xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetSchedule.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a wrapper around MCSchedModel that allows the interface
10 // to benefit from information currently only available in TargetInstrInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetSchedule.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cassert>
28 #include <cstdint>
29 #include <numeric>
30 
31 using namespace llvm;
32 
33 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
34   cl::desc("Use TargetSchedModel for latency lookup"));
35 
36 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
37   cl::desc("Use InstrItineraryData for latency lookup"));
38 
39 static cl::opt<bool> ForceEnableIntervals(
40     "sched-model-force-enable-intervals", cl::Hidden, cl::init(false),
41     cl::desc("Force the use of resource intervals in the schedule model"));
42 
43 bool TargetSchedModel::hasInstrSchedModel() const {
44   return EnableSchedModel && SchedModel.hasInstrSchedModel();
45 }
46 
47 bool TargetSchedModel::hasInstrItineraries() const {
48   return EnableSchedItins && !InstrItins.isEmpty();
49 }
50 
51 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
52   STI = TSInfo;
53   SchedModel = TSInfo->getSchedModel();
54   TII = TSInfo->getInstrInfo();
55   STI->initInstrItins(InstrItins);
56 
57   unsigned NumRes = SchedModel.getNumProcResourceKinds();
58   ResourceFactors.resize(NumRes);
59   ResourceLCM = SchedModel.IssueWidth;
60   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
61     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
62     if (NumUnits > 0)
63       ResourceLCM = std::lcm(ResourceLCM, NumUnits);
64   }
65   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
66   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
67     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
68     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
69   }
70 }
71 
72 /// Returns true only if instruction is specified as single issue.
73 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
74                                      const MCSchedClassDesc *SC) const {
75   if (hasInstrSchedModel()) {
76     if (!SC)
77       SC = resolveSchedClass(MI);
78     if (SC->isValid())
79       return SC->BeginGroup;
80   }
81   return false;
82 }
83 
84 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
85                                      const MCSchedClassDesc *SC) const {
86   if (hasInstrSchedModel()) {
87     if (!SC)
88       SC = resolveSchedClass(MI);
89     if (SC->isValid())
90       return SC->EndGroup;
91   }
92   return false;
93 }
94 
95 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
96                                           const MCSchedClassDesc *SC) const {
97   if (hasInstrItineraries()) {
98     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
99     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
100   }
101   if (hasInstrSchedModel()) {
102     if (!SC)
103       SC = resolveSchedClass(MI);
104     if (SC->isValid())
105       return SC->NumMicroOps;
106   }
107   return MI->isTransient() ? 0 : 1;
108 }
109 
110 // The machine model may explicitly specify an invalid latency, which
111 // effectively means infinite latency. Since users of the TargetSchedule API
112 // don't know how to handle this, we convert it to a very large latency that is
113 // easy to distinguish when debugging the DAG but won't induce overflow.
114 static unsigned capLatency(int Cycles) {
115   return Cycles >= 0 ? Cycles : 1000;
116 }
117 
118 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
119 /// evaluation of predicates that depend on instruction operands or flags.
120 const MCSchedClassDesc *TargetSchedModel::
121 resolveSchedClass(const MachineInstr *MI) const {
122   // Get the definition's scheduling class descriptor from this machine model.
123   unsigned SchedClass = MI->getDesc().getSchedClass();
124   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
125   if (!SCDesc->isValid())
126     return SCDesc;
127 
128 #ifndef NDEBUG
129   unsigned NIter = 0;
130 #endif
131   while (SCDesc->isVariant()) {
132     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
133 
134     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
135     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
136   }
137   return SCDesc;
138 }
139 
140 /// Find the def index of this operand. This index maps to the machine model and
141 /// is independent of use operands. Def operands may be reordered with uses or
142 /// merged with uses without affecting the def index (e.g. before/after
143 /// regalloc). However, an instruction's def operands must never be reordered
144 /// with respect to each other.
145 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
146   unsigned DefIdx = 0;
147   for (unsigned i = 0; i != DefOperIdx; ++i) {
148     const MachineOperand &MO = MI->getOperand(i);
149     if (MO.isReg() && MO.isDef())
150       ++DefIdx;
151   }
152   return DefIdx;
153 }
154 
155 /// Find the use index of this operand. This is independent of the instruction's
156 /// def operands.
157 ///
158 /// Note that uses are not determined by the operand's isUse property, which
159 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
160 /// a "use". The machine model allows an operand to be both a Def and Use.
161 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
162   unsigned UseIdx = 0;
163   for (unsigned i = 0; i != UseOperIdx; ++i) {
164     const MachineOperand &MO = MI->getOperand(i);
165     if (MO.isReg() && MO.readsReg() && !MO.isDef())
166       ++UseIdx;
167   }
168   return UseIdx;
169 }
170 
171 // Top-level API for clients that know the operand indices. This doesn't need to
172 // return std::optional<unsigned>, as it always returns a valid latency.
