1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveVariables.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/Passes.h" 46 #include "llvm/CodeGen/SlotIndexes.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetOpcodes.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/MCInstrDesc.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "twoaddressinstruction" 66 67 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 68 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 69 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 70 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 71 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 72 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 73 74 // Temporary flag to disable rescheduling. 75 static cl::opt<bool> 76 EnableRescheduling("twoaddr-reschedule", 77 cl::desc("Coalesce copies by rescheduling (default=true)"), 78 cl::init(true), cl::Hidden); 79 80 // Limit the number of dataflow edges to traverse when evaluating the benefit 81 // of commuting operands. 82 static cl::opt<unsigned> MaxDataFlowEdge( 83 "dataflow-edge-limit", cl::Hidden, cl::init(3), 84 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 85 "the benefit of commuting operands")); 86 87 namespace { 88 89 class TwoAddressInstructionPass : public MachineFunctionPass { 90 MachineFunction *MF = nullptr; 91 const TargetInstrInfo *TII = nullptr; 92 const TargetRegisterInfo *TRI = nullptr; 93 const InstrItineraryData *InstrItins = nullptr; 94 MachineRegisterInfo *MRI = nullptr; 95 LiveVariables *LV = nullptr; 96 LiveIntervals *LIS = nullptr; 97 AliasAnalysis *AA = nullptr; 98 CodeGenOpt::Level OptLevel = CodeGenOpt::None; 99 100 // The current basic block being processed. 101 MachineBasicBlock *MBB = nullptr; 102 103 // Keep track the distance of a MI from the start of the current basic block. 104 DenseMap<MachineInstr*, unsigned> DistanceMap; 105 106 // Set of already processed instructions in the current block. 107 SmallPtrSet<MachineInstr*, 8> Processed; 108 109 // A map from virtual registers to physical registers which are likely targets 110 // to be coalesced to due to copies from physical registers to virtual 111 // registers. e.g. v1024 = move r0. 112 DenseMap<Register, Register> SrcRegMap; 113 114 // A map from virtual registers to physical registers which are likely targets 115 // to be coalesced to due to copies to physical registers from virtual 116 // registers. e.g. r1 = move v1024. 117 DenseMap<Register, Register> DstRegMap; 118 119 void removeClobberedSrcRegMap(MachineInstr *MI); 120 121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 126 MachineInstr *MI, unsigned Dist); 127 128 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 129 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 130 131 bool isProfitableToConv3Addr(Register RegA, Register RegB); 132 133 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, Register RegA, 135 Register RegB, unsigned &Dist); 136 137 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 138 139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 140 MachineBasicBlock::iterator &nmi, Register Reg); 141 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 144 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 145 MachineBasicBlock::iterator &nmi, 146 unsigned SrcIdx, unsigned DstIdx, 147 unsigned &Dist, bool shouldOnlyCommute); 148 149 bool tryInstructionCommute(MachineInstr *MI, 150 unsigned DstOpIdx, 151 unsigned BaseOpIdx, 152 bool BaseOpKilled, 153 unsigned Dist); 154 void scanUses(Register DstReg); 155 156 void processCopy(MachineInstr *MI); 157 158 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 159 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 160 161 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 162 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 163 void eliminateRegSequence(MachineBasicBlock::iterator&); 164 bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands); 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 170 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 171 } 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesCFG(); 175 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 176 AU.addUsedIfAvailable<LiveVariables>(); 177 AU.addPreserved<LiveVariables>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addPreserved<LiveIntervals>(); 180 AU.addPreservedID(MachineLoopInfoID); 181 AU.addPreservedID(MachineDominatorsID); 182 MachineFunctionPass::getAnalysisUsage(AU); 183 } 184 185 /// Pass entry point. 186 bool runOnMachineFunction(MachineFunction&) override; 187 }; 188 189 } // end anonymous namespace 190 191 char TwoAddressInstructionPass::ID = 0; 192 193 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 194 195 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 196 "Two-Address instruction pass", false, false) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 199 "Two-Address instruction pass", false, false) 200 201 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 202 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 203 const MachineRegisterInfo *MRI) { 204 MachineInstr *Ret = nullptr; 205 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 206 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 207 continue; 208 if (!Ret) 209 Ret = &DefMI; 210 else if (Ret != &DefMI) 211 return nullptr; 212 } 213 return Ret; 214 } 215 216 /// Check if there is a reversed copy chain from FromReg to ToReg: 217 /// %Tmp1 = copy %Tmp2; 218 /// %FromReg = copy %Tmp1; 219 /// %ToReg = add %FromReg ... 220 /// %Tmp2 = copy %ToReg; 221 /// MaxLen specifies the maximum length of the copy chain the func 222 /// can walk through. 223 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 224 int Maxlen) { 225 Register TmpReg = FromReg; 226 for (int i = 0; i < Maxlen; i++) { 227 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 228 if (!Def || !Def->isCopy()) 229 return false; 230 231 TmpReg = Def->getOperand(1).getReg(); 232 233 if (TmpReg == ToReg) 234 return true; 235 } 236 return false; 237 } 238 239 /// Return true if there are no intervening uses between the last instruction 240 /// in the MBB that defines the specified register and the two-address 241 /// instruction which is being processed. It also returns the last def location 242 /// by reference. 243 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 244 unsigned &LastDef) { 245 LastDef = 0; 246 unsigned LastUse = Dist; 247 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 248 MachineInstr *MI = MO.getParent(); 249 if (MI->getParent() != MBB || MI->isDebugValue()) 250 continue; 251 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 252 if (DI == DistanceMap.end()) 253 continue; 254 if (MO.isUse() && DI->second < LastUse) 255 LastUse = DI->second; 256 if (MO.isDef() && DI->second > LastDef) 257 LastDef = DI->second; 258 } 259 260 return !(LastUse > LastDef && LastUse < Dist); 261 } 262 263 /// Return true if the specified MI is a copy instruction or an extract_subreg 264 /// instruction. It also returns the source and destination registers and 265 /// whether they are physical registers by reference. 266 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 267 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 268 bool &IsDstPhys) { 269 SrcReg = 0; 270 DstReg = 0; 271 if (MI.isCopy()) { 272 DstReg = MI.getOperand(0).getReg(); 273 SrcReg = MI.getOperand(1).getReg(); 274 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 275 DstReg = MI.getOperand(0).getReg(); 276 SrcReg = MI.getOperand(2).getReg(); 277 } else { 278 return false; 279 } 280 281 IsSrcPhys = SrcReg.isPhysical(); 282 IsDstPhys = DstReg.isPhysical(); 283 return true; 284 } 285 286 /// Test if the given register value, which is used by the 287 /// given instruction, is killed by the given instruction. 288 static bool isPlainlyKilled(const MachineInstr *MI, Register Reg, 289 LiveIntervals *LIS) { 290 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 291 // FIXME: Sometimes tryInstructionTransform() will add instructions and 292 // test whether they can be folded before keeping them. In this case it 293 // sets a kill before recursively calling tryInstructionTransform() again. 