xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/COFF.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Mangler.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCContext.h"
41 #include "llvm/MC/MCExpr.h"
42 #include "llvm/MC/MCSectionCOFF.h"
43 #include "llvm/MC/MCSectionELF.h"
44 #include "llvm/MC/MCSectionMachO.h"
45 #include "llvm/MC/MCSectionWasm.h"
46 #include "llvm/MC/MCSectionXCOFF.h"
47 #include "llvm/MC/MCStreamer.h"
48 #include "llvm/MC/MCSymbol.h"
49 #include "llvm/MC/MCSymbolELF.h"
50 #include "llvm/MC/MCValue.h"
51 #include "llvm/MC/SectionKind.h"
52 #include "llvm/ProfileData/InstrProf.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <string>
61 
62 using namespace llvm;
63 using namespace dwarf;
64 
65 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
66                              StringRef &Section) {
67   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
68   M.getModuleFlagsMetadata(ModuleFlags);
69 
70   for (const auto &MFE: ModuleFlags) {
71     // Ignore flags with 'Require' behaviour.
72     if (MFE.Behavior == Module::Require)
73       continue;
74 
75     StringRef Key = MFE.Key->getString();
76     if (Key == "Objective-C Image Info Version") {
77       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
78     } else if (Key == "Objective-C Garbage Collection" ||
79                Key == "Objective-C GC Only" ||
80                Key == "Objective-C Is Simulated" ||
81                Key == "Objective-C Class Properties" ||
82                Key == "Objective-C Image Swift Version") {
83       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
84     } else if (Key == "Objective-C Image Info Section") {
85       Section = cast<MDString>(MFE.Val)->getString();
86     }
87   }
88 }
89 
90 //===----------------------------------------------------------------------===//
91 //                                  ELF
92 //===----------------------------------------------------------------------===//
93 
94 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
95                                              const TargetMachine &TgtM) {
96   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
97   TM = &TgtM;
98 
99   CodeModel::Model CM = TgtM.getCodeModel();
100 
101   switch (TgtM.getTargetTriple().getArch()) {
102   case Triple::arm:
103   case Triple::armeb:
104   case Triple::thumb:
105   case Triple::thumbeb:
106     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
107       break;
108     // Fallthrough if not using EHABI
109     LLVM_FALLTHROUGH;
110   case Triple::ppc:
111   case Triple::x86:
112     PersonalityEncoding = isPositionIndependent()
113                               ? dwarf::DW_EH_PE_indirect |
114                                     dwarf::DW_EH_PE_pcrel |
115                                     dwarf::DW_EH_PE_sdata4
116                               : dwarf::DW_EH_PE_absptr;
117     LSDAEncoding = isPositionIndependent()
118                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
119                        : dwarf::DW_EH_PE_absptr;
120     TTypeEncoding = isPositionIndependent()
121                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
122                               dwarf::DW_EH_PE_sdata4
123                         : dwarf::DW_EH_PE_absptr;
124     break;
125   case Triple::x86_64:
126     if (isPositionIndependent()) {
127       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
128         ((CM == CodeModel::Small || CM == CodeModel::Medium)
129          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
130       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
131         (CM == CodeModel::Small
132          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
133       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
134         ((CM == CodeModel::Small || CM == CodeModel::Medium)
135          ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
136     } else {
137       PersonalityEncoding =
138         (CM == CodeModel::Small || CM == CodeModel::Medium)
139         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
140       LSDAEncoding = (CM == CodeModel::Small)
141         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
142       TTypeEncoding = (CM == CodeModel::Small)
143         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
144     }
145     break;
146   case Triple::hexagon:
147     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
148     LSDAEncoding = dwarf::DW_EH_PE_absptr;
149     TTypeEncoding = dwarf::DW_EH_PE_absptr;
150     if (isPositionIndependent()) {
151       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
152       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
153       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
154     }
155     break;
156   case Triple::aarch64:
157   case Triple::aarch64_be:
158   case Triple::aarch64_32:
159     // The small model guarantees static code/data size < 4GB, but not where it
160     // will be in memory. Most of these could end up >2GB away so even a signed
161     // pc-relative 32-bit address is insufficient, theoretically.
162     if (isPositionIndependent()) {
163       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
164         dwarf::DW_EH_PE_sdata8;
165       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
166       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
167         dwarf::DW_EH_PE_sdata8;
168     } else {
169       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
170       LSDAEncoding = dwarf::DW_EH_PE_absptr;
171       TTypeEncoding = dwarf::DW_EH_PE_absptr;
172     }
173     break;
174   case Triple::lanai:
175     LSDAEncoding = dwarf::DW_EH_PE_absptr;
176     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
177     TTypeEncoding = dwarf::DW_EH_PE_absptr;
178     break;
179   case Triple::mips:
180   case Triple::mipsel:
181   case Triple::mips64:
182   case Triple::mips64el:
183     // MIPS uses indirect pointer to refer personality functions and types, so
184     // that the eh_frame section can be read-only. DW.ref.personality will be
185     // generated for relocation.
186     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
187     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
188     //        identify N64 from just a triple.
189     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
190                     dwarf::DW_EH_PE_sdata4;
191     // We don't support PC-relative LSDA references in GAS so we use the default
192     // DW_EH_PE_absptr for those.
193 
194     // FreeBSD must be explicit about the data size and using pcrel since it's
195     // assembler/linker won't do the automatic conversion that the Linux tools
196     // do.
197     if (TgtM.getTargetTriple().isOSFreeBSD()) {
198       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
199       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
200     }
201     break;
202   case Triple::ppc64:
203   case Triple::ppc64le:
204     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
205       dwarf::DW_EH_PE_udata8;
206     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
207     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
208       dwarf::DW_EH_PE_udata8;
209     break;
210   case Triple::sparcel:
211   case Triple::sparc:
212     if (isPositionIndependent()) {
213       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
214       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
215         dwarf::DW_EH_PE_sdata4;
216       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
217         dwarf::DW_EH_PE_sdata4;
218     } else {
219       LSDAEncoding = dwarf::DW_EH_PE_absptr;
220       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
221       TTypeEncoding = dwarf::DW_EH_PE_absptr;
222     }
223     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
224     break;
225   case Triple::riscv32:
226   case Triple::riscv64:
227     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
228     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
229                           dwarf::DW_EH_PE_sdata4;
230     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
231                     dwarf::DW_EH_PE_sdata4;
232     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
233     break;
234   case Triple::sparcv9:
235     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
236     if (isPositionIndependent()) {
237       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
238         dwarf::DW_EH_PE_sdata4;
239       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
240         dwarf::DW_EH_PE_sdata4;
241     } else {
242       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
243       TTypeEncoding = dwarf::DW_EH_PE_absptr;
244     }
245     break;
246   case Triple::systemz:
247     // All currently-defined code models guarantee that 4-byte PC-relative
248     // values will be in range.
