1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a wrapper around MCSchedModel that allows the interface 10 // to benefit from information currently only available in TargetInstrInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetSchedule.h" 15 #include "llvm/CodeGen/MachineFunction.h" 16 #include "llvm/CodeGen/MachineInstr.h" 17 #include "llvm/CodeGen/MachineOperand.h" 18 #include "llvm/CodeGen/TargetInstrInfo.h" 19 #include "llvm/CodeGen/TargetSubtargetInfo.h" 20 #include "llvm/MC/MCInstrDesc.h" 21 #include "llvm/MC/MCInstrItineraries.h" 22 #include "llvm/MC/MCSchedule.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <cassert> 28 #include <cstdint> 29 #include <numeric> 30 31 using namespace llvm; 32 33 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), 34 cl::desc("Use TargetSchedModel for latency lookup")); 35 36 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), 37 cl::desc("Use InstrItineraryData for latency lookup")); 38 39 static cl::opt<bool> ForceEnableIntervals( 40 "sched-model-force-enable-intervals", cl::Hidden, cl::init(false), 41 cl::desc("Force the use of resource intervals in the schedule model")); 42 43 bool TargetSchedModel::hasInstrSchedModel() const { 44 return EnableSchedModel && SchedModel.hasInstrSchedModel(); 45 } 46 47 bool TargetSchedModel::hasInstrItineraries() const { 48 return EnableSchedItins && !InstrItins.isEmpty(); 49 } 50 51 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) { 52 STI = TSInfo; 53 SchedModel = TSInfo->getSchedModel(); 54 TII = TSInfo->getInstrInfo(); 55 STI->initInstrItins(InstrItins); 56 57 unsigned NumRes = SchedModel.getNumProcResourceKinds(); 58 ResourceFactors.resize(NumRes); 59 ResourceLCM = SchedModel.IssueWidth; 60 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 61 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 62 if (NumUnits > 0) 63 ResourceLCM = std::lcm(ResourceLCM, NumUnits); 64 } 65 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; 66 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 67 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 68 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; 69 } 70 } 71 72 /// Returns true only if instruction is specified as single issue. 73 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, 74 const MCSchedClassDesc *SC) const { 75 if (hasInstrSchedModel()) { 76 if (!SC) 77 SC = resolveSchedClass(MI); 78 if (SC->isValid()) 79 return SC->BeginGroup; 80 } 81 return false; 82 } 83 84 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, 85 const MCSchedClassDesc *SC) const { 86 if (hasInstrSchedModel()) { 87 if (!SC) 88 SC = resolveSchedClass(MI); 89 if (SC->isValid()) 90 return SC->EndGroup; 91 } 92 return false; 93 } 94 95 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, 96 const MCSchedClassDesc *SC) const { 97 if (hasInstrItineraries()) { 98 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); 99 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI); 100 } 101 if (hasInstrSchedModel()) { 102 if (!SC) 103 SC = resolveSchedClass(MI); 104 if (SC->isValid()) 105 return SC->NumMicroOps; 106 } 107 return MI->isTransient() ? 0 : 1; 108 } 109 110 // The machine model may explicitly specify an invalid latency, which 111 // effectively means infinite latency. Since users of the TargetSchedule API 112 // don't know how to handle this, we convert it to a very large latency that is 113 // easy to distinguish when debugging the DAG but won't induce overflow. 114 static unsigned capLatency(int Cycles) { 115 return Cycles >= 0 ? Cycles : 1000; 116 } 117 118 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require 119 /// evaluation of predicates that depend on instruction operands or flags. 120 const MCSchedClassDesc *TargetSchedModel:: 121 resolveSchedClass(const MachineInstr *MI) const { 122 // Get the definition's scheduling class descriptor from this machine model. 