294 // If there is no interval available, we assume that this instruction is 295 // one of those. A kill flag is manually inserted on the operand so the 296 // check below will handle it. 297 LiveInterval &LI = LIS->getInterval(Reg); 298 // This is to match the kill flag version where undefs don't have kill 299 // flags. 300 if (!LI.hasAtLeastOneValue()) 301 return false; 302 303 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 304 LiveInterval::const_iterator I = LI.find(useIdx); 305 assert(I != LI.end() && "Reg must be live-in to use."); 306 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 307 } 308 309 return MI->killsRegister(Reg); 310 } 311 312 /// Test if the register used by the given operand is killed by the operand's 313 /// instruction. 314 static bool isPlainlyKilled(const MachineOperand &MO, LiveIntervals *LIS) { 315 return MO.isKill() || isPlainlyKilled(MO.getParent(), MO.getReg(), LIS); 316 } 317 318 /// Test if the given register value, which is used by the given 319 /// instruction, is killed by the given instruction. This looks through 320 /// coalescable copies to see if the original value is potentially not killed. 321 /// 322 /// For example, in this code: 323 /// 324 /// %reg1034 = copy %reg1024 325 /// %reg1035 = copy killed %reg1025 326 /// %reg1036 = add killed %reg1034, killed %reg1035 327 /// 328 /// %reg1034 is not considered to be killed, since it is copied from a 329 /// register which is not killed. Treating it as not killed lets the 330 /// normal heuristics commute the (two-address) add, which lets 331 /// coalescing eliminate the extra copy. 332 /// 333 /// If allowFalsePositives is true then likely kills are treated as kills even 334 /// if it can't be proven that they are kills. 335 static bool isKilled(MachineInstr &MI, Register Reg, 336 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 337 LiveIntervals *LIS, bool allowFalsePositives) { 338 MachineInstr *DefMI = &MI; 339 while (true) { 340 // All uses of physical registers are likely to be kills. 341 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 342 return true; 343 if (!isPlainlyKilled(DefMI, Reg, LIS)) 344 return false; 345 if (Reg.isPhysical()) 346 return true; 347 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 348 // If there are multiple defs, we can't do a simple analysis, so just 349 // go with what the kill flag says. 350 if (std::next(Begin) != MRI->def_end()) 351 return true; 352 DefMI = Begin->getParent(); 353 bool IsSrcPhys, IsDstPhys; 354 Register SrcReg, DstReg; 355 // If the def is something other than a copy, then it isn't going to 356 // be coalesced, so follow the kill flag. 357 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 358 return true; 359 Reg = SrcReg; 360 } 361 } 362 363 /// Return true if the specified MI uses the specified register as a two-address 364 /// use. If so, return the destination register by reference. 365 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 366 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 367 const MachineOperand &MO = MI.getOperand(i); 368 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 369 continue; 370 unsigned ti; 371 if (MI.isRegTiedToDefOperand(i, &ti)) { 372 DstReg = MI.getOperand(ti).getReg(); 373 return true; 374 } 375 } 376 return false; 377 } 378 379 /// Given a register, if all its uses are in the same basic block, return the 380 /// last use instruction if it's a copy or a two-address use. 381 static MachineInstr * 382 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 383 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 384 bool &IsCopy, Register &DstReg, bool &IsDstPhys, 385 LiveIntervals *LIS) { 386 MachineOperand *UseOp = nullptr; 387 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 388 MachineInstr *MI = MO.getParent(); 389 if (MI->getParent() != MBB) 390 return nullptr; 391 if (isPlainlyKilled(MI, Reg, LIS)) 392 UseOp = &MO; 393 } 394 if (!UseOp) 395 return nullptr; 396 MachineInstr &UseMI = *UseOp->getParent(); 397 398 Register SrcReg; 399 bool IsSrcPhys; 400 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 401 IsCopy = true; 402 return &UseMI; 403 } 404 IsDstPhys = false; 405 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 406 IsDstPhys = DstReg.isPhysical(); 407 return &UseMI; 408 } 409 if (UseMI.isCommutable()) { 410 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 411 unsigned Src2 = UseOp->getOperandNo(); 412 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 413 MachineOperand &MO = UseMI.getOperand(Src1); 414 if (MO.isReg() && MO.isUse() && 415 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 416 IsDstPhys = DstReg.isPhysical(); 417 return &UseMI; 418 } 419 } 420 } 421 return nullptr; 422 } 423 424 /// Return the physical register the specified virtual register might be mapped 425 /// to. 426 static MCRegister getMappedReg(Register Reg, 427 DenseMap<Register, Register> &RegMap) { 428 while (Reg.isVirtual()) { 429 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 430 if (SI == RegMap.end()) 431 return 0; 432 Reg = SI->second; 433 } 434 if (Reg.isPhysical()) 435 return Reg; 436 return 0; 437 } 438 439 /// Return true if the two registers are equal or aliased. 440 static bool regsAreCompatible(Register RegA, Register RegB, 441 const TargetRegisterInfo *TRI) { 442 if (RegA == RegB) 443 return true; 444 if (!RegA || !RegB) 445 return false; 446 return TRI->regsOverlap(RegA, RegB); 447 } 448 449 /// From RegMap remove entries mapped to a physical register which overlaps MO. 450 static void removeMapRegEntry(const MachineOperand &MO, 451 DenseMap<Register, Register> &RegMap, 452 const TargetRegisterInfo *TRI) { 453 assert( 454 (MO.isReg() || MO.isRegMask()) && 455 "removeMapRegEntry must be called with a register or regmask operand."); 456 457 SmallVector<Register, 2> Srcs; 458 for (auto SI : RegMap) { 459 Register ToReg = SI.second; 460 if (ToReg.isVirtual()) 461 continue; 462 463 if (MO.isReg()) { 464 Register Reg = MO.getReg(); 465 if (TRI->regsOverlap(ToReg, Reg)) 466 Srcs.push_back(SI.first); 467 } else if (MO.clobbersPhysReg(ToReg)) 468 Srcs.push_back(SI.first); 469 } 470 471 for (auto SrcReg : Srcs) 472 RegMap.erase(SrcReg); 473 } 474 475 /// If a physical register is clobbered, old entries mapped to it should be 476 /// deleted. For example 477 /// 478 /// %2:gr64 = COPY killed $rdx 479 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 480 /// 481 /// After the MUL instruction, $rdx contains different value than in the COPY 482 /// instruction. So %2 should not map to $rdx after MUL. 483 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 484 if (MI->isCopy()) { 485 // If a virtual register is copied to its mapped physical register, it 486 // doesn't change the potential coalescing between them, so we don't remove 487 // entries mapped to the physical register. For example 488 // 489 // %100 = COPY $r8 490 // ... 491 // $r8 = COPY %100 492 // 493 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 494 // destroy the content of $r8, and should not impact SrcRegMap. 495 Register Dst = MI->getOperand(0).getReg(); 496 if (!Dst || Dst.isVirtual()) 497 return; 498 499 Register Src = MI->getOperand(1).getReg(); 500 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 501 return; 502 } 503 504 for (const MachineOperand &MO : MI->operands()) { 505 if (MO.isRegMask()) { 506 removeMapRegEntry(MO, SrcRegMap, TRI); 507 continue; 508 } 509 if (!MO.isReg() || !MO.isDef()) 510 continue; 511 Register Reg = MO.getReg(); 512 if (!Reg || Reg.isVirtual()) 513 continue; 514 removeMapRegEntry(MO, SrcRegMap, TRI); 515 } 516 } 517 518 // Returns true if Reg is equal or aliased to at least one register in Set. 519 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 520 const TargetRegisterInfo *TRI) { 521 for (unsigned R : Set) 522 if (TRI->regsOverlap(R, Reg)) 523 return true; 524 525 return false; 526 } 527 528 /// Return true if it's potentially profitable to commute the two-address 529 /// instruction that's being processed. 530 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 531 Register RegB, 532 Register RegC, 533 MachineInstr *MI, 534 unsigned Dist) { 535 if (OptLevel == CodeGenOpt::None) 536 return false; 537 538 // Determine if it's profitable to commute this two address instruction. In 539 // general, we want no uses between this instruction and the definition of 540 // the two-address register. 