249     if (isPositionIndependent()) {
250       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
251         dwarf::DW_EH_PE_sdata4;
252       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
253       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
254         dwarf::DW_EH_PE_sdata4;
255     } else {
256       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
257       LSDAEncoding = dwarf::DW_EH_PE_absptr;
258       TTypeEncoding = dwarf::DW_EH_PE_absptr;
259     }
260     break;
261   default:
262     break;
263   }
264 }
265 
266 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
267                                                      Module &M) const {
268   auto &C = getContext();
269 
270   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
271     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
272                               ELF::SHF_EXCLUDE);
273 
274     Streamer.SwitchSection(S);
275 
276     for (const auto *Operand : LinkerOptions->operands()) {
277       if (cast<MDNode>(Operand)->getNumOperands() != 2)
278         report_fatal_error("invalid llvm.linker.options");
279       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
280         Streamer.EmitBytes(cast<MDString>(Option)->getString());
281         Streamer.EmitIntValue(0, 1);
282       }
283     }
284   }
285 
286   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
287     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
288                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
289 
290     Streamer.SwitchSection(S);
291 
292     for (const auto *Operand : DependentLibraries->operands()) {
293       Streamer.EmitBytes(
294           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
295       Streamer.EmitIntValue(0, 1);
296     }
297   }
298 
299   unsigned Version = 0;
300   unsigned Flags = 0;
301   StringRef Section;
302 
303   GetObjCImageInfo(M, Version, Flags, Section);
304   if (!Section.empty()) {
305     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
306     Streamer.SwitchSection(S);
307     Streamer.EmitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
308     Streamer.EmitIntValue(Version, 4);
309     Streamer.EmitIntValue(Flags, 4);
310     Streamer.AddBlankLine();
311   }
312 
313   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
314   M.getModuleFlagsMetadata(ModuleFlags);
315 
316   MDNode *CFGProfile = nullptr;
317 
318   for (const auto &MFE : ModuleFlags) {
319     StringRef Key = MFE.Key->getString();
320     if (Key == "CG Profile") {
321       CFGProfile = cast<MDNode>(MFE.Val);
322       break;
323     }
324   }
325 
326   if (!CFGProfile)
327     return;
328 
329   auto GetSym = [this](const MDOperand &MDO) -> MCSymbol * {
330     if (!MDO)
331       return nullptr;
332     auto V = cast<ValueAsMetadata>(MDO);
333     const Function *F = cast<Function>(V->getValue());
334     return TM->getSymbol(F);
335   };
336 
337   for (const auto &Edge : CFGProfile->operands()) {
338     MDNode *E = cast<MDNode>(Edge);
339     const MCSymbol *From = GetSym(E->getOperand(0));
340     const MCSymbol *To = GetSym(E->getOperand(1));
341     // Skip null functions. This can happen if functions are dead stripped after
342     // the CGProfile pass has been run.
343     if (!From || !To)
344       continue;
345     uint64_t Count = cast<ConstantAsMetadata>(E->getOperand(2))
346                          ->getValue()
347                          ->getUniqueInteger()
348                          .getZExtValue();
349     Streamer.emitCGProfileEntry(
350         MCSymbolRefExpr::create(From, MCSymbolRefExpr::VK_None, C),
351         MCSymbolRefExpr::create(To, MCSymbolRefExpr::VK_None, C), Count);
352   }
353 }
354 
355 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
356     const GlobalValue *GV, const TargetMachine &TM,
357     MachineModuleInfo *MMI) const {
358   unsigned Encoding = getPersonalityEncoding();
359   if ((Encoding & 0x80) == DW_EH_PE_indirect)
360     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
361                                           TM.getSymbol(GV)->getName());
362   if ((Encoding & 0x70) == DW_EH_PE_absptr)
363     return TM.getSymbol(GV);
364   report_fatal_error("We do not support this DWARF encoding yet!");
365 }
366 
367 void TargetLoweringObjectFileELF::emitPersonalityValue(
368     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
369   SmallString<64> NameData("DW.ref.");
370   NameData += Sym->getName();
371   MCSymbolELF *Label =
372       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
373   Streamer.EmitSymbolAttribute(Label, MCSA_Hidden);
374   Streamer.EmitSymbolAttribute(Label, MCSA_Weak);
375   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
376   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
377                                                    ELF::SHT_PROGBITS, Flags, 0);
378   unsigned Size = DL.getPointerSize();
379   Streamer.SwitchSection(Sec);
380   Streamer.EmitValueToAlignment(DL.getPointerABIAlignment(0).value());
381   Streamer.EmitSymbolAttribute(Label, MCSA_ELF_TypeObject);
382   const MCExpr *E = MCConstantExpr::create(Size, getContext());
383   Streamer.emitELFSize(Label, E);
384   Streamer.EmitLabel(Label);
385 
386   Streamer.EmitSymbolValue(Sym, Size);
387 }
388 
389 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
390     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
391     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
392   if (Encoding & DW_EH_PE_indirect) {
393     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
394 
395     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
396 
397     // Add information about the stub reference to ELFMMI so that the stub
398     // gets emitted by the asmprinter.
399     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
400     if (!StubSym.getPointer()) {
401       MCSymbol *Sym = TM.getSymbol(GV);
402       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
403     }
404 
405     return TargetLoweringObjectFile::
406       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
407                         Encoding & ~DW_EH_PE_indirect, Streamer);
408   }
409 
410   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
411                                                            MMI, Streamer);
412 }
413 
414 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
415   // N.B.: The defaults used in here are not the same ones used in MC.
416   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
417   // both gas and MC will produce a section with no flags. Given
418   // section(".eh_frame") gcc will produce:
419   //
420   //   .section   .eh_frame,"a",@progbits
421 
422   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
423                                       /*AddSegmentInfo=*/false))
424     return SectionKind::getMetadata();
425 
426   if (Name.empty() || Name[0] != '.') return K;
427 
428   // Default implementation based on some magic section names.
429   if (Name == ".bss" ||
430       Name.startswith(".bss.") ||
431       Name.startswith(".gnu.linkonce.b.") ||
432       Name.startswith(".llvm.linkonce.b.") ||
433       Name == ".sbss" ||
434       Name.startswith(".sbss.") ||
435       Name.startswith(".gnu.linkonce.sb.") ||
436       Name.startswith(".llvm.linkonce.sb."))
437     return SectionKind::getBSS();
438 
439   if (Name == ".tdata" ||
440       Name.startswith(".tdata.") ||
441       Name.startswith(".gnu.linkonce.td.") ||
442       Name.startswith(".llvm.linkonce.td."))
443     return SectionKind::getThreadData();
444 
445   if (Name == ".tbss" ||
446       Name.startswith(".tbss.") ||
447       Name.startswith(".gnu.linkonce.tb.") ||
448       Name.startswith(".llvm.linkonce.tb."))
449     return SectionKind::getThreadBSS();
450 
451   return K;
452 }
453 
454 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
455   // Use SHT_NOTE for section whose name starts with ".note" to allow
456   // emitting ELF notes from C variable declaration.
457   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
458   if (Name.startswith(".note"))
459     return ELF::SHT_NOTE;
460 
461   if (Name == ".init_array")
462     return ELF::SHT_INIT_ARRAY;
463 
464   if (Name == ".fini_array")
465     return ELF::SHT_FINI_ARRAY;
466 
467   if (Name == ".preinit_array")
468     return ELF::SHT_PREINIT_ARRAY;
469 
470   if (K.isBSS() || K.isThreadBSS())
471     return ELF::SHT_NOBITS;
472 
473   return ELF::SHT_PROGBITS;
474 }
475 
476 static unsigned getELFSectionFlags(SectionKind K) {
477   unsigned Flags = 0;
478 
479   if (!K.isMetadata())
480     Flags |= ELF::SHF_ALLOC;
481 
482   if (K.isText())
483     Flags |= ELF::SHF_EXECINSTR;
484 
485   if (K.isExecuteOnly())
486     Flags |= ELF::SHF_ARM_PURECODE;
487 
488   if (K.isWriteable())
489     Flags |= ELF::SHF_WRITE;
490 
491   if (K.isThreadLocal())
492     Flags |= ELF::SHF_TLS;
493 
494   if (K.isMergeableCString() || K.isMergeableConst())
495     Flags |= ELF::SHF_MERGE;
496 
497   if (K.isMergeableCString())
498     Flags |= ELF::SHF_STRINGS;
499 
500   return Flags;
501 }
502 
503 static const Comdat *getELFComdat(const GlobalValue *GV) {
504   const Comdat *C = GV->getComdat();
505   if (!C)
506     return nullptr;
507 
508   if (C->getSelectionKind() != Comdat::Any)
509     report_fatal_error("ELF COMDATs only support SelectionKind::Any, '" +
510                        C->getName() + "' cannot be lowered.");
511 
512   return C;
513 }
514 
515 static const MCSymbolELF *getAssociatedSymbol(const GlobalObject *GO,
516                                               const TargetMachine &TM) {
517   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
518   if (!MD)
519     return nullptr;
520 
521   const MDOperand &Op = MD->getOperand(0);
522   if (!Op.get())
523     return nullptr;
524 
525   auto *VM = dyn_cast<ValueAsMetadata>(Op);
526   if (!VM)
527     report_fatal_error("MD_associated operand is not ValueAsMetadata");
528 
529   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
530   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
531 }
532 
533 static unsigned getEntrySizeForKind(SectionKind Kind) {
534   if (Kind.isMergeable1ByteCString())
535     return 1;
536   else if (Kind.isMergeable2ByteCString())
537     return 2;
538   else if (Kind.isMergeable4ByteCString())
539     return 4;
540   else if (Kind.isMergeableConst4())
541     return 4;
542   else if (Kind.isMergeableConst8())
543     return 8;
544   else if (Kind.isMergeableConst16())
545     return 16;
546   else if (Kind.isMergeableConst32())
547     return 32;
548   else {
549     // We shouldn't have mergeable C strings or mergeable constants that we
550     // didn't handle above.
