xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetSchedule.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a wrapper around MCSchedModel that allows the interface
10 // to benefit from information currently only available in TargetInstrInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetSchedule.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/MachineInstr.h"
17 #include "llvm/CodeGen/MachineOperand.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/MC/MCInstrDesc.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cassert>
28 #include <cstdint>
29 #include <numeric>
30 
31 using namespace llvm;
32 
33 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
34   cl::desc("Use TargetSchedModel for latency lookup"));
35 
36 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
37   cl::desc("Use InstrItineraryData for latency lookup"));
38 
39 bool TargetSchedModel::hasInstrSchedModel() const {
40   return EnableSchedModel && SchedModel.hasInstrSchedModel();
41 }
42 
43 bool TargetSchedModel::hasInstrItineraries() const {
44   return EnableSchedItins && !InstrItins.isEmpty();
45 }
46 
47 void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
48   STI = TSInfo;
49   SchedModel = TSInfo->getSchedModel();
50   TII = TSInfo->getInstrInfo();
51   STI->initInstrItins(InstrItins);
52 
53   unsigned NumRes = SchedModel.getNumProcResourceKinds();
54   ResourceFactors.resize(NumRes);
55   ResourceLCM = SchedModel.IssueWidth;
56   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
57     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
58     if (NumUnits > 0)
59       ResourceLCM = std::lcm(ResourceLCM, NumUnits);
60   }
61   MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
62   for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
63     unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
64     ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
65   }
66 }
67 
68 /// Returns true only if instruction is specified as single issue.
69 bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
70                                      const MCSchedClassDesc *SC) const {
71   if (hasInstrSchedModel()) {
72     if (!SC)
73       SC = resolveSchedClass(MI);
74     if (SC->isValid())
75       return SC->BeginGroup;
76   }
77   return false;
78 }
79 
80 bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
81                                      const MCSchedClassDesc *SC) const {
82   if (hasInstrSchedModel()) {
83     if (!SC)
84       SC = resolveSchedClass(MI);
85     if (SC->isValid())
86       return SC->EndGroup;
87   }
88   return false;
89 }
90 
91 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
92                                           const MCSchedClassDesc *SC) const {
93   if (hasInstrItineraries()) {
94     int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
95     return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
96   }
97   if (hasInstrSchedModel()) {
98     if (!SC)
99       SC = resolveSchedClass(MI);
100     if (SC->isValid())
101       return SC->NumMicroOps;
102   }
103   return MI->isTransient() ? 0 : 1;
104 }
105 
106 // The machine model may explicitly specify an invalid latency, which
107 // effectively means infinite latency. Since users of the TargetSchedule API
108 // don't know how to handle this, we convert it to a very large latency that is
109 // easy to distinguish when debugging the DAG but won't induce overflow.
110 static unsigned capLatency(int Cycles) {
111   return Cycles >= 0 ? Cycles : 1000;
112 }
113 
114 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
115 /// evaluation of predicates that depend on instruction operands or flags.
116 const MCSchedClassDesc *TargetSchedModel::
117 resolveSchedClass(const MachineInstr *MI) const {
118   // Get the definition's scheduling class descriptor from this machine model.
119   unsigned SchedClass = MI->getDesc().getSchedClass();
120   const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
121   if (!SCDesc->isValid())
122     return SCDesc;
123 
124 #ifndef NDEBUG
125   unsigned NIter = 0;
126 #endif
127   while (SCDesc->isVariant()) {
128     assert(++NIter < 6 && "Variants are nested deeper than the magic number");
129 
130     SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
131     SCDesc = SchedModel.getSchedClassDesc(SchedClass);
132   }
133   return SCDesc;
134 }
135 
136 /// Find the def index of this operand. This index maps to the machine model and
137 /// is independent of use operands. Def operands may be reordered with uses or
138 /// merged with uses without affecting the def index (e.g. before/after
139 /// regalloc). However, an instruction's def operands must never be reordered
140 /// with respect to each other.
141 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
142   unsigned DefIdx = 0;
143   for (unsigned i = 0; i != DefOperIdx; ++i) {
144     const MachineOperand &MO = MI->getOperand(i);
145     if (MO.isReg() && MO.isDef())
146       ++DefIdx;
147   }
148   return DefIdx;
149 }
150 
151 /// Find the use index of this operand. This is independent of the instruction's
152 /// def operands.
153 ///
154 /// Note that uses are not determined by the operand's isUse property, which
155 /// is simply the inverse of isDef. Here we consider any readsReg operand to be
156 /// a "use". The machine model allows an operand to be both a Def and Use.
157 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
158   unsigned UseIdx = 0;
159   for (unsigned i = 0; i != UseOperIdx; ++i) {
160     const MachineOperand &MO = MI->getOperand(i);
161     if (MO.isReg() && MO.readsReg() && !MO.isDef())
162       ++UseIdx;
163   }
164   return UseIdx;
165 }
166 
167 // Top-level API for clients that know the operand indices.
