1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/ISDOpcodes.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/MachineValueType.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Target/TargetOptions.h" 55 #include "llvm/TargetParser/Triple.h" 56 #include "llvm/Transforms/Utils/SizeOpts.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <iterator> 62 #include <string> 63 #include <tuple> 64 #include <utility> 65 66 using namespace llvm; 67 68 static cl::opt<bool> JumpIsExpensiveOverride( 69 "jump-is-expensive", cl::init(false), 70 cl::desc("Do not create extra branches to split comparison logic."), 71 cl::Hidden); 72 73 static cl::opt<unsigned> MinimumJumpTableEntries 74 ("min-jump-table-entries", cl::init(4), cl::Hidden, 75 cl::desc("Set minimum number of entries to use a jump table.")); 76 77 static cl::opt<unsigned> MaximumJumpTableSize 78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 79 cl::desc("Set maximum size of jump tables.")); 80 81 /// Minimum jump table density for normal functions. 82 static cl::opt<unsigned> 83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 84 cl::desc("Minimum density for building a jump table in " 85 "a normal function")); 86 87 /// Minimum jump table density for -Os or -Oz functions. 88 static cl::opt<unsigned> OptsizeJumpTableDensity( 89 "optsize-jump-table-density", cl::init(40), cl::Hidden, 90 cl::desc("Minimum density for building a jump table in " 91 "an optsize function")); 92 93 // FIXME: This option is only to test if the strict fp operation processed 94 // correctly by preventing mutating strict fp operation to normal fp operation 95 // during development. When the backend supports strict float operation, this 96 // option will be meaningless. 97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 98 cl::desc("Don't mutate strict-float node to a legalize node"), 99 cl::init(false), cl::Hidden); 100 101 static bool darwinHasSinCos(const Triple &TT) { 102 assert(TT.isOSDarwin() && "should be called with darwin triple"); 103 // Don't bother with 32 bit x86. 104 if (TT.getArch() == Triple::x86) 105 return false; 106 // Macos < 10.9 has no sincos_stret. 107 if (TT.isMacOSX()) 108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 109 // iOS < 7.0 has no sincos_stret. 110 if (TT.isiOS()) 111 return !TT.isOSVersionLT(7, 0); 112 // Any other darwin such as WatchOS/TvOS is new enough. 113 return true; 114 } 115 116 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 117 #define HANDLE_LIBCALL(code, name) \ 118 setLibcallName(RTLIB::code, name); 119 #include "llvm/IR/RuntimeLibcalls.def" 120 #undef HANDLE_LIBCALL 121 // Initialize calling conventions to their default. 122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 123 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 124 125 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 126 if (TT.isPPC()) { 127 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 128 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 129 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 130 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 131 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 138 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); 139 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 140 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 141 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); 142 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 143 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 144 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); 145 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 146 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 147 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); 148 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 149 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 150 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 151 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 152 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 153 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 154 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 155 } 156 157 // A few names are different on particular architectures or environments. 158 if (TT.isOSDarwin()) { 159 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 160 // of the gnueabi-style __gnu_*_ieee. 161 // FIXME: What about other targets? 