551     assert(!Kind.isMergeableCString() && "unknown string width");
552     assert(!Kind.isMergeableConst() && "unknown data width");
553     return 0;
554   }
555 }
556 
557 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
558     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
559   StringRef SectionName = GO->getSection();
560 
561   // Check if '#pragma clang section' name is applicable.
562   // Note that pragma directive overrides -ffunction-section, -fdata-section
563   // and so section name is exactly as user specified and not uniqued.
564   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
565   if (GV && GV->hasImplicitSection()) {
566     auto Attrs = GV->getAttributes();
567     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
568       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
569     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
570       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
571     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
572       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
573     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
574       SectionName = Attrs.getAttribute("data-section").getValueAsString();
575     }
576   }
577   const Function *F = dyn_cast<Function>(GO);
578   if (F && F->hasFnAttribute("implicit-section-name")) {
579     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
580   }
581 
582   // Infer section flags from the section name if we can.
583   Kind = getELFKindForNamedSection(SectionName, Kind);
584 
585   StringRef Group = "";
586   unsigned Flags = getELFSectionFlags(Kind);
587   if (const Comdat *C = getELFComdat(GO)) {
588     Group = C->getName();
589     Flags |= ELF::SHF_GROUP;
590   }
591 
592   // A section can have at most one associated section. Put each global with
593   // MD_associated in a unique section.
594   unsigned UniqueID = MCContext::GenericSectionID;
595   const MCSymbolELF *AssociatedSymbol = getAssociatedSymbol(GO, TM);
596   if (AssociatedSymbol) {
597     UniqueID = NextUniqueID++;
598     Flags |= ELF::SHF_LINK_ORDER;
599   }
600 
601   MCSectionELF *Section = getContext().getELFSection(
602       SectionName, getELFSectionType(SectionName, Kind), Flags,
603       getEntrySizeForKind(Kind), Group, UniqueID, AssociatedSymbol);
604   // Make sure that we did not get some other section with incompatible sh_link.
605   // This should not be possible due to UniqueID code above.
606   assert(Section->getAssociatedSymbol() == AssociatedSymbol &&
607          "Associated symbol mismatch between sections");
608   return Section;
609 }
610 
611 /// Return the section prefix name used by options FunctionsSections and
612 /// DataSections.
613 static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
614   if (Kind.isText())
615     return ".text";
616   if (Kind.isReadOnly())
617     return ".rodata";
618   if (Kind.isBSS())
619     return ".bss";
620   if (Kind.isThreadData())
621     return ".tdata";
622   if (Kind.isThreadBSS())
623     return ".tbss";
624   if (Kind.isData())
625     return ".data";
626   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
627   return ".data.rel.ro";
628 }
629 
630 static MCSectionELF *selectELFSectionForGlobal(
631     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
632     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
633     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
634 
635   StringRef Group = "";
636   if (const Comdat *C = getELFComdat(GO)) {
637     Flags |= ELF::SHF_GROUP;
638     Group = C->getName();
639   }
640 
641   // Get the section entry size based on the kind.
642   unsigned EntrySize = getEntrySizeForKind(Kind);
643 
644   SmallString<128> Name;
645   if (Kind.isMergeableCString()) {
646     // We also need alignment here.
647     // FIXME: this is getting the alignment of the character, not the
648     // alignment of the global!
649     unsigned Align = GO->getParent()->getDataLayout().getPreferredAlignment(
650         cast<GlobalVariable>(GO));
651 
652     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
653     Name = SizeSpec + utostr(Align);
654   } else if (Kind.isMergeableConst()) {
655     Name = ".rodata.cst";
656     Name += utostr(EntrySize);
657   } else {
658     Name = getSectionPrefixForGlobal(Kind);
659   }
660 
661   if (const auto *F = dyn_cast<Function>(GO)) {
662     const auto &OptionalPrefix = F->getSectionPrefix();
663     if (OptionalPrefix)
664       Name += *OptionalPrefix;
665   }
666 
667   unsigned UniqueID = MCContext::GenericSectionID;
668   if (EmitUniqueSection) {
669     if (TM.getUniqueSectionNames()) {
670       Name.push_back('.');
671       TM.getNameWithPrefix(Name, GO, Mang, true /*MayAlwaysUsePrivate*/);
672     } else {
673       UniqueID = *NextUniqueID;
674       (*NextUniqueID)++;
675     }
676   }
677   // Use 0 as the unique ID for execute-only text.
678   if (Kind.isExecuteOnly())
679     UniqueID = 0;
680   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
681                            EntrySize, Group, UniqueID, AssociatedSymbol);
682 }
683 
684 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
685     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
686   unsigned Flags = getELFSectionFlags(Kind);
687 
688   // If we have -ffunction-section or -fdata-section then we should emit the
689   // global value to a uniqued section specifically for it.
690   bool EmitUniqueSection = false;
691   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
692     if (Kind.isText())
693       EmitUniqueSection = TM.getFunctionSections();
694     else
695       EmitUniqueSection = TM.getDataSections();
696   }
697   EmitUniqueSection |= GO->hasComdat();
698 
699   const MCSymbolELF *AssociatedSymbol = getAssociatedSymbol(GO, TM);
700   if (AssociatedSymbol) {
701     EmitUniqueSection = true;
702     Flags |= ELF::SHF_LINK_ORDER;
703   }
704 
705   MCSectionELF *Section = selectELFSectionForGlobal(
706       getContext(), GO, Kind, getMangler(), TM, EmitUniqueSection, Flags,
707       &NextUniqueID, AssociatedSymbol);
708   assert(Section->getAssociatedSymbol() == AssociatedSymbol);
709   return Section;
710 }
711 
712 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
713     const Function &F, const TargetMachine &TM) const {
714   // If the function can be removed, produce a unique section so that
715   // the table doesn't prevent the removal.
716   const Comdat *C = F.getComdat();
717   bool EmitUniqueSection = TM.getFunctionSections() || C;
718   if (!EmitUniqueSection)
719     return ReadOnlySection;
720 
721   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
722                                    getMangler(), TM, EmitUniqueSection,
723                                    ELF::SHF_ALLOC, &NextUniqueID,
724                                    /* AssociatedSymbol */ nullptr);
725 }
726 
727 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
728     bool UsesLabelDifference, const Function &F) const {
729   // We can always create relative relocations, so use another section
730   // that can be marked non-executable.
731   return false;
732 }
733 
734 /// Given a mergeable constant with the specified size and relocation
735 /// information, return a section that it should be placed in.