123 unsigned SchedClass = MI->getDesc().getSchedClass(); 124 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); 125 if (!SCDesc->isValid()) 126 return SCDesc; 127 128 #ifndef NDEBUG 129 unsigned NIter = 0; 130 #endif 131 while (SCDesc->isVariant()) { 132 assert(++NIter < 6 && "Variants are nested deeper than the magic number"); 133 134 SchedClass = STI->resolveSchedClass(SchedClass, MI, this); 135 SCDesc = SchedModel.getSchedClassDesc(SchedClass); 136 } 137 return SCDesc; 138 } 139 140 /// Find the def index of this operand. This index maps to the machine model and 141 /// is independent of use operands. Def operands may be reordered with uses or 142 /// merged with uses without affecting the def index (e.g. before/after 143 /// regalloc). However, an instruction's def operands must never be reordered 144 /// with respect to each other. 145 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { 146 unsigned DefIdx = 0; 147 for (unsigned i = 0; i != DefOperIdx; ++i) { 148 const MachineOperand &MO = MI->getOperand(i); 149 if (MO.isReg() && MO.isDef()) 150 ++DefIdx; 151 } 152 return DefIdx; 153 } 154 155 /// Find the use index of this operand. This is independent of the instruction's 156 /// def operands. 157 /// 158 /// Note that uses are not determined by the operand's isUse property, which 159 /// is simply the inverse of isDef. Here we consider any readsReg operand to be 160 /// a "use". The machine model allows an operand to be both a Def and Use. 161 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { 162 unsigned UseIdx = 0; 163 for (unsigned i = 0; i != UseOperIdx; ++i) { 164 const MachineOperand &MO = MI->getOperand(i); 165 if (MO.isReg() && MO.readsReg() && !MO.isDef()) 166 ++UseIdx; 167 } 168 return UseIdx; 169 } 170 171 // Top-level API for clients that know the operand indices. This doesn't need to 172 // return std::optional<unsigned>, as it always returns a valid latency. 173 unsigned TargetSchedModel::computeOperandLatency( 174 const MachineInstr *DefMI, unsigned DefOperIdx, 175 const MachineInstr *UseMI, unsigned UseOperIdx) const { 176 177 const unsigned InstrLatency = computeInstrLatency(DefMI); 178 const unsigned DefaultDefLatency = TII->defaultDefLatency(SchedModel, *DefMI); 179 180 if (!hasInstrSchedModel() && !hasInstrItineraries()) 181 return DefaultDefLatency; 182 183 if (hasInstrItineraries()) { 184 std::optional<unsigned> OperLatency; 185 if (UseMI) { 186 OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx, 187 *UseMI, UseOperIdx); 188 } 189 else { 190 unsigned DefClass = DefMI->getDesc().getSchedClass(); 191 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); 192 } 193 194 // Expected latency is the max of InstrLatency and DefaultDefLatency, if we 195 // didn't find an operand latency. 196 return OperLatency ? *OperLatency 197 : std::max(InstrLatency, DefaultDefLatency); 198 } 199 200 // hasInstrSchedModel() 201 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 202 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); 203 if (DefIdx < SCDesc->NumWriteLatencyEntries) { 204 // Lookup the definition's write latency in SubtargetInfo. 205 const MCWriteLatencyEntry *WLEntry = 206 STI->getWriteLatencyEntry(SCDesc, DefIdx); 207 unsigned WriteID = WLEntry->WriteResourceID; 208 unsigned Latency = capLatency(WLEntry->Cycles); 209 if (!UseMI) 210 return Latency; 211 212 // Lookup the use's latency adjustment in SubtargetInfo. 213 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); 214 if (UseDesc->NumReadAdvanceEntries == 0) 215 return Latency; 216 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); 217 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); 218 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap 219 return 0; 220 return Latency - Advance; 221 } 222 // If DefIdx does not exist in the model (e.g. implicit defs), then return 223 // unit latency (defaultDefLatency may be too conservative). 224 #ifndef NDEBUG 225 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() && 226 !DefMI->getDesc().operands()[DefOperIdx].isOptionalDef() && 227 SchedModel.isComplete()) { 228 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " 229 << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)"; 230 llvm_unreachable("incomplete machine model"); 231 } 232 #endif 233 // FIXME: Automatically giving all implicit defs defaultDefLatency is 234 // undesirable. We should only do it for defs that are known to the MC 235 // desc like flags. Truly implicit defs should get 1 cycle latency. 