162 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 163 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 164 165 // Some darwins have an optimized __bzero/bzero function. 166 switch (TT.getArch()) { 167 case Triple::x86: 168 case Triple::x86_64: 169 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 170 setLibcallName(RTLIB::BZERO, "__bzero"); 171 break; 172 case Triple::aarch64: 173 case Triple::aarch64_32: 174 setLibcallName(RTLIB::BZERO, "bzero"); 175 break; 176 default: 177 break; 178 } 179 180 if (darwinHasSinCos(TT)) { 181 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 182 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 183 if (TT.isWatchABI()) { 184 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 185 CallingConv::ARM_AAPCS_VFP); 186 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 187 CallingConv::ARM_AAPCS_VFP); 188 } 189 } 190 } else { 191 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 192 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 193 } 194 195 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 196 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 197 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 198 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 199 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 200 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 201 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 202 } 203 204 if (TT.isPS()) { 205 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 206 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 207 } 208 209 if (TT.isOSOpenBSD()) { 210 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 211 } 212 213 if (TT.isOSWindows() && !TT.isOSCygMing()) { 214 setLibcallName(RTLIB::LDEXP_F32, nullptr); 215 setLibcallName(RTLIB::LDEXP_F80, nullptr); 216 setLibcallName(RTLIB::LDEXP_F128, nullptr); 217 setLibcallName(RTLIB::LDEXP_PPCF128, nullptr); 218 219 setLibcallName(RTLIB::FREXP_F32, nullptr); 220 setLibcallName(RTLIB::FREXP_F80, nullptr); 221 setLibcallName(RTLIB::FREXP_F128, nullptr); 222 setLibcallName(RTLIB::FREXP_PPCF128, nullptr); 223 } 224 } 225 226 /// GetFPLibCall - Helper to return the right libcall for the given floating 227 /// point type, or UNKNOWN_LIBCALL if there is none. 228 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, 229 RTLIB::Libcall Call_F32, 230 RTLIB::Libcall Call_F64, 231 RTLIB::Libcall Call_F80, 232 RTLIB::Libcall Call_F128, 233 RTLIB::Libcall Call_PPCF128) { 234 return 235 VT == MVT::f32 ? Call_F32 : 236 VT == MVT::f64 ? Call_F64 : 237 VT == MVT::f80 ? Call_F80 : 238 VT == MVT::f128 ? Call_F128 : 239 VT == MVT::ppcf128 ? Call_PPCF128 : 240 RTLIB::UNKNOWN_LIBCALL; 241 } 242 243 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 244 /// UNKNOWN_LIBCALL if there is none. 245 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 246 if (OpVT == MVT::f16) { 247 if (RetVT == MVT::f32) 248 return FPEXT_F16_F32; 249 if (RetVT == MVT::f64) 250 return FPEXT_F16_F64; 251 if (RetVT == MVT::f80) 252 return FPEXT_F16_F80; 253 if (RetVT == MVT::f128) 254 return FPEXT_F16_F128; 255 } else if (OpVT == MVT::f32) { 256 if (RetVT == MVT::f64) 257 return FPEXT_F32_F64; 258 if (RetVT == MVT::f128) 259 return FPEXT_F32_F128; 260 if (RetVT == MVT::ppcf128) 261 return FPEXT_F32_PPCF128; 262 } else if (OpVT == MVT::f64) { 263 if (RetVT == MVT::f128) 264 return FPEXT_F64_F128; 265 else if (RetVT == MVT::ppcf128) 266 return FPEXT_F64_PPCF128; 267 } else if (OpVT == MVT::f80) { 268 if (RetVT == MVT::f128) 269 return FPEXT_F80_F128; 270 } 271 272 return UNKNOWN_LIBCALL; 273 } 274 275 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 276 /// UNKNOWN_LIBCALL if there is none. 277 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 278 if (RetVT == MVT::f16) { 279 if (OpVT == MVT::f32) 280 return FPROUND_F32_F16; 281 if (OpVT == MVT::f64) 282 return FPROUND_F64_F16; 283 if (OpVT == MVT::f80) 284 return FPROUND_F80_F16; 285 if (OpVT == MVT::f128) 286 return FPROUND_F128_F16; 287 if (OpVT == MVT::ppcf128) 288 return FPROUND_PPCF128_F16; 289 } else if (RetVT == MVT::bf16) { 290 if (OpVT == MVT::f32) 291 return FPROUND_F32_BF16; 292 if (OpVT == MVT::f64) 293 return FPROUND_F64_BF16; 294 } else if (RetVT == MVT::f32) { 295 if (OpVT == MVT::f64) 296 return