736 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
737     const DataLayout &DL, SectionKind Kind, const Constant *C,
738     unsigned &Align) const {
739   if (Kind.isMergeableConst4() && MergeableConst4Section)
740     return MergeableConst4Section;
741   if (Kind.isMergeableConst8() && MergeableConst8Section)
742     return MergeableConst8Section;
743   if (Kind.isMergeableConst16() && MergeableConst16Section)
744     return MergeableConst16Section;
745   if (Kind.isMergeableConst32() && MergeableConst32Section)
746     return MergeableConst32Section;
747   if (Kind.isReadOnly())
748     return ReadOnlySection;
749 
750   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
751   return DataRelROSection;
752 }
753 
754 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
755                                               bool IsCtor, unsigned Priority,
756                                               const MCSymbol *KeySym) {
757   std::string Name;
758   unsigned Type;
759   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
760   StringRef COMDAT = KeySym ? KeySym->getName() : "";
761 
762   if (KeySym)
763     Flags |= ELF::SHF_GROUP;
764 
765   if (UseInitArray) {
766     if (IsCtor) {
767       Type = ELF::SHT_INIT_ARRAY;
768       Name = ".init_array";
769     } else {
770       Type = ELF::SHT_FINI_ARRAY;
771       Name = ".fini_array";
772     }
773     if (Priority != 65535) {
774       Name += '.';
775       Name += utostr(Priority);
776     }
777   } else {
778     // The default scheme is .ctor / .dtor, so we have to invert the priority
779     // numbering.
780     if (IsCtor)
781       Name = ".ctors";
782     else
783       Name = ".dtors";
784     if (Priority != 65535)
785       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
786     Type = ELF::SHT_PROGBITS;
787   }
788 
789   return Ctx.getELFSection(Name, Type, Flags, 0, COMDAT);
790 }
791 
792 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
793     unsigned Priority, const MCSymbol *KeySym) const {
794   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
795                                   KeySym);
796 }
797 
798 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
799     unsigned Priority, const MCSymbol *KeySym) const {
800   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
801                                   KeySym);
802 }
803 
804 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
805     const GlobalValue *LHS, const GlobalValue *RHS,
806     const TargetMachine &TM) const {
807   // We may only use a PLT-relative relocation to refer to unnamed_addr
808   // functions.
809   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
810     return nullptr;
811 
812   // Basic sanity checks.
813   if (LHS->getType()->getPointerAddressSpace() != 0 ||
814       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
815       RHS->isThreadLocal())
816     return nullptr;
817 
818   return MCBinaryExpr::createSub(
819       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
820                               getContext()),
821       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
822 }
823 
824 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
825   // Use ".GCC.command.line" since this feature is to support clang's
826   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
827   // same name.
828   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
829                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
830 }
831 
832 void
833 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
834   UseInitArray = UseInitArray_;
835   MCContext &Ctx = getContext();
836   if (!UseInitArray) {
837     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
838                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
839 
840     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
841                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
842     return;
843   }
844 
845   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
846                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
847   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
848                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
849 }
850 
851 //===----------------------------------------------------------------------===//
852 //                                 MachO
853 //===----------------------------------------------------------------------===//
854 
855 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
856   : TargetLoweringObjectFile() {
857   SupportIndirectSymViaGOTPCRel = true;
858 }
859 
860 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
861                                                const TargetMachine &TM) {
862   TargetLoweringObjectFile::Initialize(Ctx, TM);
863   if (TM.getRelocationModel() == Reloc::Static) {
864     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
865                                             SectionKind::getData());
866     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
867                                             SectionKind::getData());
868   } else {
869     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
870                                             MachO::S_MOD_INIT_FUNC_POINTERS,
871                                             SectionKind::getData());
872     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
873                                             MachO::S_MOD_TERM_FUNC_POINTERS,
874                                             SectionKind::getData());
875   }
876 
877   PersonalityEncoding =
878       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
879   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
880   TTypeEncoding =
881       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
882 }
883 
884 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
885                                                        Module &M) const {
886   // Emit the linker options if present.
887   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
888     for (const auto *Option : LinkerOptions->operands()) {
889       SmallVector<std::string, 4> StrOptions;
890       for (const auto &Piece : cast<MDNode>(Option)->operands())
891         StrOptions.push_back(cast<MDString>(Piece)->getString());
892       Streamer.EmitLinkerOptions(StrOptions);
893     }
894   }
895 
896   unsigned VersionVal = 0;
897   unsigned ImageInfoFlags = 0;
898   StringRef SectionVal;
899 
900   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
901 
902   // The section is mandatory. If we don't have it, then we don't have GC info.
903   if (SectionVal.empty())
904     return;
905 
906   StringRef Segment, Section;
907   unsigned TAA = 0, StubSize = 0;
908   bool TAAParsed;
909   std::string ErrorCode =
910     MCSectionMachO::ParseSectionSpecifier(SectionVal, Segment, Section,
911                                           TAA, TAAParsed, StubSize);
912   if (!ErrorCode.empty())
913     // If invalid, report the error with report_fatal_error.
914     report_fatal_error("Invalid section specifier '" + Section + "': " +
915                        ErrorCode + ".");
916 
917   // Get the section.
918   MCSectionMachO *S = getContext().getMachOSection(
919       Segment, Section, TAA, StubSize, SectionKind::getData());
920   Streamer.SwitchSection(S);
921   Streamer.EmitLabel(getContext().
922                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
923   Streamer.EmitIntValue(VersionVal, 4);
924   Streamer.EmitIntValue(ImageInfoFlags, 4);
925   Streamer.AddBlankLine();
926 }
927 
928 static void checkMachOComdat(const GlobalValue *GV) {
929   const Comdat *C = GV->getComdat();
930   if (!C)
931     return;
932 
933   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
934                      "' cannot be lowered.");
935 }
936 
937 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
938     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
939   // Parse the section specifier and create it if valid.
940   StringRef Segment, Section;
941   unsigned TAA = 0, StubSize = 0;
942   bool TAAParsed;
943 
944   checkMachOComdat(GO);
945 
946   std::string ErrorCode =
947     MCSectionMachO::ParseSectionSpecifier(GO->getSection(), Segment, Section,
948                                           TAA, TAAParsed, StubSize);
949   if (!ErrorCode.empty()) {
950     // If invalid, report the error with report_fatal_error.
951     report_fatal_error("Global variable '" + GO->getName() +
952                        "' has an invalid section specifier '" +
953                        GO->getSection() + "': " + ErrorCode + ".");
954   }
955 
956   // Get the section.
957   MCSectionMachO *S =
958       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
959 
960   // If TAA wasn't set by ParseSectionSpecifier() above,
961   // use the value returned by getMachOSection() as a default.
962   if (!TAAParsed)
963     TAA = S->getTypeAndAttributes();
964 
965   // Okay, now that we got the section, verify that the TAA & StubSize agree.
966   // If the user declared multiple globals with different section flags, we need
967   // to reject it here.
968   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
969     // If invalid, report the error with report_fatal_error.
970     report_fatal_error("Global variable '" + GO->getName() +
971                        "' section type or attributes does not match previous"
972                        " section specifier");
973   }
974 
975   return S;
976 }
977 
978 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
979     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
980   checkMachOComdat(GO);
981 
982   // Handle thread local data.
983   if (Kind.isThreadBSS()) return TLSBSSSection;
984   if (Kind.isThreadData()) return TLSDataSection;
985 
986   if (Kind.isText())
987     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
988 
989   // If this is weak/linkonce, put this in a coalescable section, either in text
990   // or data depending on if it is writable.
991   if (GO->isWeakForLinker()) {
992     if (Kind.isReadOnly())
993       return ConstTextCoalSection;
994     if (Kind.isReadOnlyWithRel())
995       return ConstDataCoalSection;
996     return DataCoalSection;
997   }
998 
999   // FIXME: Alignment check should be handled by section classifier.
