " << *NewMIs[1]); 1384 1385 // Transform the instruction, now that it no longer has a load. 1386 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1387 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1388 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1389 bool TransformResult = 1390 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1391 (void)TransformResult; 1392 assert(!TransformResult && 1393 "tryInstructionTransform() should return false."); 1394 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1395 // Success, or at least we made an improvement. Keep the unfolded 1396 // instructions and discard the original. 1397 if (LV) { 1398 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1399 MachineOperand &MO = MI.getOperand(i); 1400 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 1401 if (MO.isUse()) { 1402 if (MO.isKill()) { 1403 if (NewMIs[0]->killsRegister(MO.getReg())) 1404 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1405 else { 1406 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1407 "Kill missing after load unfold!"); 1408 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1409 } 1410 } 1411 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1412 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1413 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1414 else { 1415 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1416 "Dead flag missing after load unfold!"); 1417 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1418 } 1419 } 1420 } 1421 } 1422 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1423 } 1424 1425 SmallVector<unsigned, 4> OrigRegs; 1426 if (LIS) { 1427 for (const MachineOperand &MO : MI.operands()) { 1428 if (MO.isReg()) 1429 OrigRegs.push_back(MO.getReg()); 1430 } 1431 } 1432 1433 MI.eraseFromParent(); 1434 1435 // Update LiveIntervals. 1436 if (LIS) { 1437 MachineBasicBlock::iterator Begin(NewMIs[0]); 1438 MachineBasicBlock::iterator End(NewMIs[1]); 1439 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1440 } 1441 1442 mi = NewMIs[1]; 1443 } else { 1444 // Transforming didn't eliminate the tie and didn't lead to an 1445 // improvement. Clean up the unfolded instructions and keep the 1446 // original. 1447 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1448 NewMIs[0]->eraseFromParent(); 1449 NewMIs[1]->eraseFromParent(); 1450 } 1451 } 1452 } 1453 } 1454 1455 return false; 1456 } 1457 1458 // Collect tied operands of MI that need to be handled. 1459 // Rewrite trivial cases immediately. 1460 // Return true if any tied operands where found, including the trivial ones. 1461 bool TwoAddressInstructionPass:: 1462 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1463 const MCInstrDesc &MCID = MI->getDesc(); 1464 bool AnyOps = false; 1465 unsigned NumOps = MI->getNumOperands(); 1466 1467 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1468 unsigned DstIdx = 0; 1469 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1470 continue; 1471 AnyOps = true; 1472 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1473 MachineOperand &DstMO = MI->getOperand(DstIdx); 1474 Register SrcReg = SrcMO.getReg(); 1475 Register DstReg = DstMO.getReg(); 1476 // Tied constraint already satisfied? 1477 if (SrcReg == DstReg) 1478 continue; 1479 1480 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1481 1482 // Deal with undef uses immediately - simply rewrite the src operand. 1483 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1484 // Constrain the DstReg register class if required. 1485 if (Register::isVirtualRegister(DstReg)) 1486 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, 1487 TRI, *MF)) 1488 MRI->constrainRegClass(DstReg, RC); 1489 SrcMO.setReg(DstReg); 1490 SrcMO.setSubReg(0); 1491 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1492 continue; 1493 } 1494 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1495 } 1496 return AnyOps; 1497 } 1498 1499 // Process a list of tied MI operands that all use the same source register. 1500 // The tied pairs are of the form (SrcIdx, DstIdx). 