FPROUND_F64_F32; 297 if (OpVT == MVT::f80) 298 return FPROUND_F80_F32; 299 if (OpVT == MVT::f128) 300 return FPROUND_F128_F32; 301 if (OpVT == MVT::ppcf128) 302 return FPROUND_PPCF128_F32; 303 } else if (RetVT == MVT::f64) { 304 if (OpVT == MVT::f80) 305 return FPROUND_F80_F64; 306 if (OpVT == MVT::f128) 307 return FPROUND_F128_F64; 308 if (OpVT == MVT::ppcf128) 309 return FPROUND_PPCF128_F64; 310 } else if (RetVT == MVT::f80) { 311 if (OpVT == MVT::f128) 312 return FPROUND_F128_F80; 313 } 314 315 return UNKNOWN_LIBCALL; 316 } 317 318 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 319 /// UNKNOWN_LIBCALL if there is none. 320 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 321 if (OpVT == MVT::f16) { 322 if (RetVT == MVT::i32) 323 return FPTOSINT_F16_I32; 324 if (RetVT == MVT::i64) 325 return FPTOSINT_F16_I64; 326 if (RetVT == MVT::i128) 327 return FPTOSINT_F16_I128; 328 } else if (OpVT == MVT::f32) { 329 if (RetVT == MVT::i32) 330 return FPTOSINT_F32_I32; 331 if (RetVT == MVT::i64) 332 return FPTOSINT_F32_I64; 333 if (RetVT == MVT::i128) 334 return FPTOSINT_F32_I128; 335 } else if (OpVT == MVT::f64) { 336 if (RetVT == MVT::i32) 337 return FPTOSINT_F64_I32; 338 if (RetVT == MVT::i64) 339 return FPTOSINT_F64_I64; 340 if (RetVT == MVT::i128) 341 return FPTOSINT_F64_I128; 342 } else if (OpVT == MVT::f80) { 343 if (RetVT == MVT::i32) 344 return FPTOSINT_F80_I32; 345 if (RetVT == MVT::i64) 346 return FPTOSINT_F80_I64; 347 if (RetVT == MVT::i128) 348 return FPTOSINT_F80_I128; 349 } else if (OpVT == MVT::f128) { 350 if (RetVT == MVT::i32) 351 return FPTOSINT_F128_I32; 352 if (RetVT == MVT::i64) 353 return FPTOSINT_F128_I64; 354 if (RetVT == MVT::i128) 355 return FPTOSINT_F128_I128; 356 } else if (OpVT == MVT::ppcf128) { 357 if (RetVT == MVT::i32) 358 return FPTOSINT_PPCF128_I32; 359 if (RetVT == MVT::i64) 360 return FPTOSINT_PPCF128_I64; 361 if (RetVT == MVT::i128) 362 return FPTOSINT_PPCF128_I128; 363 } 364 return UNKNOWN_LIBCALL; 365 } 366 367 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 368 /// UNKNOWN_LIBCALL if there is none. 369 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 370 if (OpVT == MVT::f16) { 371 if (RetVT == MVT::i32) 372 return FPTOUINT_F16_I32; 373 if (RetVT == MVT::i64) 374 return FPTOUINT_F16_I64; 375 if (RetVT == MVT::i128) 376 return FPTOUINT_F16_I128; 377 } else if (OpVT == MVT::f32) { 378 if (RetVT == MVT::i32) 379 return FPTOUINT_F32_I32; 380 if (RetVT == MVT::i64) 381 return FPTOUINT_F32_I64; 382 if (RetVT == MVT::i128) 383 return FPTOUINT_F32_I128; 384 } else if (OpVT == MVT::f64) { 385 if (RetVT == MVT::i32) 386 return FPTOUINT_F64_I32; 387 if (RetVT == MVT::i64) 388 return FPTOUINT_F64_I64; 389 if (RetVT == MVT::i128) 390 return FPTOUINT_F64_I128; 391 } else if (OpVT == MVT::f80) { 392 if (RetVT == MVT::i32) 393 return FPTOUINT_F80_I32; 394 if (RetVT == MVT::i64) 395 return FPTOUINT_F80_I64; 396 if (RetVT == MVT::i128) 397 return FPTOUINT_F80_I128; 398 } else if (OpVT == MVT::f128) { 399 if (RetVT == MVT::i32) 400 return FPTOUINT_F128_I32; 401 if (RetVT == MVT::i64) 402 return FPTOUINT_F128_I64; 403 if (RetVT == MVT::i128) 404 return FPTOUINT_F128_I128; 405 } else if (OpVT == MVT::ppcf128) { 406 if (RetVT == MVT::i32) 407 return FPTOUINT_PPCF128_I32; 408 if (RetVT == MVT::i64) 409 return FPTOUINT_PPCF128_I64; 410 if (RetVT == MVT::i128) 411 return FPTOUINT_PPCF128_I128; 412 } 413 return UNKNOWN_LIBCALL; 414 } 415 416 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 417 /// UNKNOWN_LIBCALL if there is none. 418 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 419 if (OpVT == MVT::i32) { 420 if (RetVT == MVT::f16) 421 return SINTTOFP_I32_F16; 422 if (RetVT == MVT::f32) 423 return SINTTOFP_I32_F32; 424 if (RetVT == MVT::f64) 425 return SINTTOFP_I32_F64; 426 if (RetVT == MVT::f80) 427 return SINTTOFP_I32_F80; 428 if (RetVT == MVT::f128) 429 return SINTTOFP_I32_F128; 430 if (RetVT == MVT::ppcf128) 431 return SINTTOFP_I32_PPCF128; 432 } else if (OpVT == MVT::i64) { 433 if (RetVT == MVT::f16) 434 return SINTTOFP_I64_F16; 435 if (RetVT == MVT::f32) 436 return SINTTOFP_I64_F32; 437 if (RetVT == MVT::f64) 438 return SINTTOFP_I64_F64; 439 if (RetVT == MVT::f80) 440 return SINTTOFP_I64_F80; 441 if (RetVT == MVT::f128) 442 return SINTTOFP_I64_F128; 443 if (RetVT == MVT::ppcf128) 444 return SINTTOFP_I64_PPCF128; 445 } else