1000   if (Kind.isMergeable1ByteCString() &&
1001       GO->getParent()->getDataLayout().getPreferredAlignment(
1002           cast<GlobalVariable>(GO)) < 32)
1003     return CStringSection;
1004 
1005   // Do not put 16-bit arrays in the UString section if they have an
1006   // externally visible label, this runs into issues with certain linker
1007   // versions.
1008   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1009       GO->getParent()->getDataLayout().getPreferredAlignment(
1010           cast<GlobalVariable>(GO)) < 32)
1011     return UStringSection;
1012 
1013   // With MachO only variables whose corresponding symbol starts with 'l' or
1014   // 'L' can be merged, so we only try merging GVs with private linkage.
1015   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1016     if (Kind.isMergeableConst4())
1017       return FourByteConstantSection;
1018     if (Kind.isMergeableConst8())
1019       return EightByteConstantSection;
1020     if (Kind.isMergeableConst16())
1021       return SixteenByteConstantSection;
1022   }
1023 
1024   // Otherwise, if it is readonly, but not something we can specially optimize,
1025   // just drop it in .const.
1026   if (Kind.isReadOnly())
1027     return ReadOnlySection;
1028 
1029   // If this is marked const, put it into a const section.  But if the dynamic
1030   // linker needs to write to it, put it in the data segment.
1031   if (Kind.isReadOnlyWithRel())
1032     return ConstDataSection;
1033 
1034   // Put zero initialized globals with strong external linkage in the
1035   // DATA, __common section with the .zerofill directive.
1036   if (Kind.isBSSExtern())
1037     return DataCommonSection;
1038 
1039   // Put zero initialized globals with local linkage in __DATA,__bss directive
1040   // with the .zerofill directive (aka .lcomm).
1041   if (Kind.isBSSLocal())
1042     return DataBSSSection;
1043 
1044   // Otherwise, just drop the variable in the normal data section.
1045   return DataSection;
1046 }
1047 
1048 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1049     const DataLayout &DL, SectionKind Kind, const Constant *C,
1050     unsigned &Align) const {
1051   // If this constant requires a relocation, we have to put it in the data
1052   // segment, not in the text segment.
1053   if (Kind.isData() || Kind.isReadOnlyWithRel())
1054     return ConstDataSection;
1055 
1056   if (Kind.isMergeableConst4())
1057     return FourByteConstantSection;
1058   if (Kind.isMergeableConst8())
1059     return EightByteConstantSection;
1060   if (Kind.isMergeableConst16())
1061     return SixteenByteConstantSection;
1062   return ReadOnlySection;  // .const
1063 }
1064 
1065 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1066     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1067     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1068   // The mach-o version of this method defaults to returning a stub reference.
1069 
1070   if (Encoding & DW_EH_PE_indirect) {
1071     MachineModuleInfoMachO &MachOMMI =
1072       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1073 
1074     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1075 
1076     // Add information about the stub reference to MachOMMI so that the stub
1077     // gets emitted by the asmprinter.
1078     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1079     if (!StubSym.getPointer()) {
1080       MCSymbol *Sym = TM.getSymbol(GV);
1081       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1082     }
1083 
1084     return TargetLoweringObjectFile::
1085       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1086                         Encoding & ~DW_EH_PE_indirect, Streamer);
1087   }
1088 
1089   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1090                                                            MMI, Streamer);
1091 }
1092 
1093 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1094     const GlobalValue *GV, const TargetMachine &TM,
1095     MachineModuleInfo *MMI) const {
1096   // The mach-o version of this method defaults to returning a stub reference.
1097   MachineModuleInfoMachO &MachOMMI =
1098     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1099 
1100   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1101 
1102   // Add information about the stub reference to MachOMMI so that the stub
1103   // gets emitted by the asmprinter.
1104   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1105   if (!StubSym.getPointer()) {
1106     MCSymbol *Sym = TM.getSymbol(GV);
1107     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1108   }
1109 
1110   return SSym;
1111 }
1112 
1113 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1114     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1115     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1116   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1117   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1118   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1119   // computation of deltas to final external symbols. Example:
1120   //
1121   //    _extgotequiv:
1122   //       .long   _extfoo
1123   //
1124   //    _delta:
1125   //       .long   _extgotequiv-_delta
1126   //
1127   // is transformed to:
1128   //
1129   //    _delta:
1130   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1131   //
1132   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1133   //    L_extfoo$non_lazy_ptr:
1134   //       .indirect_symbol        _extfoo
1135   //       .long   0
1136   //
1137   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1138   // may point to both local (same translation unit) and global (other
1139   // translation units) symbols. Example:
1140   //
1141   // .section __DATA,__pointers,non_lazy_symbol_pointers
1142   // L1:
1143   //    .indirect_symbol _myGlobal
1144   //    .long 0
1145   // L2:
1146   //    .indirect_symbol _myLocal
1147   //    .long _myLocal
1148   //
1149   // If the symbol is local, instead of the symbol's index, the assembler
1150   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1151   // Then the linker will notice the constant in the table and will look at the
1152   // content of the symbol.
1153   MachineModuleInfoMachO &MachOMMI =
1154     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1155   MCContext &Ctx = getContext();
1156 
1157   // The offset must consider the original displacement from the base symbol
1158   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1159   Offset = -MV.getConstant();
1160   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1161 
1162   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1163   // non_lazy_ptr stubs.
1164   SmallString<128> Name;
1165   StringRef Suffix = "$non_lazy_ptr";
1166   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1167   Name += Sym->getName();
1168   Name += Suffix;
1169   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1170 
1171   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1172 
1173   if (!StubSym.getPointer())
1174     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1175                                                  !GV->hasLocalLinkage());
1176 
1177   const MCExpr *BSymExpr =
1178     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1179   const MCExpr *LHS =
1180     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1181 
1182   if (!Offset)
1183     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1184 
1185   const MCExpr *RHS =
1186     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1187   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1188 }
1189 
1190 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1191                                const MCSection &Section) {
1192   if (!AsmInfo.isSectionAtomizableBySymbols(Section))
1193     return true;
1194 
1195   // If it is not dead stripped, it is safe to use private labels.