1501 void 1502 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1503 TiedPairList &TiedPairs, 1504 unsigned &Dist) { 1505 bool IsEarlyClobber = false; 1506 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1507 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); 1508 IsEarlyClobber |= DstMO.isEarlyClobber(); 1509 } 1510 1511 bool RemovedKillFlag = false; 1512 bool AllUsesCopied = true; 1513 unsigned LastCopiedReg = 0; 1514 SlotIndex LastCopyIdx; 1515 unsigned RegB = 0; 1516 unsigned SubRegB = 0; 1517 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { 1518 unsigned SrcIdx = TiedPairs[tpi].first; 1519 unsigned DstIdx = TiedPairs[tpi].second; 1520 1521 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1522 Register RegA = DstMO.getReg(); 1523 1524 // Grab RegB from the instruction because it may have changed if the 1525 // instruction was commuted. 1526 RegB = MI->getOperand(SrcIdx).getReg(); 1527 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1528 1529 if (RegA == RegB) { 1530 // The register is tied to multiple destinations (or else we would 1531 // not have continued this far), but this use of the register 1532 // already matches the tied destination. Leave it. 1533 AllUsesCopied = false; 1534 continue; 1535 } 1536 LastCopiedReg = RegA; 1537 1538 assert(Register::isVirtualRegister(RegB) && 1539 "cannot make instruction into two-address form"); 1540 1541 #ifndef NDEBUG 1542 // First, verify that we don't have a use of "a" in the instruction 1543 // (a = b + a for example) because our transformation will not 1544 // work. This should never occur because we are in SSA form. 1545 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1546 assert(i == DstIdx || 1547 !MI->getOperand(i).isReg() || 1548 MI->getOperand(i).getReg() != RegA); 1549 #endif 1550 1551 // Emit a copy. 1552 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1553 TII->get(TargetOpcode::COPY), RegA); 1554 // If this operand is folding a truncation, the truncation now moves to the 1555 // copy so that the register classes remain valid for the operands. 1556 MIB.addReg(RegB, 0, SubRegB); 1557 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1558 if (SubRegB) { 1559 if (Register::isVirtualRegister(RegA)) { 1560 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1561 SubRegB) && 1562 "tied subregister must be a truncation"); 1563 // The superreg class will not be used to constrain the subreg class. 1564 RC = nullptr; 1565 } else { 1566 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1567 && "tied subregister must be a truncation"); 1568 } 1569 } 1570 1571 // Update DistanceMap. 1572 MachineBasicBlock::iterator PrevMI = MI; 1573 --PrevMI; 1574 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1575 DistanceMap[MI] = ++Dist; 1576 1577 if (LIS) { 1578 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1579 1580 if (Register::isVirtualRegister(RegA)) { 1581 LiveInterval &LI = LIS->getInterval(RegA); 1582 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1583 SlotIndex endIdx = 1584 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1585 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); 1586 } 1587 } 1588 1589 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1590 1591 MachineOperand &MO = MI->getOperand(SrcIdx); 1592 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1593 "inconsistent operand info for 2-reg pass"); 1594 if (MO.isKill()) { 1595 MO.setIsKill(false); 1596 RemovedKillFlag = true; 1597 } 1598 1599 // Make sure regA is a legal regclass for the SrcIdx operand. 1600 if (Register::isVirtualRegister(RegA) && Register::isVirtualRegister(RegB)) 1601 MRI->constrainRegClass(RegA, RC); 1602 MO.setReg(RegA); 1603 // The getMatchingSuper asserts guarantee that the register class projected 1604 // by SubRegB is compatible with RegA with no subregister. So regardless of 1605 // whether the dest oper writes a subreg, the source oper should not. 1606 MO.setSubReg(0); 1607 1608 // Propagate SrcRegMap. 1609 SrcRegMap[RegA] = RegB; 1610 } 1611 1612 if (AllUsesCopied) { 1613 bool ReplacedAllUntiedUses = true; 1614 if (!IsEarlyClobber) { 1615 // Replace other (un-tied) uses of regB with LastCopiedReg. 