if (OpVT == MVT::i128) { 446 if (RetVT == MVT::f16) 447 return SINTTOFP_I128_F16; 448 if (RetVT == MVT::f32) 449 return SINTTOFP_I128_F32; 450 if (RetVT == MVT::f64) 451 return SINTTOFP_I128_F64; 452 if (RetVT == MVT::f80) 453 return SINTTOFP_I128_F80; 454 if (RetVT == MVT::f128) 455 return SINTTOFP_I128_F128; 456 if (RetVT == MVT::ppcf128) 457 return SINTTOFP_I128_PPCF128; 458 } 459 return UNKNOWN_LIBCALL; 460 } 461 462 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 463 /// UNKNOWN_LIBCALL if there is none. 464 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 465 if (OpVT == MVT::i32) { 466 if (RetVT == MVT::f16) 467 return UINTTOFP_I32_F16; 468 if (RetVT == MVT::f32) 469 return UINTTOFP_I32_F32; 470 if (RetVT == MVT::f64) 471 return UINTTOFP_I32_F64; 472 if (RetVT == MVT::f80) 473 return UINTTOFP_I32_F80; 474 if (RetVT == MVT::f128) 475 return UINTTOFP_I32_F128; 476 if (RetVT == MVT::ppcf128) 477 return UINTTOFP_I32_PPCF128; 478 } else if (OpVT == MVT::i64) { 479 if (RetVT == MVT::f16) 480 return UINTTOFP_I64_F16; 481 if (RetVT == MVT::f32) 482 return UINTTOFP_I64_F32; 483 if (RetVT == MVT::f64) 484 return UINTTOFP_I64_F64; 485 if (RetVT == MVT::f80) 486 return UINTTOFP_I64_F80; 487 if (RetVT == MVT::f128) 488 return UINTTOFP_I64_F128; 489 if (RetVT == MVT::ppcf128) 490 return UINTTOFP_I64_PPCF128; 491 } else if (OpVT == MVT::i128) { 492 if (RetVT == MVT::f16) 493 return UINTTOFP_I128_F16; 494 if (RetVT == MVT::f32) 495 return UINTTOFP_I128_F32; 496 if (RetVT == MVT::f64) 497 return UINTTOFP_I128_F64; 498 if (RetVT == MVT::f80) 499 return UINTTOFP_I128_F80; 500 if (RetVT == MVT::f128) 501 return UINTTOFP_I128_F128; 502 if (RetVT == MVT::ppcf128) 503 return UINTTOFP_I128_PPCF128; 504 } 505 return UNKNOWN_LIBCALL; 506 } 507 508 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { 509 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, 510 POWI_PPCF128); 511 } 512 513 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) { 514 return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128, 515 LDEXP_PPCF128); 516 } 517 518 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) { 519 return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128, 520 FREXP_PPCF128); 521 } 522 523 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 524 MVT VT) { 525 unsigned ModeN, ModelN; 526 switch (VT.SimpleTy) { 527 case MVT::i8: 528 ModeN = 0; 529 break; 530 case MVT::i16: 531 ModeN = 1; 532 break; 533 case MVT::i32: 534 ModeN = 2; 535 break; 536 case MVT::i64: 537 ModeN = 3; 538 break; 539 case MVT::i128: 540 ModeN = 4; 541 break; 542 default: 543 return UNKNOWN_LIBCALL; 544 } 545 546 switch (Order) { 547 case AtomicOrdering::Monotonic: 548 ModelN = 0; 549 break; 550 case AtomicOrdering::Acquire: 551 ModelN = 1; 552 break; 553 case AtomicOrdering::Release: 554 ModelN = 2; 555 break; 556 case AtomicOrdering::AcquireRelease: 557 case AtomicOrdering::SequentiallyConsistent: 558 ModelN = 3; 559 break; 560 default: 561 return UNKNOWN_LIBCALL; 562 } 563 564 #define LCALLS(A, B) \ 565 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 566 #define LCALL5(A) \ 567 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 568 switch (Opc) { 569 case ISD::ATOMIC_CMP_SWAP: { 570 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 571 return LC[ModeN][ModelN]; 572 } 573 case ISD::ATOMIC_SWAP: { 574 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 575 return LC[ModeN][ModelN]; 576 } 577 case ISD::ATOMIC_LOAD_ADD: { 578 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 579 return LC[ModeN][ModelN]; 580 } 581 case ISD::ATOMIC_LOAD_OR: { 582 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 583 return LC[ModeN][ModelN]; 584 } 585 case ISD::ATOMIC_LOAD_CLR: { 586 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 587 return LC[ModeN][ModelN]; 588 } 589 case ISD::ATOMIC_LOAD_XOR: { 590 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 591 return LC[ModeN][ModelN]; 592 } 593 default: 594 return UNKNOWN_LIBCALL; 595 } 596 #undef LCALLS 597 #undef LCALL5 598 } 599 600 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 601 #define OP_TO_LIBCALL(Name, Enum) \ 602 case Name: \ 603 switch (VT.SimpleTy) { \ 604 default: \ 605 return UNKNOWN_LIBCALL; \ 606 case MVT::i8: \ 607 return Enum##_1; \ 608 case MVT::i16: \ 609 return Enum##_2; \ 610 case MVT::i32: \ 611 return