1196   const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
1197   if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
1198     return true;
1199 
1200   return false;
1201 }
1202 
1203 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1204     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1205     const TargetMachine &TM) const {
1206   bool CannotUsePrivateLabel = true;
1207   if (auto *GO = GV->getBaseObject()) {
1208     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1209     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1210     CannotUsePrivateLabel =
1211         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1212   }
1213   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1214 }
1215 
1216 //===----------------------------------------------------------------------===//
1217 //                                  COFF
1218 //===----------------------------------------------------------------------===//
1219 
1220 static unsigned
1221 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1222   unsigned Flags = 0;
1223   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1224 
1225   if (K.isMetadata())
1226     Flags |=
1227       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1228   else if (K.isText())
1229     Flags |=
1230       COFF::IMAGE_SCN_MEM_EXECUTE |
1231       COFF::IMAGE_SCN_MEM_READ |
1232       COFF::IMAGE_SCN_CNT_CODE |
1233       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1234   else if (K.isBSS())
1235     Flags |=
1236       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1237       COFF::IMAGE_SCN_MEM_READ |
1238       COFF::IMAGE_SCN_MEM_WRITE;
1239   else if (K.isThreadLocal())
1240     Flags |=
1241       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1242       COFF::IMAGE_SCN_MEM_READ |
1243       COFF::IMAGE_SCN_MEM_WRITE;
1244   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1245     Flags |=
1246       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1247       COFF::IMAGE_SCN_MEM_READ;
1248   else if (K.isWriteable())
1249     Flags |=
1250       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1251       COFF::IMAGE_SCN_MEM_READ |
1252       COFF::IMAGE_SCN_MEM_WRITE;
1253 
1254   return Flags;
1255 }
1256 
1257 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1258   const Comdat *C = GV->getComdat();
1259   assert(C && "expected GV to have a Comdat!");
1260 
1261   StringRef ComdatGVName = C->getName();
1262   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1263   if (!ComdatGV)
1264     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1265                        "' does not exist.");
1266 
1267   if (ComdatGV->getComdat() != C)
1268     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1269                        "' is not a key for its COMDAT.");
1270 
1271   return ComdatGV;
1272 }
1273 
1274 static int getSelectionForCOFF(const GlobalValue *GV) {
1275   if (const Comdat *C = GV->getComdat()) {
1276     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1277     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1278       ComdatKey = GA->getBaseObject();
1279     if (ComdatKey == GV) {
1280       switch (C->getSelectionKind()) {
1281       case Comdat::Any:
1282         return COFF::IMAGE_COMDAT_SELECT_ANY;
1283       case Comdat::ExactMatch:
1284         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1285       case Comdat::Largest:
1286         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1287       case Comdat::NoDuplicates:
1288         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1289       case Comdat::SameSize:
1290         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1291       }
1292     } else {
1293       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1294     }
1295   }
1296   return 0;
1297 }
1298 
1299 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1300     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1301   int Selection = 0;
1302   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1303   StringRef Name = GO->getSection();
1304   StringRef COMDATSymName = "";
1305   if (GO->hasComdat()) {
1306     Selection = getSelectionForCOFF(GO);
1307     const GlobalValue *ComdatGV;
1308     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1309       ComdatGV = getComdatGVForCOFF(GO);
1310     else
1311       ComdatGV = GO;
1312 
1313     if (!ComdatGV->hasPrivateLinkage()) {
1314       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1315       COMDATSymName = Sym->getName();
1316       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1317     } else {
1318       Selection = 0;
1319     }
1320   }
1321 
1322   return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
1323                                      Selection);
1324 }
1325 
1326 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1327   if (Kind.isText())
1328     return ".text";
1329   if (Kind.isBSS())
1330     return ".bss";
1331   if (Kind.isThreadLocal())
1332     return ".tls$";
1333   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1334     return ".rdata";
1335   return ".data";
1336 }
1337 
1338 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1339     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1340   // If we have -ffunction-sections then we should emit the global value to a
1341   // uniqued section specifically for it.
1342   bool EmitUniquedSection;
1343   if (Kind.isText())
1344     EmitUniquedSection = TM.getFunctionSections();
1345   else
1346     EmitUniquedSection = TM.getDataSections();
1347 
1348   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1349     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1350 
1351     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1352 
1353     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1354     int Selection = getSelectionForCOFF(GO);
1355     if (!Selection)
1356       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1357     const GlobalValue *ComdatGV;
1358     if (GO->hasComdat())
1359       ComdatGV = getComdatGVForCOFF(GO);
1360     else
1361       ComdatGV = GO;
1362 
1363     unsigned UniqueID = MCContext::GenericSectionID;
1364     if (EmitUniquedSection)
1365       UniqueID = NextUniqueID++;
1366 
1367     if (!ComdatGV->hasPrivateLinkage()) {
1368       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1369       StringRef COMDATSymName = Sym->getName();
1370 
1371       // Append "$symbol" to the section name *before* IR-level mangling is
1372       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1373       // COFF linker will not properly handle comdats otherwise.
1374       if (getTargetTriple().isWindowsGNUEnvironment())
1375         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1376 
1377       return getContext().getCOFFSection(Name, Characteristics, Kind,
1378                                          COMDATSymName, Selection, UniqueID);
1379     } else {
1380       SmallString<256> TmpData;
1381       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1382       return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
1383                                          Selection, UniqueID);
1384     }
1385   }
1386 
1387   if (Kind.isText())
1388     return TextSection;
1389 
1390   if (Kind.isThreadLocal())
1391     return TLSDataSection;
1392 
1393   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1394     return ReadOnlySection;
1395 
1396   // Note: we claim that common symbols are put in BSSSection, but they are
1397   // really emitted with the magic .comm directive, which creates a symbol table
1398   // entry but not a section.
1399   if (Kind.isBSS() || Kind.isCommon())
1400     return BSSSection;
1401 
1402   return DataSection;
1403 }
1404 
1405 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1406     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1407     const TargetMachine &TM) const {
1408   bool CannotUsePrivateLabel = false;
1409   if (GV->hasPrivateLinkage() &&
1410       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1411        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1412     CannotUsePrivateLabel = true;
1413 
1414   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1415 }
1416 
1417 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1418     const Function &F, const TargetMachine &TM) const {
1419   // If the function can be removed, produce a unique section so that
1420   // the table doesn't prevent the removal.
1421   const Comdat *C = F.getComdat();
1422   bool EmitUniqueSection = TM.getFunctionSections() || C;
1423   if (!EmitUniqueSection)
1424     return ReadOnlySection;
1425 
1426   // FIXME: we should produce a symbol for F instead.
1427   if (F.hasPrivateLinkage())
1428     return ReadOnlySection;
1429 
1430   MCSymbol *Sym = TM.getSymbol(&F);
1431   StringRef COMDATSymName = Sym->getName();
1432 
1433   SectionKind Kind = SectionKind::getReadOnly();
1434   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1435   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1436   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1437   unsigned UniqueID = NextUniqueID++;
1438 
1439   return getContext().getCOFFSection(
1440       SecName, Characteristics, Kind, COMDATSymName,
1441       COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
1442 }
1443 
1444 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1445                                                       Module &M) const {
1446   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1447     // Emit the linker options to the linker .drectve section.  According to the
1448     // spec, this section is a space-separated string containing flags for
1449     // linker.
1450     MCSection *Sec = getDrectveSection();
1451     Streamer.SwitchSection(Sec);
1452     for (const auto *Option : LinkerOptions->operands()) {
1453       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1454         // Lead with a space for consistency with our dllexport implementation.
1455         std::string Directive(" ");
1456         Directive.append(cast<MDString>(Piece)->getString());
1457         Streamer.EmitBytes(Directive);
1458       }
1459     }
1460   }
1461 
1462   unsigned Version = 0;
1463   unsigned Flags = 0;
1464   StringRef Section;
1465 
1466   GetObjCImageInfo(M, Version, Flags, Section);
1467   if (Section.empty())
1468     return;
1469 
1470   auto &C = getContext();
1471   auto *S = C.getCOFFSection(
1472       Section, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1473       SectionKind::getReadOnly());
1474   Streamer.SwitchSection(S);
1475   Streamer.EmitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1476   Streamer.EmitIntValue(Version, 4);
1477   Streamer.EmitIntValue(Flags, 4);
1478   Streamer.AddBlankLine();
1479 }
1480 
1481 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1482                                               const TargetMachine &TM) {
1483   TargetLoweringObjectFile::Initialize(Ctx, TM);
1484   const Triple &T = TM.getTargetTriple();
1485   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1486     StaticCtorSection =
1487         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1488                                            COFF::IMAGE_SCN_MEM_READ,
1489                            SectionKind::getReadOnly());
1490     StaticDtorSection =
1491         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1492                                            COFF::IMAGE_SCN_MEM_READ,
1493                            SectionKind::getReadOnly());
1494   } else {
1495     StaticCtorSection = Ctx.getCOFFSection(
1496         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1497                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1498         SectionKind::getData());
1499     StaticDtorSection = Ctx.getCOFFSection(
1500         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1501                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1502         SectionKind::getData());
1503   }
1504 }
1505 
1506 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1507                                                    const Triple &T, bool IsCtor,
1508                                                    unsigned Priority,
1509                                                    const MCSymbol *KeySym,
1510                                                    MCSectionCOFF *Default) {
1511   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1512     // If the priority is the default, use .CRT$XCU, possibly associative.