236 return DefMI->isTransient() ? 0 : DefaultDefLatency; 237 } 238 239 unsigned 240 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { 241 return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc)); 242 } 243 244 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { 245 assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); 246 unsigned SCIdx = TII->get(Opcode).getSchedClass(); 247 return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx)); 248 } 249 250 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const { 251 if (hasInstrSchedModel()) 252 return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst)); 253 return computeInstrLatency(Inst.getOpcode()); 254 } 255 256 unsigned 257 TargetSchedModel::computeInstrLatency(const MachineInstr *MI, 258 bool UseDefaultDefLatency) const { 259 // For the itinerary model, fall back to the old subtarget hook. 260 // Allow subtargets to compute Bundle latencies outside the machine model. 261 if (hasInstrItineraries() || MI->isBundle() || 262 (!hasInstrSchedModel() && !UseDefaultDefLatency)) 263 return TII->getInstrLatency(&InstrItins, *MI); 264 265 if (hasInstrSchedModel()) { 266 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); 267 if (SCDesc->isValid()) 268 return computeInstrLatency(*SCDesc); 269 } 270 return TII->defaultDefLatency(SchedModel, *MI); 271 } 272 273 unsigned TargetSchedModel:: 274 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 275 const MachineInstr *DepMI) const { 276 if (!SchedModel.isOutOfOrder()) 277 return 1; 278 279 // Out-of-order processor can dispatch WAW dependencies in the same cycle. 280 281 // Treat predication as a data dependency for out-of-order cpus. In-order 282 // cpus do not need to treat predicated writes specially. 283 // 284 // TODO: The following hack exists because predication passes do not 285 // correctly append imp-use operands, and readsReg() strangely returns false 286 // for predicated defs. 287 Register Reg = DefMI->getOperand(DefOperIdx).getReg(); 288 const MachineFunction &MF = *DefMI->getMF(); 289 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 290 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI)) 291 return computeInstrLatency(DefMI); 292 293 // If we have a per operand scheduling model, check if this def is writing 294 // an unbuffered resource. If so, it treated like an in-order cpu. 295 if (hasInstrSchedModel()) { 296 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 297 if (SCDesc->isValid()) { 298 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), 299 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { 300 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) 301 return 1; 302 } 303 } 304 } 305 return 0; 306 } 307 308 double 309 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const { 310 if (hasInstrItineraries()) { 311 unsigned SchedClass = MI->getDesc().getSchedClass(); 312 return MCSchedModel::getReciprocalThroughput(SchedClass, 313 *getInstrItineraries()); 314 } 315 316 if (hasInstrSchedModel()) 317 return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI)); 318 319 return 0.0; 320 } 321 322 double 323 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const { 324 unsigned SchedClass = TII->get(Opcode).getSchedClass(); 325 if (hasInstrItineraries()) 326 return MCSchedModel::getReciprocalThroughput(SchedClass, 327 *getInstrItineraries()); 328 if (hasInstrSchedModel()) { 329 const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass); 330 if (SCDesc.isValid() && !SCDesc.isVariant()) 331 return MCSchedModel::getReciprocalThroughput(*STI, SCDesc); 332 } 333 334 return 0.0; 335 } 336 337 double 338 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const { 339 if (hasInstrSchedModel()) 340 return SchedModel.getReciprocalThroughput(*STI, *TII, MI); 341 return computeReciprocalThroughput(MI.getOpcode()); 342 } 343 344 bool TargetSchedModel::enableIntervals() const { 345 if (ForceEnableIntervals) 346 return true; 347 348 return SchedModel.EnableIntervals; 349 } 350