541 // e.g. 542 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 543 // %reg1029 = COPY %reg1028 544 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 545 // insert => %reg1030 = COPY %reg1028 546 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 547 // In this case, it might not be possible to coalesce the second COPY 548 // instruction if the first one is coalesced. So it would be profitable to 549 // commute it: 550 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 551 // %reg1029 = COPY %reg1028 552 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 553 // insert => %reg1030 = COPY %reg1029 554 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 555 556 if (!isPlainlyKilled(MI, RegC, LIS)) 557 return false; 558 559 // Ok, we have something like: 560 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 561 // let's see if it's worth commuting it. 562 563 // Look for situations like this: 564 // %reg1024 = MOV r1 565 // %reg1025 = MOV r0 566 // %reg1026 = ADD %reg1024, %reg1025 567 // r0 = MOV %reg1026 568 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 569 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 570 if (ToRegA) { 571 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 572 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 573 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 574 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 575 576 // Compute if any of the following are true: 577 // -RegB is not tied to a register and RegC is compatible with RegA. 578 // -RegB is tied to the wrong physical register, but RegC is. 579 // -RegB is tied to the wrong physical register, and RegC isn't tied. 580 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 581 return true; 582 // Don't compute if any of the following are true: 583 // -RegC is not tied to a register and RegB is compatible with RegA. 584 // -RegC is tied to the wrong physical register, but RegB is. 585 // -RegC is tied to the wrong physical register, and RegB isn't tied. 586 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 587 return false; 588 } 589 590 // If there is a use of RegC between its last def (could be livein) and this 591 // instruction, then bail. 592 unsigned LastDefC = 0; 593 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 594 return false; 595 596 // If there is a use of RegB between its last def (could be livein) and this 597 // instruction, then go ahead and make this transformation. 598 unsigned LastDefB = 0; 599 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 600 return true; 601 602 // Look for situation like this: 603 // %reg101 = MOV %reg100 604 // %reg102 = ... 605 // %reg103 = ADD %reg102, %reg101 606 // ... = %reg103 ... 607 // %reg100 = MOV %reg103 608 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 609 // to eliminate an otherwise unavoidable copy. 610 // FIXME: 611 // We can extend the logic further: If an pair of operands in an insn has 612 // been merged, the insn could be regarded as a virtual copy, and the virtual 613 // copy could also be used to construct a copy chain. 614 // To more generally minimize register copies, ideally the logic of two addr 615 // instruction pass should be integrated with register allocation pass where 616 // interference graph is available. 617 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 618 return true; 619 620 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 621 return false; 622 623 // Look for other target specific commute preference. 624 bool Commute; 625 if (TII->hasCommutePreference(*MI, Commute)) 626 return Commute; 627 628 // Since there are no intervening uses for both registers, then commute 629 // if the def of RegC is closer. Its live interval is shorter. 630 return LastDefB && LastDefC && LastDefC > LastDefB; 631 } 632 633 /// Commute a two-address instruction and update the basic block, distance map, 634 /// and live variables if needed. Return true if it is successful. 635 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 636 unsigned DstIdx, 637 unsigned RegBIdx, 638 unsigned RegCIdx, 639 unsigned Dist) { 640 Register RegC = MI->getOperand(RegCIdx).getReg(); 641 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 642 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 643 644 if (NewMI == nullptr) { 645 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 646 return false; 647 } 648 649 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 650 assert(NewMI == MI && 651 "TargetInstrInfo::commuteInstruction() should not return a new " 652 "instruction unless it was requested."); 653 654 // Update source register map. 655 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 656 if (FromRegC) { 657 Register RegA = MI->getOperand(DstIdx).getReg(); 658 SrcRegMap[RegA] = FromRegC; 659 } 660 661 return true; 662 } 663 664 /// Return true if it is profitable to convert the given 2-address instruction 665 /// to a 3-address one. 666 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 667 Register RegB) { 668 // Look for situations like this: 669 // %reg1024 = MOV r1 670 // %reg1025 = MOV r0 671 // %reg1026 = ADD %reg1024, %reg1025 672 // r2 = MOV %reg1026 673 // Turn ADD into a 3-address instruction to avoid a copy. 674 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 675 if (!FromRegB) 676 return false; 677 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 678 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 679 } 680 681 /// Convert the specified two-address instruction into a three address one. 682 /// Return true if this transformation was successful. 683 bool TwoAddressInstructionPass::convertInstTo3Addr( 684 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 685 Register RegA, Register RegB, unsigned &Dist) { 686 MachineInstrSpan MIS(mi, MBB); 687 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS); 688 if (!NewMI) 689 return false; 690 691 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 692 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 693 694 // If the old instruction is debug value tracked, an update is required. 695 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 696 assert(mi->getNumExplicitDefs() == 1); 697 assert(NewMI->getNumExplicitDefs() == 1); 698 699 // Find the old and new def location. 700 unsigned OldIdx = mi->defs().begin()->getOperandNo(); 701 unsigned NewIdx = NewMI->defs().begin()->getOperandNo(); 702 703 // Record that one def has been replaced by the other. 704 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 705 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 706 std::make_pair(NewInstrNum, NewIdx)); 707 } 708 709 MBB->erase(mi); // Nuke the old inst. 710 711 for (MachineInstr &MI : MIS) 712 DistanceMap.insert(std::make_pair(&MI, Dist++)); 713 Dist--; 714 mi = NewMI; 715 nmi = std::next(mi); 716 717 // Update source and destination register maps. 718 SrcRegMap.erase(RegA); 719 DstRegMap.erase(RegB); 720 return true; 721 } 722 723 /// Scan forward recursively for only uses, update maps if the use is a copy or 724 /// a two-address instruction. 