173 unsigned TargetSchedModel::computeOperandLatency(
174   const MachineInstr *DefMI, unsigned DefOperIdx,
175   const MachineInstr *UseMI, unsigned UseOperIdx) const {
176 
177   const unsigned InstrLatency = computeInstrLatency(DefMI);
178   const unsigned DefaultDefLatency = TII->defaultDefLatency(SchedModel, *DefMI);
179 
180   if (!hasInstrSchedModel() && !hasInstrItineraries())
181     return DefaultDefLatency;
182 
183   if (hasInstrItineraries()) {
184     std::optional<unsigned> OperLatency;
185     if (UseMI) {
186       OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
187                                            *UseMI, UseOperIdx);
188     }
189     else {
190       unsigned DefClass = DefMI->getDesc().getSchedClass();
191       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
192     }
193 
194     // Expected latency is the max of InstrLatency and DefaultDefLatency, if we
195     // didn't find an operand latency.
196     return OperLatency ? *OperLatency
197                        : std::max(InstrLatency, DefaultDefLatency);
198   }
199 
200   // hasInstrSchedModel()
201   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
202   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
203   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
204     // Lookup the definition's write latency in SubtargetInfo.
205     const MCWriteLatencyEntry *WLEntry =
206       STI->getWriteLatencyEntry(SCDesc, DefIdx);
207     unsigned WriteID = WLEntry->WriteResourceID;
208     unsigned Latency = capLatency(WLEntry->Cycles);
209     if (!UseMI)
210       return Latency;
211 
212     // Lookup the use's latency adjustment in SubtargetInfo.
213     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
214     if (UseDesc->NumReadAdvanceEntries == 0)
215       return Latency;
216     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
217     int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
218     if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
219       return 0;
220     return Latency - Advance;
221   }
222   // If DefIdx does not exist in the model (e.g. implicit defs), then return
223   // unit latency (defaultDefLatency may be too conservative).
224 #ifndef NDEBUG
225   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() &&
226       !DefMI->getDesc().operands()[DefOperIdx].isOptionalDef() &&
227       SchedModel.isComplete()) {
228     errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
229            << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
230     llvm_unreachable("incomplete machine model");
231   }
232 #endif
233   // FIXME: Automatically giving all implicit defs defaultDefLatency is
234   // undesirable. We should only do it for defs that are known to the MC
235   // desc like flags. Truly implicit defs should get 1 cycle latency.
236   return DefMI->isTransient() ? 0 : DefaultDefLatency;
237 }
238 
239 unsigned
240 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
241   return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
242 }
243 
244 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
245   assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
246   unsigned SCIdx = TII->get(Opcode).getSchedClass();
247   return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
248 }
249 
250 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
251   if (hasInstrSchedModel())
252     return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
253   return computeInstrLatency(Inst.getOpcode());
254 }
255 
256 unsigned
257 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
258                                       bool UseDefaultDefLatency) const {
259   // For the itinerary model, fall back to the old subtarget hook.
260   // Allow subtargets to compute Bundle latencies outside the machine model.
261   if (hasInstrItineraries() || MI->isBundle() ||
262       (!hasInstrSchedModel() && !UseDefaultDefLatency))
263     return TII->getInstrLatency(&InstrItins, *MI);
264 
265   if (hasInstrSchedModel()) {
266     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
267     if (SCDesc->isValid())
268       return computeInstrLatency(*SCDesc);
269   }
270   return TII->defaultDefLatency(SchedModel, *MI);
271 }
272 
273 unsigned TargetSchedModel::
274 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
275                      const MachineInstr *DepMI) const {
276   if (!SchedModel.isOutOfOrder())
277     return 1;
278 
279   // Out-of-order processor can dispatch WAW dependencies in the same cycle.
280 
281   // Treat predication as a data dependency for out-of-order cpus. In-order
282   // cpus do not need to treat predicated writes specially.
283   //
284   // TODO: The following hack exists because predication passes do not
285   // correctly append imp-use operands, and readsReg() strangely returns false
286   // for predicated defs.
287   Register Reg = DefMI->getOperand(DefOperIdx).getReg();
288   const MachineFunction &MF = *DefMI->getMF();
289   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
290   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
291     return computeInstrLatency(DefMI);
292 
293   // If we have a per operand scheduling model, check if this def is writing
294   // an unbuffered resource. If so, it treated like an in-order cpu.
295   if (hasInstrSchedModel()) {
296     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
297     if (SCDesc->isValid()) {
298       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
299              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
300         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
301           return 1;
302       }
303     }
304   }
305   return 0;
306 }
307 
308 double
309 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
310   if (hasInstrItineraries()) {
311     unsigned SchedClass = MI->getDesc().getSchedClass();
312     return MCSchedModel::getReciprocalThroughput(SchedClass,
313                                                  *getInstrItineraries());
314   }
315 
316   if (hasInstrSchedModel())
317     return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
318 
319   return 0.0;
320 }
321 
322 double
323 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
324   unsigned SchedClass = TII->get(Opcode).getSchedClass();
325   if (hasInstrItineraries())
326     return MCSchedModel::getReciprocalThroughput(SchedClass,
327                                                  *getInstrItineraries());
328   if (hasInstrSchedModel()) {
329     const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
330     if (SCDesc.isValid() && !SCDesc.isVariant())
331       return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
332   }
333 
334   return 0.0;
335 }
336 
337 double
338 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
339   if (hasInstrSchedModel())
340     return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
341   return computeReciprocalThroughput(MI.getOpcode());
342 }
343 
344 bool TargetSchedModel::enableIntervals() const {
345   if (ForceEnableIntervals)
346     return true;
347 
348   return SchedModel.EnableIntervals;
349 }
350