Enum##_4; \ 612 case MVT::i64: \ 613 return Enum##_8; \ 614 case MVT::i128: \ 615 return Enum##_16; \ 616 } 617 618 switch (Opc) { 619 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 620 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 621 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 622 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 623 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 624 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 625 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 626 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 627 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 628 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 629 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 630 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 631 } 632 633 #undef OP_TO_LIBCALL 634 635 return UNKNOWN_LIBCALL; 636 } 637 638 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 639 switch (ElementSize) { 640 case 1: 641 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 642 case 2: 643 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 644 case 4: 645 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 646 case 8: 647 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 648 case 16: 649 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 650 default: 651 return UNKNOWN_LIBCALL; 652 } 653 } 654 655 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 656 switch (ElementSize) { 657 case 1: 658 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 659 case 2: 660 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 661 case 4: 662 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 663 case 8: 664 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 665 case 16: 666 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 667 default: 668 return UNKNOWN_LIBCALL; 669 } 670 } 671 672 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 673 switch (ElementSize) { 674 case 1: 675 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 676 case 2: 677 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 678 case 4: 679 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 680 case 8: 681 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 682 case 16: 683 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 684 default: 685 return UNKNOWN_LIBCALL; 686 } 687 } 688 689 /// InitCmpLibcallCCs - Set default comparison libcall CC. 690 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 691 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID); 692 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 693 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 694 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 695 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 696 CCs[RTLIB::UNE_F32] = ISD::SETNE; 697 CCs[RTLIB::UNE_F64] = ISD::SETNE; 698 CCs[RTLIB::UNE_F128] = ISD::SETNE; 699 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 700 CCs[RTLIB::OGE_F32] = ISD::SETGE; 701 CCs[RTLIB::OGE_F64] = ISD::SETGE; 702 CCs[RTLIB::OGE_F128] = ISD::SETGE; 703 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 704 CCs[RTLIB::OLT_F32] = ISD::SETLT; 705 CCs[RTLIB::OLT_F64] = ISD::SETLT; 706 CCs[RTLIB::OLT_F128] = ISD::SETLT; 707 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 708 CCs[RTLIB::OLE_F32] = ISD::SETLE; 709 CCs[RTLIB::OLE_F64] = ISD::SETLE; 710 CCs[RTLIB::OLE_F128] = ISD::SETLE; 711 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 712 CCs[RTLIB::OGT_F32] = ISD::SETGT; 713 CCs[RTLIB::OGT_F64] = ISD::SETGT; 714 CCs[RTLIB::OGT_F128] = ISD::SETGT; 715 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 716 CCs[RTLIB::UO_F32] = ISD::SETNE; 717 CCs[RTLIB::UO_F64] = ISD::SETNE; 718 CCs[RTLIB::UO_F128] = ISD::SETNE; 719 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 720 } 721 722 /// NOTE: The TargetMachine owns TLOF. 723 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 724 initActions(); 725 726 // Perform these initializations only once. 727 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 728 MaxLoadsPerMemcmp = 8; 729 MaxGluedStoresPerMemcpy = 0; 730 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 731 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 732 HasMultipleConditionRegisters = false; 733 HasExtractBitsInsn = false; 734 JumpIsExpensive = JumpIsExpensiveOverride; 735 PredictableSelectIsExpensive = false; 736 EnableExtLdPromotion = false; 737 StackPointerRegisterToSaveRestore = 0; 738 BooleanContents = UndefinedBooleanContent; 739 BooleanFloatContents = UndefinedBooleanContent; 740 BooleanVectorContents = UndefinedBooleanContent; 741 SchedPreferenceInfo = Sched::ILP; 742 GatherAllAliasesMaxDepth = 18; 743 IsStrictFPEnabled = DisableStrictNodeMutation; 744 MaxBytesForAlignment = 0; 745 // TODO: the default will be switched to 0 in the next commit, along 746 // with the Target-specific changes necessary. 