725 void TwoAddressInstructionPass::scanUses(Register DstReg) { 726 SmallVector<Register, 4> VirtRegPairs; 727 bool IsDstPhys; 728 bool IsCopy = false; 729 Register NewReg; 730 Register Reg = DstReg; 731 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 732 NewReg, IsDstPhys, LIS)) { 733 if (IsCopy && !Processed.insert(UseMI).second) 734 break; 735 736 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 737 if (DI != DistanceMap.end()) 738 // Earlier in the same MBB.Reached via a back edge. 739 break; 740 741 if (IsDstPhys) { 742 VirtRegPairs.push_back(NewReg); 743 break; 744 } 745 SrcRegMap[NewReg] = Reg; 746 VirtRegPairs.push_back(NewReg); 747 Reg = NewReg; 748 } 749 750 if (!VirtRegPairs.empty()) { 751 unsigned ToReg = VirtRegPairs.back(); 752 VirtRegPairs.pop_back(); 753 while (!VirtRegPairs.empty()) { 754 unsigned FromReg = VirtRegPairs.pop_back_val(); 755 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 756 if (!isNew) 757 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 758 ToReg = FromReg; 759 } 760 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 761 if (!isNew) 762 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 763 } 764 } 765 766 /// If the specified instruction is not yet processed, process it if it's a 767 /// copy. For a copy instruction, we find the physical registers the 768 /// source and destination registers might be mapped to. These are kept in 769 /// point-to maps used to determine future optimizations. e.g. 770 /// v1024 = mov r0 771 /// v1025 = mov r1 772 /// v1026 = add v1024, v1025 773 /// r1 = mov r1026 774 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 775 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 776 /// potentially joined with r1 on the output side. It's worthwhile to commute 777 /// 'add' to eliminate a copy. 778 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 779 if (Processed.count(MI)) 780 return; 781 782 bool IsSrcPhys, IsDstPhys; 783 Register SrcReg, DstReg; 784 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 785 return; 786 787 if (IsDstPhys && !IsSrcPhys) { 788 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 789 } else if (!IsDstPhys && IsSrcPhys) { 790 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 791 if (!isNew) 792 assert(SrcRegMap[DstReg] == SrcReg && 793 "Can't map to two src physical registers!"); 794 795 scanUses(DstReg); 796 } 797 798 Processed.insert(MI); 799 } 800 801 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 802 /// consider moving the instruction below the kill instruction in order to 803 /// eliminate the need for the copy. 804 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 805 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 806 Register Reg) { 807 // Bail immediately if we don't have LV or LIS available. We use them to find 808 // kills efficiently. 809 if (!LV && !LIS) 810 return false; 811 812 MachineInstr *MI = &*mi; 813 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 814 if (DI == DistanceMap.end()) 815 // Must be created from unfolded load. Don't waste time trying this. 816 return false; 817 818 MachineInstr *KillMI = nullptr; 819 if (LIS) { 820 LiveInterval &LI = LIS->getInterval(Reg); 821 assert(LI.end() != LI.begin() && 822 "Reg should not have empty live interval."); 823 824 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 825 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 826 if (I != LI.end() && I->start < MBBEndIdx) 827 return false; 828 829 --I; 830 KillMI = LIS->getInstructionFromIndex(I->end); 831 } else { 832 KillMI = LV->getVarInfo(Reg).findKill(MBB); 833 } 834 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 835 // Don't mess with copies, they may be coalesced later. 836 return false; 837 838 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 839 KillMI->isBranch() || KillMI->isTerminator()) 840 // Don't move pass calls, etc. 841 return false; 842 843 Register DstReg; 844 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 845 return false; 846 847 bool SeenStore = true; 848 if (!MI->isSafeToMove(AA, SeenStore)) 849 return false; 850 851 if (TII->getInstrLatency(InstrItins, *MI) > 1) 852 // FIXME: Needs more sophisticated heuristics. 853 return false; 854 855 SmallVector<Register, 2> Uses; 856 SmallVector<Register, 2> Kills; 857 SmallVector<Register, 2> Defs; 858 for (const MachineOperand &MO : MI->operands()) { 859 if (!MO.isReg()) 860 continue; 861 Register MOReg = MO.getReg(); 862 if (!MOReg) 863 continue; 864 if (MO.isDef()) 865 Defs.push_back(MOReg); 866 else { 867 Uses.push_back(MOReg); 868 if (MOReg != Reg && isPlainlyKilled(MO, LIS)) 869 Kills.push_back(MOReg); 870 } 871 } 872 873 // Move the copies connected to MI down as well. 874 MachineBasicBlock::iterator Begin = MI; 875 MachineBasicBlock::iterator AfterMI = std::next(Begin); 876 MachineBasicBlock::iterator End = AfterMI; 877 while (End != MBB->end()) { 878 End = skipDebugInstructionsForward(End, MBB->end()); 879 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 880 Defs.push_back(End->getOperand(0).getReg()); 881 else 882 break; 883 ++End; 884 } 885 886 // Check if the reschedule will not break dependencies. 887 unsigned NumVisited = 0; 888 MachineBasicBlock::iterator KillPos = KillMI; 889 ++KillPos; 890 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 891 // Debug or pseudo instructions cannot be counted against the limit. 892 if (OtherMI.isDebugOrPseudoInstr()) 893 continue; 894 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 895 return false; 896 ++NumVisited; 897 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 898 OtherMI.isBranch() || OtherMI.isTerminator()) 899 // Don't move pass calls, etc. 900 return false; 901 for (const MachineOperand &MO : OtherMI.operands()) { 902 if (!MO.isReg()) 903 continue; 904 Register MOReg = MO.getReg(); 905 if (!MOReg) 906 continue; 907 if (MO.isDef()) { 908 if (regOverlapsSet(Uses, MOReg, TRI)) 909 // Physical register use would be clobbered. 910 return false; 911 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 912 // May clobber a physical register def. 913 // FIXME: This may be too conservative. It's ok if the instruction 914 // is sunken completely below the use. 915 return false; 916 } else { 917 if (regOverlapsSet(Defs, MOReg, TRI)) 918 return false; 919 bool isKill = isPlainlyKilled(MO, LIS); 920 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 921 regOverlapsSet(Kills, MOReg, TRI))) 922 // Don't want to extend other live ranges and update kills. 923 return false; 924 if (MOReg == Reg && !isKill) 925 // We can't schedule across a use of the register in question. 926 return false; 927 // Ensure that if this is register in question, its the kill we expect. 928 assert((MOReg != Reg || &OtherMI == KillMI) && 929 "Found multiple kills of a register in a basic block"); 930 } 931 } 932 } 933 934 // Move debug info as well. 935 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 936 --Begin; 937 938 nmi = End; 939 MachineBasicBlock::iterator InsertPos = KillPos; 940 if (LIS) { 941 // We have to move the copies (and any interleaved debug instructions) 942 // first so that the MBB is still well-formed when calling handleMove(). 943 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 944 auto CopyMI = MBBI++; 945 MBB->splice(InsertPos, MBB, CopyMI); 946 if (!CopyMI->isDebugOrPseudoInstr()) 947 LIS->handleMove(*CopyMI); 948 InsertPos = CopyMI; 949 } 950 End = std::next(MachineBasicBlock::iterator(MI)); 951 } 952 953 // Copies following MI may have been moved as well. 954 MBB->splice(InsertPos, MBB, Begin, End); 955 DistanceMap.erase(DI); 956 957 // Update live variables 958 if (LIS) { 959 LIS->handleMove(*MI); 960 } else { 961 LV->removeVirtualRegisterKilled(Reg, *KillMI); 962 LV->addVirtualRegisterKilled(Reg, *MI); 963 } 964 965 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 966 return true; 967 } 968 969 /// Return true if the re-scheduling will put the given instruction too close 970 /// to the defs of its register dependencies. 971 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 972 MachineInstr *MI) { 973 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 974 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 975 continue; 976 if (&DefMI == MI) 977 return true; // MI is defining something KillMI uses 978 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 979 if (DDI == DistanceMap.end()) 980 return true; // Below MI 981 unsigned DefDist = DDI->second; 982 assert(Dist > DefDist && "Visited def already?"); 983 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 984 return true; 985 } 986 return false; 987 } 988 989 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 990 /// consider moving the kill instruction above the current two-address 991 /// instruction in order to eliminate the need for the copy. 992 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 993 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 994 Register Reg) { 995 // Bail immediately if we don't have LV or LIS available. We use them to find 996 // kills efficiently. 