1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a wrapper around MCSchedModel that allows the interface 10 // to benefit from information currently only available in TargetInstrInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetSchedule.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineOperand.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/TargetSubtargetInfo.h" 20 #include "llvm/MC/MCInstrDesc.h" 21 #include "llvm/MC/MCInstrItineraries.h" 22 #include "llvm/MC/MCSchedule.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <cassert> 28 #include <cstdint> 29 30 using namespace llvm; 31 32 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), 33 cl::desc("Use TargetSchedModel for latency lookup")); 34 35 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), 36 cl::desc("Use InstrItineraryData for latency lookup")); 37 38 bool TargetSchedModel::hasInstrSchedModel() const { 39 return EnableSchedModel && SchedModel.hasInstrSchedModel(); 40 } 41 42 bool TargetSchedModel::hasInstrItineraries() const { 43 return EnableSchedItins && !InstrItins.isEmpty(); 44 } 45 46 static unsigned gcd(unsigned Dividend, unsigned Divisor) { 47 // Dividend and Divisor will be naturally swapped as needed. 48 while (Divisor) { 49 unsigned Rem = Dividend % Divisor; 50 Dividend = Divisor; 51 Divisor = Rem; 52 }; 53 return Dividend; 54 } 55 56 static unsigned lcm(unsigned A, unsigned B) { 57 unsigned LCM = (uint64_t(A) * B) / gcd(A, B); 58 assert((LCM >= A && LCM >= B) && "LCM overflow"); 59 return LCM; 60 } 61 62 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) { 63 STI = TSInfo; 64 SchedModel = TSInfo->getSchedModel(); 65 TII = TSInfo->getInstrInfo(); 66 STI->initInstrItins(InstrItins); 67 68 unsigned NumRes = SchedModel.getNumProcResourceKinds(); 69 ResourceFactors.resize(NumRes); 70 ResourceLCM = SchedModel.IssueWidth; 71 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 72 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 73 if (NumUnits > 0) 74 ResourceLCM = lcm(ResourceLCM, NumUnits); 75 } 76 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; 77 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 78 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 79 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; 80 } 81 } 82 83 /// Returns true only if instruction is specified as single issue. 84 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, 85 const MCSchedClassDesc *SC) const { 86 if (hasInstrSchedModel()) { 87 if (!SC) 88 SC = resolveSchedClass(MI); 89 if (SC->isValid()) 90 return SC->BeginGroup; 91 } 92 return false; 93 } 94 95 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, 96 const MCSchedClassDesc *SC) const { 97 if (hasInstrSchedModel()) { 98 if (!SC) 99 SC = resolveSchedClass(MI); 100 if (SC->isValid()) 101 return SC->EndGroup; 102 } 103 return false; 104 } 105 106 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, 107 const MCSchedClassDesc *SC) const { 108 if (hasInstrItineraries()) { 109 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); 110 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI); 111 } 112 if (hasInstrSchedModel()) { 113 if (!SC) 114 SC = resolveSchedClass(MI); 115 if (SC->isValid()) 116 return SC->NumMicroOps; 117 } 118 return MI->isTransient() ? 0 : 1; 119 } 120 121 // The machine model may explicitly specify an invalid latency, which 122 // effectively means infinite latency. Since users of the TargetSchedule API 123 // don't know how to handle this, we convert it to a very large latency that is 124 // easy to distinguish when debugging the DAG but won't induce overflow. 125 static unsigned capLatency(int Cycles) { 126 return Cycles >= 0 ? Cycles : 1000; 127 } 128 129 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require 130 /// evaluation of predicates that depend on instruction operands or flags. 131 const MCSchedClassDesc *TargetSchedModel:: 132 resolveSchedClass(const MachineInstr *MI) const { 133 // Get the definition's scheduling class descriptor from this machine model. 134 unsigned SchedClass = MI->getDesc().getSchedClass(); 135 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); 136 if (!SCDesc->isValid()) 137 return SCDesc; 138 139 #ifndef NDEBUG 140 unsigned NIter = 0; 141 #endif 142 while (SCDesc->isVariant()) { 143 assert(++NIter < 6 && "Variants are nested deeper than the magic number"); 144 145 SchedClass = STI->resolveSchedClass(SchedClass, MI, this); 146 SCDesc = SchedModel.getSchedClassDesc(SchedClass); 147 } 148 return SCDesc; 149 } 150 151 /// Find the def index of this operand. This index maps to the machine model and 152 /// is independent of use operands. Def operands may be reordered with uses or 153 /// merged with uses without affecting the def index (e.g. before/after 154 /// regalloc). However, an instruction's def operands must never be reordered 155 /// with respect to each other. 156 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { 157 unsigned DefIdx = 0; 158 for (unsigned i = 0; i != DefOperIdx; ++i) { 159 const MachineOperand &MO = MI->getOperand(i); 160 if (MO.isReg() && MO.isDef()) 161 ++DefIdx; 162 } 163 return DefIdx; 164 } 165 166 /// Find the use index of this operand. This is independent of the instruction's 167 /// def operands. 168 /// 169 /// Note that uses are not determined by the operand's isUse property, which 170 /// is simply the inverse of isDef. Here we consider any readsReg operand to be 171 /// a "use". The machine model allows an operand to be both a Def and Use. 172 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { 173 unsigned UseIdx = 0; 174 for (unsigned i = 0; i != UseOperIdx; ++i) { 175 const MachineOperand &MO = MI->getOperand(i); 176 if (MO.isReg() && MO.readsReg() && !MO.isDef()) 177 ++UseIdx; 178 } 179 return UseIdx; 180 } 181 182 // Top-level API for clients that know the operand indices. 183 unsigned TargetSchedModel::computeOperandLatency( 184 const MachineInstr *DefMI, unsigned DefOperIdx, 185 const MachineInstr *UseMI, unsigned UseOperIdx) const { 186 187 if (!hasInstrSchedModel() && !hasInstrItineraries()) 188 return TII->defaultDefLatency(SchedModel, *DefMI); 189 190 if (hasInstrItineraries()) { 191 int OperLatency = 0; 192 if (UseMI) { 193 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx, 194 *UseMI, UseOperIdx); 195 } 196 else { 197 unsigned DefClass = DefMI->getDesc().getSchedClass(); 198 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); 199 } 200 if (OperLatency >= 0) 201 return OperLatency; 202 203 // No operand latency was found. 