1513     if (Priority == 65535)
1514       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1515 
1516     // Otherwise, we need to compute a new section name. Low priorities should
1517     // run earlier. The linker will sort sections ASCII-betically, and we need a
1518     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1519     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1520     // low priorities need to sort before 'L', since the CRT uses that
1521     // internally, so we use ".CRT$XCA00001" for them.
1522     SmallString<24> Name;
1523     raw_svector_ostream OS(Name);
1524     OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
1525         (Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
1526     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1527         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1528         SectionKind::getReadOnly());
1529     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1530   }
1531 
1532   std::string Name = IsCtor ? ".ctors" : ".dtors";
1533   if (Priority != 65535)
1534     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1535 
1536   return Ctx.getAssociativeCOFFSection(
1537       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1538                                    COFF::IMAGE_SCN_MEM_READ |
1539                                    COFF::IMAGE_SCN_MEM_WRITE,
1540                          SectionKind::getData()),
1541       KeySym, 0);
1542 }
1543 
1544 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
1545     unsigned Priority, const MCSymbol *KeySym) const {
1546   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true,
1547                                       Priority, KeySym,
1548                                       cast<MCSectionCOFF>(StaticCtorSection));
1549 }
1550 
1551 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
1552     unsigned Priority, const MCSymbol *KeySym) const {
1553   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false,
1554                                       Priority, KeySym,
1555                                       cast<MCSectionCOFF>(StaticDtorSection));
1556 }
1557 
1558 void TargetLoweringObjectFileCOFF::emitLinkerFlagsForGlobal(
1559     raw_ostream &OS, const GlobalValue *GV) const {
1560   emitLinkerFlagsForGlobalCOFF(OS, GV, getTargetTriple(), getMangler());
1561 }
1562 
1563 void TargetLoweringObjectFileCOFF::emitLinkerFlagsForUsed(
1564     raw_ostream &OS, const GlobalValue *GV) const {
1565   emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler());
1566 }
1567 
1568 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
1569     const GlobalValue *LHS, const GlobalValue *RHS,
1570     const TargetMachine &TM) const {
1571   const Triple &T = TM.getTargetTriple();
1572   if (T.isOSCygMing())
1573     return nullptr;
1574 
1575   // Our symbols should exist in address space zero, cowardly no-op if
1576   // otherwise.
1577   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1578       RHS->getType()->getPointerAddressSpace() != 0)
1579     return nullptr;
1580 
1581   // Both ptrtoint instructions must wrap global objects:
1582   // - Only global variables are eligible for image relative relocations.
1583   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
1584   // We expect __ImageBase to be a global variable without a section, externally
1585   // defined.
1586   //
1587   // It should look something like this: @__ImageBase = external constant i8
1588   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
1589       LHS->isThreadLocal() || RHS->isThreadLocal() ||
1590       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
1591       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
1592     return nullptr;
1593 
1594   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
1595                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
1596                                  getContext());
1597 }
1598 
1599 static std::string APIntToHexString(const APInt &AI) {
1600   unsigned Width = (AI.getBitWidth() / 8) * 2;
1601   std::string HexString = AI.toString(16, /*Signed=*/false);
1602   transform(HexString.begin(), HexString.end(), HexString.begin(), tolower);
1603   unsigned Size = HexString.size();
1604   assert(Width >= Size && "hex string is too large!");
1605   HexString.insert(HexString.begin(), Width - Size, '0');
1606 
1607   return HexString;
1608 }
1609 
1610 static std::string scalarConstantToHexString(const Constant *C) {
1611   Type *Ty = C->getType();
1612   if (isa<UndefValue>(C)) {
1613     return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
1614   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
1615     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
1616   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
1617     return APIntToHexString(CI->getValue());
1618   } else {
1619     unsigned NumElements;
1620     if (isa<VectorType>(Ty))
1621       NumElements = Ty->getVectorNumElements();
1622     else
1623       NumElements = Ty->getArrayNumElements();
1624     std::string HexString;
1625     for (int I = NumElements - 1, E = -1; I != E; --I)
1626       HexString += scalarConstantToHexString(C->getAggregateElement(I));
1627     return HexString;
1628   }
1629 }
1630 
1631 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
1632     const DataLayout &DL, SectionKind Kind, const Constant *C,
1633     unsigned &Align) const {
1634   if (Kind.isMergeableConst() && C &&
1635       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
1636     // This creates comdat sections with the given symbol name, but unless
1637     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
1638     // will be created with a null storage class, which makes GNU binutils
1639     // error out.
1640     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1641                                      COFF::IMAGE_SCN_MEM_READ |
1642                                      COFF::IMAGE_SCN_LNK_COMDAT;
1643     std::string COMDATSymName;
1644     if (Kind.isMergeableConst4()) {
1645       if (Align <= 4) {
1646         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1647         Align = 4;
1648       }
1649     } else if (Kind.isMergeableConst8()) {
1650       if (Align <= 8) {
1651         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1652         Align = 8;
1653       }
1654     } else if (Kind.isMergeableConst16()) {
1655       // FIXME: These may not be appropriate for non-x86 architectures.
1656       if (Align <= 16) {
1657         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
1658         Align = 16;
1659       }
1660     } else if (Kind.isMergeableConst32()) {
1661       if (Align <= 32) {
1662         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
1663         Align = 32;
1664       }
1665     }
1666 
1667     if (!COMDATSymName.empty())
1668       return getContext().getCOFFSection(".rdata", Characteristics, Kind,
1669                                          COMDATSymName,
1670                                          COFF::IMAGE_COMDAT_SELECT_ANY);
1671   }
1672 
1673   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C, Align);
1674 }
1675 
1676 
1677 //===----------------------------------------------------------------------===//
1678 //                                  Wasm
1679 //===----------------------------------------------------------------------===//
1680 
1681 static const Comdat *getWasmComdat(const GlobalValue *GV) {
1682   const Comdat *C = GV->getComdat();
1683   if (!C)
1684     return nullptr;
1685 
1686   if (C->getSelectionKind() != Comdat::Any)
1687     report_fatal_error("WebAssembly COMDATs only support "
1688                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
1689                        "lowered.");
1690 
1691   return C;
1692 }
1693 
1694 static SectionKind getWasmKindForNamedSection(StringRef Name, SectionKind K) {
1695   // If we're told we have function data, then use that.
1696   if (K.isText())
1697     return SectionKind::getText();
1698 
1699   // Otherwise, ignore whatever section type the generic impl detected and use
1700   // a plain data section.
1701   return SectionKind::getData();
1702 }
1703 
1704 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
1705     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1706   // We don't support explict section names for functions in the wasm object
1707   // format.  Each function has to be in its own unique section.