997 if (!LV && !LIS) 998 return false; 999 1000 MachineInstr *MI = &*mi; 1001 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1002 if (DI == DistanceMap.end()) 1003 // Must be created from unfolded load. Don't waste time trying this. 1004 return false; 1005 1006 MachineInstr *KillMI = nullptr; 1007 if (LIS) { 1008 LiveInterval &LI = LIS->getInterval(Reg); 1009 assert(LI.end() != LI.begin() && 1010 "Reg should not have empty live interval."); 1011 1012 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1013 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1014 if (I != LI.end() && I->start < MBBEndIdx) 1015 return false; 1016 1017 --I; 1018 KillMI = LIS->getInstructionFromIndex(I->end); 1019 } else { 1020 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1021 } 1022 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1023 // Don't mess with copies, they may be coalesced later. 1024 return false; 1025 1026 Register DstReg; 1027 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1028 return false; 1029 1030 bool SeenStore = true; 1031 if (!KillMI->isSafeToMove(AA, SeenStore)) 1032 return false; 1033 1034 SmallVector<Register, 2> Uses; 1035 SmallVector<Register, 2> Kills; 1036 SmallVector<Register, 2> Defs; 1037 SmallVector<Register, 2> LiveDefs; 1038 for (const MachineOperand &MO : KillMI->operands()) { 1039 if (!MO.isReg()) 1040 continue; 1041 Register MOReg = MO.getReg(); 1042 if (MO.isUse()) { 1043 if (!MOReg) 1044 continue; 1045 if (isDefTooClose(MOReg, DI->second, MI)) 1046 return false; 1047 bool isKill = isPlainlyKilled(MO, LIS); 1048 if (MOReg == Reg && !isKill) 1049 return false; 1050 Uses.push_back(MOReg); 1051 if (isKill && MOReg != Reg) 1052 Kills.push_back(MOReg); 1053 } else if (MOReg.isPhysical()) { 1054 Defs.push_back(MOReg); 1055 if (!MO.isDead()) 1056 LiveDefs.push_back(MOReg); 1057 } 1058 } 1059 1060 // Check if the reschedule will not break depedencies. 1061 unsigned NumVisited = 0; 1062 for (MachineInstr &OtherMI : 1063 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1064 // Debug or pseudo instructions cannot be counted against the limit. 1065 if (OtherMI.isDebugOrPseudoInstr()) 1066 continue; 1067 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1068 return false; 1069 ++NumVisited; 1070 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1071 OtherMI.isBranch() || OtherMI.isTerminator()) 1072 // Don't move pass calls, etc. 1073 return false; 1074 SmallVector<Register, 2> OtherDefs; 1075 for (const MachineOperand &MO : OtherMI.operands()) { 1076 if (!MO.isReg()) 1077 continue; 1078 Register MOReg = MO.getReg(); 1079 if (!MOReg) 1080 continue; 1081 if (MO.isUse()) { 1082 if (regOverlapsSet(Defs, MOReg, TRI)) 1083 // Moving KillMI can clobber the physical register if the def has 1084 // not been seen. 1085 return false; 1086 if (regOverlapsSet(Kills, MOReg, TRI)) 1087 // Don't want to extend other live ranges and update kills. 1088 return false; 1089 if (&OtherMI != MI && MOReg == Reg && !isPlainlyKilled(MO, LIS)) 1090 // We can't schedule across a use of the register in question. 1091 return false; 1092 } else { 1093 OtherDefs.push_back(MOReg); 1094 } 1095 } 1096 1097 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1098 Register MOReg = OtherDefs[i]; 1099 if (regOverlapsSet(Uses, MOReg, TRI)) 1100 return false; 1101 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1102 return false; 1103 // Physical register def is seen. 1104 llvm::erase_value(Defs, MOReg); 1105 } 1106 } 1107 1108 // Move the old kill above MI, don't forget to move debug info as well. 1109 MachineBasicBlock::iterator InsertPos = mi; 1110 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1111 --InsertPos; 1112 MachineBasicBlock::iterator From = KillMI; 1113 MachineBasicBlock::iterator To = std::next(From); 1114 while (std::prev(From)->isDebugInstr()) 1115 --From; 1116 MBB->splice(InsertPos, MBB, From, To); 1117 1118 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1119 DistanceMap.erase(DI); 1120 1121 // Update live variables 1122 if (LIS) { 1123 LIS->handleMove(*KillMI); 1124 } else { 1125 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1126 LV->addVirtualRegisterKilled(Reg, *MI); 1127 } 1128 1129 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1130 return true; 1131 } 1132 1133 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1134 /// given machine instruction to improve opportunities for coalescing and 1135 /// elimination of a register to register copy. 1136 /// 1137 /// 'DstOpIdx' specifies the index of MI def operand. 1138 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1139 /// operand is killed by the given instruction. 1140 /// The 'Dist' arguments provides the distance of MI from the start of the 1141 /// current basic block and it is used to determine if it is profitable 1142 /// to commute operands in the instruction. 1143 /// 1144 /// Returns true if the transformation happened. Otherwise, returns false. 1145 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1146 unsigned DstOpIdx, 1147 unsigned BaseOpIdx, 1148 bool BaseOpKilled, 1149 unsigned Dist) { 1150 if (!MI->isCommutable()) 1151 return false; 1152 1153 bool MadeChange = false; 1154 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1155 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1156 unsigned OpsNum = MI->getDesc().getNumOperands(); 1157 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1158 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1159 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1160 // and OtherOpIdx are commutable, it does not really search for 1161 // other commutable operands and does not change the values of passed 1162 // variables. 1163 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1164 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1165 continue; 1166 1167 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1168 bool AggressiveCommute = false; 1169 1170 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1171 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1172 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1173 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1174 1175 if (!DoCommute && 1176 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1177 DoCommute = true; 1178 AggressiveCommute = true; 1179 } 1180 1181 // If it's profitable to commute, try to do so. 1182 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1183 Dist)) { 1184 MadeChange = true; 1185 ++NumCommuted; 1186 if (AggressiveCommute) 1187 ++NumAggrCommuted; 1188 1189 // There might be more than two commutable operands, update BaseOp and 1190 // continue scanning. 1191 // FIXME: This assumes that the new instruction's operands are in the 1192 // same positions and were simply swapped. 1193 BaseOpReg = OtherOpReg; 1194 BaseOpKilled = OtherOpKilled; 1195 // Resamples OpsNum in case the number of operands was reduced. This 1196 // happens with X86. 1197 OpsNum = MI->getDesc().getNumOperands(); 1198 } 1199 } 1200 return MadeChange; 1201 } 1202 1203 /// For the case where an instruction has a single pair of tied register 1204 /// operands, attempt some transformations that may either eliminate the tied 1205 /// operands or improve the opportunities for coalescing away the register copy. 1206 /// Returns true if no copy needs to be inserted to untie mi's operands 1207 /// (either because they were untied, or because mi was rescheduled, and will 1208 /// be visited again later). If the shouldOnlyCommute flag is true, only 1209 /// instruction commutation is attempted. 1210 bool TwoAddressInstructionPass:: 1211 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1212 MachineBasicBlock::iterator &nmi, 1213 unsigned SrcIdx, unsigned DstIdx, 1214 unsigned &Dist, bool shouldOnlyCommute) { 1215 if (OptLevel == CodeGenOpt::None) 1216 return false; 1217 1218 MachineInstr &MI = *mi; 1219 Register regA = MI.getOperand(DstIdx).getReg(); 1220 Register regB = MI.getOperand(SrcIdx).getReg(); 1221 1222 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1223 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1224 1225 if (regA.isVirtual()) 1226 scanUses(regA); 1227 1228 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1229 1230 // If the instruction is convertible to 3 Addr, instead 1231 // of returning try 3 Addr transformation aggressively and 1232 // use this variable to check later. Because it might be better. 