747 MaxAtomicSizeInBitsSupported = 1024; 748 749 // Assume that even with libcalls, no target supports wider than 128 bit 750 // division. 751 MaxDivRemBitWidthSupported = 128; 752 753 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS; 754 755 MinCmpXchgSizeInBits = 0; 756 SupportsUnalignedAtomics = false; 757 758 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 759 760 InitLibcalls(TM.getTargetTriple()); 761 InitCmpLibcallCCs(CmpLibcallCCs); 762 } 763 764 void TargetLoweringBase::initActions() { 765 // All operations default to being supported. 766 memset(OpActions, 0, sizeof(OpActions)); 767 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 768 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 769 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 770 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 771 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 772 std::fill(std::begin(TargetDAGCombineArray), 773 std::end(TargetDAGCombineArray), 0); 774 775 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to 776 // remove this and targets should individually set these types if not legal. 777 for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END, 778 force_iteration_on_noniterable_enum)) { 779 for (MVT VT : {MVT::i2, MVT::i4}) 780 OpActions[(unsigned)VT.SimpleTy][NT] = Expand; 781 } 782 for (MVT AVT : MVT::all_valuetypes()) { 783 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) { 784 setTruncStoreAction(AVT, VT, Expand); 785 setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand); 786 setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand); 787 } 788 } 789 for (unsigned IM = (unsigned)ISD::PRE_INC; 790 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 791 for (MVT VT : {MVT::i2, MVT::i4}) { 792 setIndexedLoadAction(IM, VT, Expand); 793 setIndexedStoreAction(IM, VT, Expand); 794 setIndexedMaskedLoadAction(IM, VT, Expand); 795 setIndexedMaskedStoreAction(IM, VT, Expand); 796 } 797 } 798 799 for (MVT VT : MVT::fp_valuetypes()) { 800 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 801 if (IntVT.isValid()) { 802 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 803 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 804 } 805 } 806 807 // Set default actions for various operations. 808 for (MVT VT : MVT::all_valuetypes()) { 809 // Default all indexed load / store to expand. 810 for (unsigned IM = (unsigned)ISD::PRE_INC; 811 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 812 setIndexedLoadAction(IM, VT, Expand); 813 setIndexedStoreAction(IM, VT, Expand); 814 setIndexedMaskedLoadAction(IM, VT, Expand); 815 setIndexedMaskedStoreAction(IM, VT, Expand); 816 } 817 818 // Most backends expect to see the node which just returns the value loaded. 819 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 820 821 // These operations default to expand. 822 setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS, 823 ISD::FMINNUM, ISD::FMAXNUM, 824 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, 825 ISD::FMINIMUM, ISD::FMAXIMUM, 826 ISD::FMAD, ISD::SMIN, 827 ISD::SMAX, ISD::UMIN, 828 ISD::UMAX, ISD::ABS, 829 ISD::FSHL, ISD::FSHR, 830 ISD::SADDSAT, ISD::UADDSAT, 831 ISD::SSUBSAT, ISD::USUBSAT, 832 ISD::SSHLSAT, ISD::USHLSAT, 833 ISD::SMULFIX, ISD::SMULFIXSAT, 834 ISD::UMULFIX, ISD::UMULFIXSAT, 835 ISD::SDIVFIX, ISD::SDIVFIXSAT, 836 ISD::UDIVFIX, ISD::UDIVFIXSAT, 837 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 838 ISD::IS_FPCLASS}, 839 VT, Expand); 840 841 // Overflow operations default to expand 842 setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO, 843 ISD::SMULO, ISD::UMULO}, 844 VT, Expand); 845 846 // Carry-using overflow operations default to expand. 