168 unsigned TargetSchedModel::computeOperandLatency(
169   const MachineInstr *DefMI, unsigned DefOperIdx,
170   const MachineInstr *UseMI, unsigned UseOperIdx) const {
171 
172   if (!hasInstrSchedModel() && !hasInstrItineraries())
173     return TII->defaultDefLatency(SchedModel, *DefMI);
174 
175   if (hasInstrItineraries()) {
176     int OperLatency = 0;
177     if (UseMI) {
178       OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
179                                            *UseMI, UseOperIdx);
180     }
181     else {
182       unsigned DefClass = DefMI->getDesc().getSchedClass();
183       OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
184     }
185     if (OperLatency >= 0)
186       return OperLatency;
187 
188     // No operand latency was found.
189     unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI);
190 
191     // Expected latency is the max of the stage latency and itinerary props.
192     // Rather than directly querying InstrItins stage latency, we call a TII
193     // hook to allow subtargets to specialize latency. This hook is only
194     // applicable to the InstrItins model. InstrSchedModel should model all
195     // special cases without TII hooks.
196     InstrLatency =
197         std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI));
198     return InstrLatency;
199   }
200   // hasInstrSchedModel()
201   const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
202   unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
203   if (DefIdx < SCDesc->NumWriteLatencyEntries) {
204     // Lookup the definition's write latency in SubtargetInfo.
205     const MCWriteLatencyEntry *WLEntry =
206       STI->getWriteLatencyEntry(SCDesc, DefIdx);
207     unsigned WriteID = WLEntry->WriteResourceID;
208     unsigned Latency = capLatency(WLEntry->Cycles);
209     if (!UseMI)
210       return Latency;
211 
212     // Lookup the use's latency adjustment in SubtargetInfo.
213     const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
214     if (UseDesc->NumReadAdvanceEntries == 0)
215       return Latency;
216     unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
217     int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
218     if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
219       return 0;
220     return Latency - Advance;
221   }
222   // If DefIdx does not exist in the model (e.g. implicit defs), then return
223   // unit latency (defaultDefLatency may be too conservative).
224 #ifndef NDEBUG
225   if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() &&
226       !DefMI->getDesc().operands()[DefOperIdx].isOptionalDef() &&
227       SchedModel.isComplete()) {
228     errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
229            << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
230     llvm_unreachable("incomplete machine model");
231   }
232 #endif
233   // FIXME: Automatically giving all implicit defs defaultDefLatency is
234   // undesirable. We should only do it for defs that are known to the MC
235   // desc like flags. Truly implicit defs should get 1 cycle latency.
236   return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI);
237 }
238 
239 unsigned
240 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
241   return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
242 }
243 
244 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
245   assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
246   unsigned SCIdx = TII->get(Opcode).getSchedClass();
247   return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
248 }
249 
250 unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
251   if (hasInstrSchedModel())
252     return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
253   return computeInstrLatency(Inst.getOpcode());
254 }
255 
256 unsigned
257 TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
258                                       bool UseDefaultDefLatency) const {
259   // For the itinerary model, fall back to the old subtarget hook.
260   // Allow subtargets to compute Bundle latencies outside the machine model.
261   if (hasInstrItineraries() || MI->isBundle() ||
262       (!hasInstrSchedModel() && !UseDefaultDefLatency))
263     return TII->getInstrLatency(&InstrItins, *MI);
264 
265   if (hasInstrSchedModel()) {
266     const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
267     if (SCDesc->isValid())
268       return computeInstrLatency(*SCDesc);
269   }
270   return TII->defaultDefLatency(SchedModel, *MI);
271 }
272 
273 unsigned TargetSchedModel::
274 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
275                      const MachineInstr *DepMI) const {
276   if (!SchedModel.isOutOfOrder())
277     return 1;
278 
279   // Out-of-order processor can dispatch WAW dependencies in the same cycle.
280 
281   // Treat predication as a data dependency for out-of-order cpus. In-order
282   // cpus do not need to treat predicated writes specially.
283   //
284   // TODO: The following hack exists because predication passes do not
285   // correctly append imp-use operands, and readsReg() strangely returns false
286   // for predicated defs.
287   Register Reg = DefMI->getOperand(DefOperIdx).getReg();
288   const MachineFunction &MF = *DefMI->getMF();
289   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
290   if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
291     return computeInstrLatency(DefMI);
292 
293   // If we have a per operand scheduling model, check if this def is writing
294   // an unbuffered resource. If so, it treated like an in-order cpu.
295   if (hasInstrSchedModel()) {
296     const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
297     if (SCDesc->isValid()) {
298       for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
299              *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
300         if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
301           return 1;
302       }
303     }
304   }
305   return 0;
306 }
307 
308 double
309 TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
310   if (hasInstrItineraries()) {
311     unsigned SchedClass = MI->getDesc().getSchedClass();
312     return MCSchedModel::getReciprocalThroughput(SchedClass,
313                                                  *getInstrItineraries());
314   }
315 
316   if (hasInstrSchedModel())
317     return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
318 
319   return 0.0;
320 }
321 
322 double
323 TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
324   unsigned SchedClass = TII->get(Opcode).getSchedClass();
325   if (hasInstrItineraries())
326     return MCSchedModel::getReciprocalThroughput(SchedClass,
327                                                  *getInstrItineraries());
328   if (hasInstrSchedModel()) {
329     const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
330     if (SCDesc.isValid() && !SCDesc.isVariant())
331       return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
332   }
333 
334   return 0.0;
335 }
336 
337 double
338 TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
339   if (hasInstrSchedModel())
340     return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
341   return computeReciprocalThroughput(MI.getOpcode());
342 }
343 
344