1233 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1234 // instead of the following code. 1235 // addl %esi, %edi 1236 // movl %edi, %eax 1237 // ret 1238 if (Commuted && !MI.isConvertibleTo3Addr()) 1239 return false; 1240 1241 if (shouldOnlyCommute) 1242 return false; 1243 1244 // If there is one more use of regB later in the same MBB, consider 1245 // re-schedule this MI below it. 1246 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1247 ++NumReSchedDowns; 1248 return true; 1249 } 1250 1251 // If we commuted, regB may have changed so we should re-sample it to avoid 1252 // confusing the three address conversion below. 1253 if (Commuted) { 1254 regB = MI.getOperand(SrcIdx).getReg(); 1255 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1256 } 1257 1258 if (MI.isConvertibleTo3Addr()) { 1259 // This instruction is potentially convertible to a true 1260 // three-address instruction. Check if it is profitable. 1261 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1262 // Try to convert it. 1263 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1264 ++NumConvertedTo3Addr; 1265 return true; // Done with this instruction. 1266 } 1267 } 1268 } 1269 1270 // Return if it is commuted but 3 addr conversion is failed. 1271 if (Commuted) 1272 return false; 1273 1274 // If there is one more use of regB later in the same MBB, consider 1275 // re-schedule it before this MI if it's legal. 1276 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1277 ++NumReSchedUps; 1278 return true; 1279 } 1280 1281 // If this is an instruction with a load folded into it, try unfolding 1282 // the load, e.g. avoid this: 1283 // movq %rdx, %rcx 1284 // addq (%rax), %rcx 1285 // in favor of this: 1286 // movq (%rax), %rcx 1287 // addq %rdx, %rcx 1288 // because it's preferable to schedule a load than a register copy. 1289 if (MI.mayLoad() && !regBKilled) { 1290 // Determine if a load can be unfolded. 1291 unsigned LoadRegIndex; 1292 unsigned NewOpc = 1293 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1294 /*UnfoldLoad=*/true, 1295 /*UnfoldStore=*/false, 1296 &LoadRegIndex); 1297 if (NewOpc != 0) { 1298 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1299 if (UnfoldMCID.getNumDefs() == 1) { 1300 // Unfold the load. 1301 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1302 const TargetRegisterClass *RC = 1303 TRI->getAllocatableClass( 1304 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1305 Register Reg = MRI->createVirtualRegister(RC); 1306 SmallVector<MachineInstr *, 2> NewMIs; 1307 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1308 /*UnfoldLoad=*/true, 1309 /*UnfoldStore=*/false, NewMIs)) { 1310 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1311 return false; 1312 } 1313 assert(NewMIs.size() == 2 && 1314 "Unfolded a load into multiple instructions!"); 1315 // The load was previously folded, so this is the only use. 1316 NewMIs[1]->addRegisterKilled(Reg, TRI); 1317 1318 // Tentatively insert the instructions into the block so that they 1319 // look "normal" to the transformation logic. 1320 MBB->insert(mi, NewMIs[0]); 1321 MBB->insert(mi, NewMIs[1]); 1322 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1323 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1324 1325 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1326 << "2addr: NEW INST: " << *NewMIs[1]); 1327 1328 // Transform the instruction, now that it no longer has a load. 1329 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1330 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1331 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1332 bool TransformResult = 1333 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1334 (void)TransformResult; 1335 assert(!TransformResult && 1336 "tryInstructionTransform() should return false."); 1337 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1338 // Success, or at least we made an improvement. Keep the unfolded 1339 // instructions and discard the original. 1340 if (LV) { 1341 for (const MachineOperand &MO : MI.operands()) { 1342 if (MO.isReg() && MO.getReg().isVirtual()) { 1343 if (MO.isUse()) { 1344 if (MO.isKill()) { 1345 if (NewMIs[0]->killsRegister(MO.getReg())) 1346 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1347 else { 1348 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1349 "Kill missing after load unfold!"); 1350 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1351 } 1352 } 1353 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1354 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1355 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1356 else { 1357 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1358 "Dead flag missing after load unfold!"); 1359 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1360 } 1361 } 1362 } 1363 } 1364 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1365 } 1366 1367 SmallVector<Register, 4> OrigRegs; 1368 if (LIS) { 1369 for (const MachineOperand &MO : MI.operands()) { 1370 if (MO.isReg()) 1371 OrigRegs.push_back(MO.getReg()); 1372 } 1373 1374 LIS->RemoveMachineInstrFromMaps(MI); 1375 } 1376 1377 MI.eraseFromParent(); 1378 DistanceMap.erase(&MI); 1379 1380 // Update LiveIntervals. 1381 if (LIS) { 1382 MachineBasicBlock::iterator Begin(NewMIs[0]); 1383 MachineBasicBlock::iterator End(NewMIs[1]); 1384 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1385 } 1386 1387 mi = NewMIs[1]; 1388 } else { 1389 // Transforming didn't eliminate the tie and didn't lead to an 1390 // improvement. Clean up the unfolded instructions and keep the 1391 // original. 1392 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1393 NewMIs[0]->eraseFromParent(); 1394 NewMIs[1]->eraseFromParent(); 1395 DistanceMap.erase(NewMIs[0]); 1396 DistanceMap.erase(NewMIs[1]); 1397 Dist--; 1398 } 1399 } 1400 } 1401 } 1402 1403 return false; 1404 } 1405 1406 // Collect tied operands of MI that need to be handled. 1407 // Rewrite trivial cases immediately. 1408 // Return true if any tied operands where found, including the trivial ones. 1409 bool TwoAddressInstructionPass:: 1410 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1411 bool AnyOps = false; 1412 unsigned NumOps = MI->getNumOperands(); 1413 1414 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1415 unsigned DstIdx = 0; 1416 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1417 continue; 1418 AnyOps = true; 1419 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1420 MachineOperand &DstMO = MI->getOperand(DstIdx); 1421 Register SrcReg = SrcMO.getReg(); 1422 Register DstReg = DstMO.getReg(); 1423 // Tied constraint already satisfied? 1424 if (SrcReg == DstReg) 1425 continue; 1426 1427 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1428 1429 // Deal with undef uses immediately - simply rewrite the src operand. 1430 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1431 // Constrain the DstReg register class if required. 1432 if (DstReg.isVirtual()) { 1433 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1434 MRI->constrainRegClass(DstReg, RC); 1435 } 1436 SrcMO.setReg(DstReg); 1437 SrcMO.setSubReg(0); 1438 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1439 continue; 1440 } 1441 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1442 } 1443 return AnyOps; 1444 } 1445 1446 // Process a list of tied MI operands that all use the same source register. 1447 // The tied pairs are of the form (SrcIdx, DstIdx). 1448 void 1449 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1450 TiedPairList &TiedPairs, 1451 unsigned &Dist) { 1452 bool IsEarlyClobber = llvm::any_of(TiedPairs, [MI](auto const &TP) { 1453 return MI->getOperand(TP.second).isEarlyClobber(); 1454 }); 1455 1456 bool RemovedKillFlag = false; 1457 bool AllUsesCopied = true; 1458 unsigned LastCopiedReg = 0; 1459 SlotIndex LastCopyIdx; 1460 Register RegB = 0; 1461 unsigned SubRegB = 0; 1462 for (auto &TP : TiedPairs) { 1463 unsigned SrcIdx = TP.first; 1464 unsigned DstIdx = TP.second; 1465 1466 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1467 Register RegA = DstMO.getReg(); 1468 1469 // Grab RegB from the instruction because it may have changed if the 1470 // instruction was commuted. 