204 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI); 205 206 // Expected latency is the max of the stage latency and itinerary props. 207 // Rather than directly querying InstrItins stage latency, we call a TII 208 // hook to allow subtargets to specialize latency. This hook is only 209 // applicable to the InstrItins model. InstrSchedModel should model all 210 // special cases without TII hooks. 211 InstrLatency = 212 std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI)); 213 return InstrLatency; 214 } 215 // hasInstrSchedModel() 216 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 217 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); 218 if (DefIdx < SCDesc->NumWriteLatencyEntries) { 219 // Lookup the definition's write latency in SubtargetInfo. 220 const MCWriteLatencyEntry *WLEntry = 221 STI->getWriteLatencyEntry(SCDesc, DefIdx); 222 unsigned WriteID = WLEntry->WriteResourceID; 223 unsigned Latency = capLatency(WLEntry->Cycles); 224 if (!UseMI) 225 return Latency; 226 227 // Lookup the use's latency adjustment in SubtargetInfo. 228 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); 229 if (UseDesc->NumReadAdvanceEntries == 0) 230 return Latency; 231 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); 232 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); 233 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap 234 return 0; 235 return Latency - Advance; 236 } 237 // If DefIdx does not exist in the model (e.g. implicit defs), then return 238 // unit latency (defaultDefLatency may be too conservative). 239 #ifndef NDEBUG 240 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() 241 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef() 242 && SchedModel.isComplete()) { 243 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " 244 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)"; 245 llvm_unreachable("incomplete machine model"); 246 } 247 #endif 248 // FIXME: Automatically giving all implicit defs defaultDefLatency is 249 // undesirable. We should only do it for defs that are known to the MC 250 // desc like flags. Truly implicit defs should get 1 cycle latency. 251 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI); 252 } 253 254 unsigned 255 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { 256 return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc)); 257 } 258 259 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { 260 assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); 261 unsigned SCIdx = TII->get(Opcode).getSchedClass(); 262 return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx)); 263 } 264 265 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const { 266 if (hasInstrSchedModel()) 267 return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst)); 268 return computeInstrLatency(Inst.getOpcode()); 269 } 270 271 unsigned 272 TargetSchedModel::computeInstrLatency(const MachineInstr *MI, 273 bool UseDefaultDefLatency) const { 274 // For the itinerary model, fall back to the old subtarget hook. 275 // Allow subtargets to compute Bundle latencies outside the machine model. 276 if (hasInstrItineraries() || MI->isBundle() || 277 (!hasInstrSchedModel() && !UseDefaultDefLatency)) 278 return TII->getInstrLatency(&InstrItins, *MI); 279 280 if (hasInstrSchedModel()) { 281 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); 282 if (SCDesc->isValid()) 283 return computeInstrLatency(*SCDesc); 284 } 285 return TII->defaultDefLatency(SchedModel, *MI); 286 } 287 288 unsigned TargetSchedModel:: 289 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 290 const MachineInstr *DepMI) const { 291 if (!SchedModel.isOutOfOrder()) 292 return 1; 293 294 // Out-of-order processor can dispatch WAW dependencies in the same cycle. 295 296 // Treat predication as a data dependency for out-of-order cpus. In-order 297 // cpus do not need to treat predicated writes specially. 298 // 299 // TODO: The following hack exists because predication passes do not 300 // correctly append imp-use operands, and readsReg() strangely returns false 301 // for predicated defs. 302 Register Reg = DefMI->getOperand(DefOperIdx).getReg(); 303 const MachineFunction &MF = *DefMI->getMF(); 304 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 305 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI)) 306 return computeInstrLatency(DefMI); 307 308 // If we have a per operand scheduling model, check if this def is writing 309 // an unbuffered resource. If so, it treated like an in-order cpu. 310 if (hasInstrSchedModel()) { 311 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 312 if (SCDesc->isValid()) { 313 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), 314 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { 315 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) 316 return 1; 317 } 318 } 319 } 320 return 0; 321 } 322 323 double 324 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const { 325 if (hasInstrItineraries()) { 326 unsigned SchedClass = MI->getDesc().getSchedClass(); 327 return MCSchedModel::getReciprocalThroughput(SchedClass, 328 *getInstrItineraries()); 329 } 330 331 if (hasInstrSchedModel()) 332 return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI)); 333 334 return 0.0; 335 } 336 337 double 338 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const { 339 unsigned SchedClass = TII->get(Opcode).getSchedClass(); 340 if (hasInstrItineraries()) 341 return MCSchedModel::getReciprocalThroughput(SchedClass, 342 *getInstrItineraries()); 343 if (hasInstrSchedModel()) { 344 const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass); 345 if (SCDesc.isValid() && !SCDesc.isVariant()) 346 return MCSchedModel::getReciprocalThroughput(*STI, SCDesc); 347 } 348 349 return 0.0; 350 } 351 352 double 353 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const { 354 if (hasInstrSchedModel()) 355 return SchedModel.getReciprocalThroughput(*STI, *TII, MI); 356 return computeReciprocalThroughput(MI.getOpcode()); 357 } 358 359