847 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY, 848 ISD::SADDO_CARRY, ISD::SSUBO_CARRY}, 849 VT, Expand); 850 851 // ADDC/ADDE/SUBC/SUBE default to expand. 852 setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT, 853 Expand); 854 855 // Halving adds 856 setOperationAction( 857 {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT, 858 Expand); 859 860 // Absolute difference 861 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand); 862 863 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 864 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 865 Expand); 866 867 setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand); 868 869 // These library functions default to expand. 870 setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT, 871 Expand); 872 873 // These operations default to expand for vector types. 874 if (VT.isVector()) 875 setOperationAction( 876 {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG, 877 ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG, 878 ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT}, 879 VT, Expand); 880 881 // Constrained floating-point operations default to expand. 882 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 883 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 884 #include "llvm/IR/ConstrainedOps.def" 885 886 // For most targets @llvm.get.dynamic.area.offset just returns 0. 887 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 888 889 // Vector reduction default to expand. 890 setOperationAction( 891 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD, 892 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, 893 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 894 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX, 895 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM, 896 ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL}, 897 VT, Expand); 898 899 // Named vector shuffles default to expand. 900 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); 901 902 // VP operations default to expand. 903 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) \ 904 setOperationAction(ISD::SDOPC, VT, Expand); 905 #include "llvm/IR/VPIntrinsics.def" 906 907 // FP environment operations default to expand. 908 setOperationAction(ISD::GET_FPENV, VT, Expand); 909 setOperationAction(ISD::SET_FPENV, VT, Expand); 910 setOperationAction(ISD::RESET_FPENV, VT, Expand); 911 } 912 913 // Most targets ignore the @llvm.prefetch intrinsic. 914 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 915 916 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 917 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 918 919 // ConstantFP nodes default to expand. Targets can either change this to 920 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 921 // to optimize expansions for certain constants. 922 setOperationAction(ISD::ConstantFP, 923 {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128}, 924 Expand); 925 926 // These library functions default to expand. 927 setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, 928 ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR, ISD::FNEARBYINT, 929 ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, ISD::LROUND, 930 ISD::LLROUND, ISD::LRINT, ISD::LLRINT, ISD::FROUNDEVEN}, 931 {MVT::f32, MVT::f64, MVT::f128}, Expand); 932 933 // Default ISD::TRAP to expand (which turns it into abort). 934 setOperationAction(ISD::TRAP, MVT::Other, Expand); 935 936 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 937 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 938 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 939 940 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); 941 942 setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand); 943 setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand); 944 945 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) { 946 setOperationAction(ISD::GET_FPMODE, VT, Expand); 947 setOperationAction(ISD::SET_FPMODE, VT, Expand); 948 } 949 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand); 950 } 951 952 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 953 EVT) const { 954 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 955 } 956 957 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 958 bool LegalTypes) const { 959 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 960 if (LHSTy.isVector()) 961 return LHSTy; 962 MVT ShiftVT = 963 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); 964 // If any possible shift value won't fit in the prefered type, just use 965 // something safe. Assume it will be legalized when the shift is expanded. 