1471 RegB = MI->getOperand(SrcIdx).getReg(); 1472 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1473 1474 if (RegA == RegB) { 1475 // The register is tied to multiple destinations (or else we would 1476 // not have continued this far), but this use of the register 1477 // already matches the tied destination. Leave it. 1478 AllUsesCopied = false; 1479 continue; 1480 } 1481 LastCopiedReg = RegA; 1482 1483 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1484 1485 #ifndef NDEBUG 1486 // First, verify that we don't have a use of "a" in the instruction 1487 // (a = b + a for example) because our transformation will not 1488 // work. This should never occur because we are in SSA form. 1489 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1490 assert(i == DstIdx || 1491 !MI->getOperand(i).isReg() || 1492 MI->getOperand(i).getReg() != RegA); 1493 #endif 1494 1495 // Emit a copy. 1496 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1497 TII->get(TargetOpcode::COPY), RegA); 1498 // If this operand is folding a truncation, the truncation now moves to the 1499 // copy so that the register classes remain valid for the operands. 1500 MIB.addReg(RegB, 0, SubRegB); 1501 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1502 if (SubRegB) { 1503 if (RegA.isVirtual()) { 1504 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1505 SubRegB) && 1506 "tied subregister must be a truncation"); 1507 // The superreg class will not be used to constrain the subreg class. 1508 RC = nullptr; 1509 } else { 1510 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1511 && "tied subregister must be a truncation"); 1512 } 1513 } 1514 1515 // Update DistanceMap. 1516 MachineBasicBlock::iterator PrevMI = MI; 1517 --PrevMI; 1518 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1519 DistanceMap[MI] = ++Dist; 1520 1521 if (LIS) { 1522 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1523 1524 SlotIndex endIdx = 1525 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1526 if (RegA.isVirtual()) { 1527 LiveInterval &LI = LIS->getInterval(RegA); 1528 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1529 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1530 for (auto &S : LI.subranges()) { 1531 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1532 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1533 } 1534 } else { 1535 for (MCRegUnit Unit : TRI->regunits(RegA)) { 1536 if (LiveRange *LR = LIS->getCachedRegUnit(Unit)) { 1537 VNInfo *VNI = 1538 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1539 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1540 } 1541 } 1542 } 1543 } 1544 1545 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1546 1547 MachineOperand &MO = MI->getOperand(SrcIdx); 1548 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1549 "inconsistent operand info for 2-reg pass"); 1550 if (MO.isKill()) { 1551 MO.setIsKill(false); 1552 RemovedKillFlag = true; 1553 } 1554 1555 // Make sure regA is a legal regclass for the SrcIdx operand. 1556 if (RegA.isVirtual() && RegB.isVirtual()) 1557 MRI->constrainRegClass(RegA, RC); 1558 MO.setReg(RegA); 1559 // The getMatchingSuper asserts guarantee that the register class projected 1560 // by SubRegB is compatible with RegA with no subregister. So regardless of 1561 // whether the dest oper writes a subreg, the source oper should not. 1562 MO.setSubReg(0); 1563 } 1564 1565 if (AllUsesCopied) { 1566 LaneBitmask RemainingUses = LaneBitmask::getNone(); 1567 // Replace other (un-tied) uses of regB with LastCopiedReg. 1568 for (MachineOperand &MO : MI->all_uses()) { 1569 if (MO.getReg() == RegB) { 1570 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { 1571 if (MO.isKill()) { 1572 MO.setIsKill(false); 1573 RemovedKillFlag = true; 1574 } 1575 MO.setReg(LastCopiedReg); 1576 MO.setSubReg(0); 1577 } else { 1578 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1579 } 1580 } 1581 } 1582 1583 // Update live variables for regB. 1584 if (RemovedKillFlag && RemainingUses.none() && LV && 1585 LV->getVarInfo(RegB).removeKill(*MI)) { 1586 MachineBasicBlock::iterator PrevMI = MI; 1587 --PrevMI; 1588 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1589 } 1590 1591 if (RemovedKillFlag && RemainingUses.none()) 1592 SrcRegMap[LastCopiedReg] = RegB; 1593 1594 // Update LiveIntervals. 1595 if (LIS) { 1596 SlotIndex UseIdx = LIS->getInstructionIndex(*MI); 1597 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { 1598 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx); 1599 if (!S) 1600 return true; 1601 if ((LaneMask & RemainingUses).any()) 1602 return false; 1603 if (S->end.getBaseIndex() != UseIdx) 1604 return false; 1605 S->end = LastCopyIdx; 1606 return true; 1607 }; 1608 1609 LiveInterval &LI = LIS->getInterval(RegB); 1610 bool ShrinkLI = true; 1611 for (auto &S : LI.subranges()) 1612 ShrinkLI &= Shrink(S, S.LaneMask); 1613 if (ShrinkLI) 1614 Shrink(LI, LaneBitmask::getAll()); 1615 } 1616 } else if (RemovedKillFlag) { 1617 // Some tied uses of regB matched their destination registers, so 1618 // regB is still used in this instruction, but a kill flag was 1619 // removed from a different tied use of regB, so now we need to add 1620 // a kill flag to one of the remaining uses of regB. 1621 for (MachineOperand &MO : MI->all_uses()) { 1622 if (MO.getReg() == RegB) { 1623 MO.setIsKill(true); 1624 break; 1625 } 1626 } 1627 } 1628 } 1629 1630 // For every tied operand pair this function transforms statepoint from 1631 // RegA = STATEPOINT ... RegB(tied-def N) 1632 // to 1633 // RegB = STATEPOINT ... RegB(tied-def N) 1634 // and replaces all uses of RegA with RegB. 1635 // No extra COPY instruction is necessary because tied use is killed at 1636 // STATEPOINT. 1637 bool TwoAddressInstructionPass::processStatepoint( 1638 MachineInstr *MI, TiedOperandMap &TiedOperands) { 1639 1640 bool NeedCopy = false; 1641 for (auto &TO : TiedOperands) { 1642 Register RegB = TO.first; 1643 if (TO.second.size() != 1) { 1644 NeedCopy = true; 1645 continue; 1646 } 1647 1648 unsigned SrcIdx = TO.second[0].first; 1649 unsigned DstIdx = TO.second[0].second; 1650 1651 MachineOperand &DstMO = MI->getOperand(DstIdx); 1652 Register RegA = DstMO.getReg(); 1653 1654 assert(RegB == MI->getOperand(SrcIdx).getReg()); 1655 1656 if (RegA == RegB) 1657 continue; 1658 1659 // CodeGenPrepare can sink pointer compare past statepoint, which 1660 // breaks assumption that statepoint kills tied-use register when 1661 // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back 1662 // to generic tied register handling to avoid assertion failures. 1663 // TODO: Recompute LIS/LV information for new range here. 1664 if (LIS) { 1665 const auto &UseLI = LIS->getInterval(RegB); 1666 const auto &DefLI = LIS->getInterval(RegA); 1667 if (DefLI.overlaps(UseLI)) { 1668 LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0) 1669 << " UseLI overlaps with DefLI\n"); 1670 NeedCopy = true; 1671 continue; 1672 } 1673 } else if (LV && LV->getVarInfo(RegB).findKill(MI->getParent()) != MI) { 1674 // Note that MachineOperand::isKill does not work here, because it 1675 // is set only on first register use in instruction and for statepoint 1676 // tied-use register will usually be found in preceeding deopt bundle. 1677 LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0) 1678 << " not killed by statepoint\n"); 1679 NeedCopy = true; 1680 continue; 1681 } 1682 1683 if (!MRI->constrainRegClass(RegB, MRI->getRegClass(RegA))) { 1684 LLVM_DEBUG(dbgs() << "MRI: couldn't constrain" << printReg(RegB, TRI, 0) 1685 << " to register class of " << printReg(RegA, TRI, 0) 1686 << '\n'); 1687 NeedCopy = true; 1688 continue; 1689 } 1690 MRI->replaceRegWith(RegA, RegB); 1691 1692 if (LIS) { 1693 VNInfo::Allocator &A = LIS->getVNInfoAllocator(); 1694 LiveInterval &LI = LIS->getInterval(RegB); 1695 LiveInterval &Other = LIS->getInterval(RegA); 1696 SmallVector<VNInfo *> NewVNIs; 1697 for (const VNInfo *VNI : Other.valnos) { 1698 assert(VNI->id == NewVNIs.size() && "assumed"); 1699 NewVNIs.push_back(LI.createValueCopy(VNI, A)); 1700 } 1701 for (auto &S : Other) { 1702 VNInfo *VNI = NewVNIs[S.valno->id]; 1703 LiveRange::Segment NewSeg(S.start, S.end, VNI); 1704 LI.addSegment(NewSeg); 1705 } 1706 LIS->removeInterval(RegA); 1707 } 1708 1709 if (LV) { 1710 if (MI->getOperand(SrcIdx).isKill()) 1711 LV->removeVirtualRegisterKilled(RegB, *MI); 1712 LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(RegB); 1713 LiveVariables::VarInfo &DstInfo = LV->getVarInfo(RegA); 1714 SrcInfo.AliveBlocks |= DstInfo.AliveBlocks; 1715 DstInfo.AliveBlocks.clear(); 1716 for (auto *KillMI : DstInfo.Kills) 1717 LV->addVirtualRegisterKilled(RegB, *KillMI, false); 1718 } 1719 } 1720 return !NeedCopy; 1721 } 1722 1723 /// Reduce two-address instructions to two operands. 