1616 for (MachineOperand &MO : MI->operands()) { 1617 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1618 if (MO.getSubReg() == SubRegB) { 1619 if (MO.isKill()) { 1620 MO.setIsKill(false); 1621 RemovedKillFlag = true; 1622 } 1623 MO.setReg(LastCopiedReg); 1624 MO.setSubReg(0); 1625 } else { 1626 ReplacedAllUntiedUses = false; 1627 } 1628 } 1629 } 1630 } 1631 1632 // Update live variables for regB. 1633 if (RemovedKillFlag && ReplacedAllUntiedUses && 1634 LV && LV->getVarInfo(RegB).removeKill(*MI)) { 1635 MachineBasicBlock::iterator PrevMI = MI; 1636 --PrevMI; 1637 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1638 } 1639 1640 // Update LiveIntervals. 1641 if (LIS) { 1642 LiveInterval &LI = LIS->getInterval(RegB); 1643 SlotIndex MIIdx = LIS->getInstructionIndex(*MI); 1644 LiveInterval::const_iterator I = LI.find(MIIdx); 1645 assert(I != LI.end() && "RegB must be live-in to use."); 1646 1647 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); 1648 if (I->end == UseIdx) 1649 LI.removeSegment(LastCopyIdx, UseIdx); 1650 } 1651 } else if (RemovedKillFlag) { 1652 // Some tied uses of regB matched their destination registers, so 1653 // regB is still used in this instruction, but a kill flag was 1654 // removed from a different tied use of regB, so now we need to add 1655 // a kill flag to one of the remaining uses of regB. 1656 for (MachineOperand &MO : MI->operands()) { 1657 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1658 MO.setIsKill(true); 1659 break; 1660 } 1661 } 1662 } 1663 } 1664 1665 /// Reduce two-address instructions to two operands. 1666 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1667 MF = &Func; 1668 const TargetMachine &TM = MF->getTarget(); 1669 MRI = &MF->getRegInfo(); 1670 TII = MF->getSubtarget().getInstrInfo(); 1671 TRI = MF->getSubtarget().getRegisterInfo(); 1672 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1673 LV = getAnalysisIfAvailable<LiveVariables>(); 1674 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1675 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1676 AA = &AAPass->getAAResults(); 1677 else 1678 AA = nullptr; 1679 OptLevel = TM.getOptLevel(); 1680 // Disable optimizations if requested. We cannot skip the whole pass as some 1681 // fixups are necessary for correctness. 1682 if (skipFunction(Func.getFunction())) 1683 OptLevel = CodeGenOpt::None; 1684 1685 bool MadeChange = false; 1686 1687 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1688 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1689 1690 // This pass takes the function out of SSA form. 1691 MRI->leaveSSA(); 1692 1693 TiedOperandMap TiedOperands; 1694 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 1695 MBBI != MBBE; ++MBBI) { 1696 MBB = &*MBBI; 1697 unsigned Dist = 0; 1698 DistanceMap.clear(); 1699 SrcRegMap.clear(); 1700 DstRegMap.clear(); 1701 Processed.clear(); 1702 SunkInstrs.clear(); 1703 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1704 mi != me; ) { 1705 MachineBasicBlock::iterator nmi = std::next(mi); 1706 // Don't revisit an instruction previously converted by target. It may 1707 // contain undef register operands (%noreg), which are not handled. 1708 if (mi->isDebugInstr() || SunkInstrs.count(&*mi)) { 1709 mi = nmi; 1710 continue; 1711 } 1712 1713 // Expand REG_SEQUENCE instructions. This will position mi at the first 1714 // expanded instruction. 1715 if (mi->isRegSequence()) 1716 eliminateRegSequence(mi); 1717 1718 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1719 1720 processCopy(&*mi); 1721 1722 // First scan through all the tied register uses in this instruction 1723 // and record a list of pairs of tied operands for each register. 1724 if (!collectTiedOperands(&*mi, TiedOperands)) { 1725 mi = nmi; 1726 continue; 1727 } 1728 1729 ++NumTwoAddressInstrs; 1730 MadeChange = true; 1731 LLVM_DEBUG(dbgs() << '\t' << *mi); 1732 1733 // If the instruction has a single pair of tied operands, try some 1734 // transformations that may either eliminate the tied operands or 1735 // improve the opportunities for coalescing away the register copy. 1736 if (TiedOperands.size() == 1) { 1737 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1738 = TiedOperands.begin()->second; 1739 if (TiedPairs.size() == 1) { 1740 unsigned SrcIdx = TiedPairs[0].first; 1741 unsigned DstIdx = TiedPairs[0].second; 1742 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1743 Register DstReg = mi->getOperand(DstIdx).getReg(); 1744 if (SrcReg != DstReg && 1745 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1746 // The tied operands have been eliminated or shifted further down 1747 // the block to ease elimination. Continue processing with 'nmi'. 