1708   if (isa<Function>(GO)) {
1709     return SelectSectionForGlobal(GO, Kind, TM);
1710   }
1711 
1712   StringRef Name = GO->getSection();
1713 
1714   Kind = getWasmKindForNamedSection(Name, Kind);
1715 
1716   StringRef Group = "";
1717   if (const Comdat *C = getWasmComdat(GO)) {
1718     Group = C->getName();
1719   }
1720 
1721   MCSectionWasm* Section =
1722       getContext().getWasmSection(Name, Kind, Group,
1723                                   MCContext::GenericSectionID);
1724 
1725   return Section;
1726 }
1727 
1728 static MCSectionWasm *selectWasmSectionForGlobal(
1729     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
1730     const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
1731   StringRef Group = "";
1732   if (const Comdat *C = getWasmComdat(GO)) {
1733     Group = C->getName();
1734   }
1735 
1736   bool UniqueSectionNames = TM.getUniqueSectionNames();
1737   SmallString<128> Name = getSectionPrefixForGlobal(Kind);
1738 
1739   if (const auto *F = dyn_cast<Function>(GO)) {
1740     const auto &OptionalPrefix = F->getSectionPrefix();
1741     if (OptionalPrefix)
1742       Name += *OptionalPrefix;
1743   }
1744 
1745   if (EmitUniqueSection && UniqueSectionNames) {
1746     Name.push_back('.');
1747     TM.getNameWithPrefix(Name, GO, Mang, true);
1748   }
1749   unsigned UniqueID = MCContext::GenericSectionID;
1750   if (EmitUniqueSection && !UniqueSectionNames) {
1751     UniqueID = *NextUniqueID;
1752     (*NextUniqueID)++;
1753   }
1754 
1755   return Ctx.getWasmSection(Name, Kind, Group, UniqueID);
1756 }
1757 
1758 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
1759     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1760 
1761   if (Kind.isCommon())
1762     report_fatal_error("mergable sections not supported yet on wasm");
1763 
1764   // If we have -ffunction-section or -fdata-section then we should emit the
1765   // global value to a uniqued section specifically for it.
1766   bool EmitUniqueSection = false;
1767   if (Kind.isText())
1768     EmitUniqueSection = TM.getFunctionSections();
1769   else
1770     EmitUniqueSection = TM.getDataSections();
1771   EmitUniqueSection |= GO->hasComdat();
1772 
1773   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
1774                                     EmitUniqueSection, &NextUniqueID);
1775 }
1776 
1777 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
1778     bool UsesLabelDifference, const Function &F) const {
1779   // We can always create relative relocations, so use another section
1780   // that can be marked non-executable.
1781   return false;
1782 }
1783 
1784 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
1785     const GlobalValue *LHS, const GlobalValue *RHS,
1786     const TargetMachine &TM) const {
1787   // We may only use a PLT-relative relocation to refer to unnamed_addr
1788   // functions.
1789   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
1790     return nullptr;
1791 
1792   // Basic sanity checks.
1793   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1794       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
1795       RHS->isThreadLocal())
1796     return nullptr;
1797 
1798   return MCBinaryExpr::createSub(
1799       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
1800                               getContext()),
1801       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1802 }
1803 
1804 void TargetLoweringObjectFileWasm::InitializeWasm() {
1805   StaticCtorSection =
1806       getContext().getWasmSection(".init_array", SectionKind::getData());
1807 
1808   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
1809   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
1810   TTypeEncoding = dwarf::DW_EH_PE_absptr;
1811 }
1812 
1813 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
1814     unsigned Priority, const MCSymbol *KeySym) const {
1815   return Priority == UINT16_MAX ?
1816          StaticCtorSection :
1817          getContext().getWasmSection(".init_array." + utostr(Priority),
1818                                      SectionKind::getData());
1819 }
1820 
1821 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
1822     unsigned Priority, const MCSymbol *KeySym) const {
1823   llvm_unreachable("@llvm.global_dtors should have been lowered already");
1824   return nullptr;
1825 }
1826 
1827 //===----------------------------------------------------------------------===//
1828 //                                  XCOFF
1829 //===----------------------------------------------------------------------===//
1830 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
1831     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1832   report_fatal_error("XCOFF explicit sections not yet implemented.");
1833 }
1834 
1835 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
1836     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1837   assert(!TM.getFunctionSections() && !TM.getDataSections() &&
1838          "XCOFF unique sections not yet implemented.");
1839 
1840   // Common symbols go into a csect with matching name which will get mapped
1841   // into the .bss section.
1842   if (Kind.isBSSLocal() || Kind.isCommon()) {
1843     SmallString<128> Name;
1844     getNameWithPrefix(Name, GO, TM);
1845     XCOFF::StorageClass SC =
1846         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
1847     return getContext().getXCOFFSection(
1848         Name, Kind.isBSSLocal() ? XCOFF::XMC_BS : XCOFF::XMC_RW, XCOFF::XTY_CM,
1849         SC, Kind, /* BeginSymbolName */ nullptr);
1850   }
1851 
1852   if (Kind.isMergeableCString()) {
1853     if (!Kind.isMergeable1ByteCString())
1854       report_fatal_error("Unhandled multi-byte mergeable string kind.");
1855 
1856     unsigned Align = GO->getParent()->getDataLayout().getPreferredAlignment(
1857         cast<GlobalVariable>(GO));
1858 
1859     unsigned EntrySize = getEntrySizeForKind(Kind);
1860     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
1861     SmallString<128> Name;
1862     Name = SizeSpec + utostr(Align);
1863 
1864     return getContext().getXCOFFSection(
1865         Name, XCOFF::XMC_RO, XCOFF::XTY_SD,
1866         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO),
1867         Kind, /* BeginSymbolName */ nullptr);
1868   }
1869 
1870   if (Kind.isText())
1871     return TextSection;
1872 
1873   if (Kind.isData() || Kind.isReadOnlyWithRel())
1874     // TODO: We may put this under option control, because user may want to
1875     // have read-only data with relocations placed into a read-only section by
1876     // the compiler.
1877     return DataSection;
1878 
1879   // Zero initialized data must be emitted to the .data section because external
1880   // linkage control sections that get mapped to the .bss section will be linked
1881   // as tentative defintions, which is only appropriate for SectionKind::Common.
1882   if (Kind.isBSS())
1883     return DataSection;
1884 
1885   if (Kind.isReadOnly())
1886     return ReadOnlySection;
1887 
1888   report_fatal_error("XCOFF other section types not yet implemented.");
1889 }
1890 
1891 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
1892     const Function &F, const TargetMachine &TM) const {
1893   assert (!TM.getFunctionSections() && "Unique sections not supported on XCOFF"
1894           " yet.");
1895   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
1896   //TODO: Enable emiting jump table to unique sections when we support it.
1897   return ReadOnlySection;
1898 }
1899 
1900 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
1901     bool UsesLabelDifference, const Function &F) const {
1902   return false;
1903 }
1904 
1905 /// Given a mergeable constant with the specified size and relocation
1906 /// information, return a section that it should be placed in.
1907 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
1908     const DataLayout &DL, SectionKind Kind, const Constant *C,
1909     unsigned &Align) const {
1910   //TODO: Enable emiting constant pool to unique sections when we support it.
1911   return ReadOnlySection;
1912 }
1913 
1914 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
1915                                                const TargetMachine &TgtM) {
1916   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
1917   TTypeEncoding = 0;
1918   PersonalityEncoding = 0;
1919   LSDAEncoding = 0;
1920 }
1921 
1922 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
1923     unsigned Priority, const MCSymbol *KeySym) const {
1924   report_fatal_error("XCOFF ctor section not yet implemented.");
1925 }
1926 
1927 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
1928     unsigned Priority, const MCSymbol *KeySym) const {
1929   report_fatal_error("XCOFF dtor section not yet implemented.");
1930 }
1931 
1932 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
1933     const GlobalValue *LHS, const GlobalValue *RHS,
1934     const TargetMachine &TM) const {
1935   report_fatal_error("XCOFF not yet implemented.");
1936 }
1937 
1938 XCOFF::StorageClass TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(
1939     const GlobalObject *GO) {
1940   switch (GO->getLinkage()) {
1941   case GlobalValue::InternalLinkage:
1942   case GlobalValue::PrivateLinkage:
1943     return XCOFF::C_HIDEXT;
1944   case GlobalValue::ExternalLinkage:
1945   case GlobalValue::CommonLinkage:
1946     return XCOFF::C_EXT;
1947   case GlobalValue::ExternalWeakLinkage:
1948     return XCOFF::C_WEAKEXT;
1949   default:
1950     report_fatal_error(
1951         "Unhandled linkage when mapping linkage to StorageClass.");
1952   }
1953 }
1954