1724 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1725 MF = &Func; 1726 const TargetMachine &TM = MF->getTarget(); 1727 MRI = &MF->getRegInfo(); 1728 TII = MF->getSubtarget().getInstrInfo(); 1729 TRI = MF->getSubtarget().getRegisterInfo(); 1730 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1731 LV = getAnalysisIfAvailable<LiveVariables>(); 1732 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1733 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1734 AA = &AAPass->getAAResults(); 1735 else 1736 AA = nullptr; 1737 OptLevel = TM.getOptLevel(); 1738 // Disable optimizations if requested. We cannot skip the whole pass as some 1739 // fixups are necessary for correctness. 1740 if (skipFunction(Func.getFunction())) 1741 OptLevel = CodeGenOpt::None; 1742 1743 bool MadeChange = false; 1744 1745 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1746 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1747 1748 // This pass takes the function out of SSA form. 1749 MRI->leaveSSA(); 1750 1751 // This pass will rewrite the tied-def to meet the RegConstraint. 1752 MF->getProperties() 1753 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1754 1755 TiedOperandMap TiedOperands; 1756 for (MachineBasicBlock &MBBI : *MF) { 1757 MBB = &MBBI; 1758 unsigned Dist = 0; 1759 DistanceMap.clear(); 1760 SrcRegMap.clear(); 1761 DstRegMap.clear(); 1762 Processed.clear(); 1763 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1764 mi != me; ) { 1765 MachineBasicBlock::iterator nmi = std::next(mi); 1766 // Skip debug instructions. 1767 if (mi->isDebugInstr()) { 1768 mi = nmi; 1769 continue; 1770 } 1771 1772 // Expand REG_SEQUENCE instructions. This will position mi at the first 1773 // expanded instruction. 1774 if (mi->isRegSequence()) 1775 eliminateRegSequence(mi); 1776 1777 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1778 1779 processCopy(&*mi); 1780 1781 // First scan through all the tied register uses in this instruction 1782 // and record a list of pairs of tied operands for each register. 1783 if (!collectTiedOperands(&*mi, TiedOperands)) { 1784 removeClobberedSrcRegMap(&*mi); 1785 mi = nmi; 1786 continue; 1787 } 1788 1789 ++NumTwoAddressInstrs; 1790 MadeChange = true; 1791 LLVM_DEBUG(dbgs() << '\t' << *mi); 1792 1793 // If the instruction has a single pair of tied operands, try some 1794 // transformations that may either eliminate the tied operands or 1795 // improve the opportunities for coalescing away the register copy. 1796 if (TiedOperands.size() == 1) { 1797 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1798 = TiedOperands.begin()->second; 1799 if (TiedPairs.size() == 1) { 1800 unsigned SrcIdx = TiedPairs[0].first; 1801 unsigned DstIdx = TiedPairs[0].second; 1802 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1803 Register DstReg = mi->getOperand(DstIdx).getReg(); 1804 if (SrcReg != DstReg && 1805 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1806 // The tied operands have been eliminated or shifted further down 1807 // the block to ease elimination. Continue processing with 'nmi'. 1808 TiedOperands.clear(); 1809 removeClobberedSrcRegMap(&*mi); 1810 mi = nmi; 1811 continue; 1812 } 1813 } 1814 } 1815 1816 if (mi->getOpcode() == TargetOpcode::STATEPOINT && 1817 processStatepoint(&*mi, TiedOperands)) { 1818 TiedOperands.clear(); 1819 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1820 mi = nmi; 1821 continue; 1822 } 1823 1824 // Now iterate over the information collected above. 1825 for (auto &TO : TiedOperands) { 1826 processTiedPairs(&*mi, TO.second, Dist); 1827 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1828 } 1829 1830 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1831 if (mi->isInsertSubreg()) { 1832 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1833 // To %reg:subidx = COPY %subreg 1834 unsigned SubIdx = mi->getOperand(3).getImm(); 1835 mi->removeOperand(3); 1836 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1837 mi->getOperand(0).setSubReg(SubIdx); 1838 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1839 mi->removeOperand(1); 1840 mi->setDesc(TII->get(TargetOpcode::COPY)); 1841 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1842 1843 // Update LiveIntervals. 1844 if (LIS) { 1845 Register Reg = mi->getOperand(0).getReg(); 1846 LiveInterval &LI = LIS->getInterval(Reg); 1847 if (LI.hasSubRanges()) { 1848 // The COPY no longer defines subregs of %reg except for 1849 // %reg.subidx. 1850 LaneBitmask LaneMask = 1851 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg()); 1852 SlotIndex Idx = LIS->getInstructionIndex(*mi); 1853 for (auto &S : LI.subranges()) { 1854 if ((S.LaneMask & LaneMask).none()) { 1855 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx); 1856 LiveRange::iterator DefSeg = std::next(UseSeg); 1857 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno); 1858 } 1859 } 1860 1861 // The COPY no longer has a use of %reg. 1862 LIS->shrinkToUses(&LI); 1863 } else { 1864 // The live interval for Reg did not have subranges but now it needs 1865 // them because we have introduced a subreg def. Recompute it. 1866 LIS->removeInterval(Reg); 1867 LIS->createAndComputeVirtRegInterval(Reg); 1868 } 1869 } 1870 } 1871 1872 // Clear TiedOperands here instead of at the top of the loop 1873 // since most instructions do not have tied operands. 1874 TiedOperands.clear(); 1875 removeClobberedSrcRegMap(&*mi); 1876 mi = nmi; 1877 } 1878 } 1879 1880 return MadeChange; 1881 } 1882 1883 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1884 /// 1885 /// The instruction is turned into a sequence of sub-register copies: 1886 /// 1887 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1888 /// 1889 /// Becomes: 1890 /// 1891 /// undef %dst:ssub0 = COPY %v1 1892 /// %dst:ssub1 = COPY %v2 1893 void TwoAddressInstructionPass:: 1894 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1895 MachineInstr &MI = *MBBI; 1896 Register DstReg = MI.getOperand(0).getReg(); 1897 1898 SmallVector<Register, 4> OrigRegs; 1899 if (LIS) { 1900 OrigRegs.push_back(MI.getOperand(0).getReg()); 1901 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1902 OrigRegs.push_back(MI.getOperand(i).getReg()); 1903 } 1904 1905 bool DefEmitted = false; 1906 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1907 MachineOperand &UseMO = MI.getOperand(i); 1908 Register SrcReg = UseMO.getReg(); 1909 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1910 // Nothing needs to be inserted for undef operands. 1911 if (UseMO.isUndef()) 1912 continue; 1913 1914 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1915 // might insert a COPY that uses SrcReg after is was killed. 1916 bool isKill = UseMO.isKill(); 1917 if (isKill) 1918 for (unsigned j = i + 2; j < e; j += 2) 1919 if (MI.getOperand(j).getReg() == SrcReg) { 1920 MI.getOperand(j).setIsKill(); 1921 UseMO.setIsKill(false); 1922 isKill = false; 1923 break; 1924 } 1925 1926 // Insert the sub-register copy. 1927 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1928 TII->get(TargetOpcode::COPY)) 1929 .addReg(DstReg, RegState::Define, SubIdx) 1930 .add(UseMO); 1931 1932 // The first def needs an undef flag because there is no live register 1933 // before it. 1934 if (!DefEmitted) { 1935 CopyMI->getOperand(0).setIsUndef(true); 1936 // Return an iterator pointing to the first inserted instr. 1937 MBBI = CopyMI; 1938 } 1939 DefEmitted = true; 1940 1941 // Update LiveVariables' kill info. 1942 if (LV && isKill && !SrcReg.isPhysical()) 1943 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1944 1945 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1946 } 1947 1948 MachineBasicBlock::iterator EndMBBI = 1949 std::next(MachineBasicBlock::iterator(MI)); 1950 1951 if (!DefEmitted) { 1952 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1953 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1954 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1955 MI.removeOperand(j); 1956 } else { 1957 if (LIS) 1958 LIS->RemoveMachineInstrFromMaps(MI); 1959 1960 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1961 MI.eraseFromParent(); 1962 } 1963 1964 // Udpate LiveIntervals. 1965 if (LIS) 1966 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1967 } 1968