1748 TiedOperands.clear(); 1749 mi = nmi; 1750 continue; 1751 } 1752 } 1753 } 1754 1755 // Now iterate over the information collected above. 1756 for (auto &TO : TiedOperands) { 1757 processTiedPairs(&*mi, TO.second, Dist); 1758 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1759 } 1760 1761 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1762 if (mi->isInsertSubreg()) { 1763 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1764 // To %reg:subidx = COPY %subreg 1765 unsigned SubIdx = mi->getOperand(3).getImm(); 1766 mi->RemoveOperand(3); 1767 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1768 mi->getOperand(0).setSubReg(SubIdx); 1769 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1770 mi->RemoveOperand(1); 1771 mi->setDesc(TII->get(TargetOpcode::COPY)); 1772 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1773 } 1774 1775 // Clear TiedOperands here instead of at the top of the loop 1776 // since most instructions do not have tied operands. 1777 TiedOperands.clear(); 1778 mi = nmi; 1779 } 1780 } 1781 1782 if (LIS) 1783 MF->verify(this, "After two-address instruction pass"); 1784 1785 return MadeChange; 1786 } 1787 1788 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1789 /// 1790 /// The instruction is turned into a sequence of sub-register copies: 1791 /// 1792 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1793 /// 1794 /// Becomes: 1795 /// 1796 /// undef %dst:ssub0 = COPY %v1 1797 /// %dst:ssub1 = COPY %v2 1798 void TwoAddressInstructionPass:: 1799 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1800 MachineInstr &MI = *MBBI; 1801 Register DstReg = MI.getOperand(0).getReg(); 1802 if (MI.getOperand(0).getSubReg() || Register::isPhysicalRegister(DstReg) || 1803 !(MI.getNumOperands() & 1)) { 1804 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1805 llvm_unreachable(nullptr); 1806 } 1807 1808 SmallVector<unsigned, 4> OrigRegs; 1809 if (LIS) { 1810 OrigRegs.push_back(MI.getOperand(0).getReg()); 1811 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1812 OrigRegs.push_back(MI.getOperand(i).getReg()); 1813 } 1814 1815 bool DefEmitted = false; 1816 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1817 MachineOperand &UseMO = MI.getOperand(i); 1818 Register SrcReg = UseMO.getReg(); 1819 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1820 // Nothing needs to be inserted for undef operands. 1821 if (UseMO.isUndef()) 1822 continue; 1823 1824 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1825 // might insert a COPY that uses SrcReg after is was killed. 1826 bool isKill = UseMO.isKill(); 1827 if (isKill) 1828 for (unsigned j = i + 2; j < e; j += 2) 1829 if (MI.getOperand(j).getReg() == SrcReg) { 1830 MI.getOperand(j).setIsKill(); 1831 UseMO.setIsKill(false); 1832 isKill = false; 1833 break; 1834 } 1835 1836 // Insert the sub-register copy. 1837 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1838 TII->get(TargetOpcode::COPY)) 1839 .addReg(DstReg, RegState::Define, SubIdx) 1840 .add(UseMO); 1841 1842 // The first def needs an undef flag because there is no live register 1843 // before it. 1844 if (!DefEmitted) { 1845 CopyMI->getOperand(0).setIsUndef(true); 1846 // Return an iterator pointing to the first inserted instr. 1847 MBBI = CopyMI; 1848 } 1849 DefEmitted = true; 1850 1851 // Update LiveVariables' kill info. 1852 if (LV && isKill && !Register::isPhysicalRegister(SrcReg)) 1853 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1854 1855 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1856 } 1857 1858 MachineBasicBlock::iterator EndMBBI = 1859 std::next(MachineBasicBlock::iterator(MI)); 1860 1861 if (!DefEmitted) { 1862 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1863 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1864 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1865 MI.RemoveOperand(j); 1866 } else { 1867 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1868 MI.eraseFromParent(); 1869 } 1870 1871 // Udpate LiveIntervals. 1872 if (LIS) 1873 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1874 } 1875