966 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) 967 ShiftVT = MVT::i32; 968 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && 969 "ShiftVT is still too small!"); 970 return ShiftVT; 971 } 972 973 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 974 assert(isTypeLegal(VT)); 975 switch (Op) { 976 default: 977 return false; 978 case ISD::SDIV: 979 case ISD::UDIV: 980 case ISD::SREM: 981 case ISD::UREM: 982 return true; 983 } 984 } 985 986 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 987 unsigned DestAS) const { 988 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 989 } 990 991 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 992 // If the command-line option was specified, ignore this request. 993 if (!JumpIsExpensiveOverride.getNumOccurrences()) 994 JumpIsExpensive = isExpensive; 995 } 996 997 TargetLoweringBase::LegalizeKind 998 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 999 // If this is a simple type, use the ComputeRegisterProp mechanism. 1000 if (VT.isSimple()) { 1001 MVT SVT = VT.getSimpleVT(); 1002 assert((unsigned)SVT.SimpleTy < std::size(TransformToType)); 1003 MVT NVT = TransformToType[SVT.SimpleTy]; 1004 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 1005 1006 assert((LA == TypeLegal || LA == TypeSoftenFloat || 1007 LA == TypeSoftPromoteHalf || 1008 (NVT.isVector() || 1009 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 1010 "Promote may not follow Expand or Promote"); 1011 1012 if (LA == TypeSplitVector) 1013 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 1014 if (LA == TypeScalarizeVector) 1015 return LegalizeKind(LA, SVT.getVectorElementType()); 1016 return LegalizeKind(LA, NVT); 1017 } 1018 1019 // Handle Extended Scalar Types. 1020 if (!VT.isVector()) { 1021 assert(VT.isInteger() && "Float types must be simple"); 1022 unsigned BitSize = VT.getSizeInBits(); 1023 // First promote to a power-of-two size, then expand if necessary. 1024 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 1025 EVT NVT = VT.getRoundIntegerType(Context); 1026 assert(NVT != VT && "Unable to round integer VT"); 1027 LegalizeKind NextStep = getTypeConversion(Context, NVT); 1028 // Avoid multi-step promotion. 1029 if (NextStep.first == TypePromoteInteger) 1030 return NextStep; 1031 // Return rounded integer type. 1032 return LegalizeKind(TypePromoteInteger, NVT); 1033 } 1034 1035 return LegalizeKind(TypeExpandInteger, 1036 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 1037 } 1038 1039 // Handle vector types. 1040 ElementCount NumElts = VT.getVectorElementCount(); 1041 EVT EltVT = VT.getVectorElementType(); 1042 1043 // Vectors with only one element are always scalarized. 1044 if (NumElts.isScalar()) 1045 return LegalizeKind(TypeScalarizeVector, EltVT); 1046 1047 // Try to widen vector elements until the element type is a power of two and 1048 // promote it to a legal type later on, for example: 1049 // <3 x i8> -> <4 x i8> -> <4 x i32> 1050 if (EltVT.isInteger()) { 1051 // Vectors with a number of elements that is not a power of two are always 1052 // widened, for example <3 x i8> -> <4 x i8>. 1053 if (!VT.isPow2VectorType()) { 1054 NumElts = NumElts.coefficientNextPowerOf2(); 1055 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 1056 return LegalizeKind(TypeWidenVector, NVT); 1057 } 1058 1059 // Examine the element type. 1060 LegalizeKind LK = getTypeConversion(Context, EltVT); 1061 1062 // If type is to be expanded, split the vector. 1063 // <4 x i140> -> <2 x i140> 1064 if (LK.first == TypeExpandInteger) { 1065 if (VT.getVectorElementCount().isScalable()) 1066 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1067 return LegalizeKind(TypeSplitVector, 1068 VT.getHalfNumVectorElementsVT(Context)); 1069 } 1070 1071 // Promote the integer element types until a legal vector type is found 1072 // or until the element integer type is too big. If a legal type was not 1073 // found, fallback to the usual mechanism of widening/splitting the 1074 // vector. 1075 EVT OldEltVT = EltVT; 1076 while (true) { 1077 // Increase the bitwidth of the element to the next pow-of-two 1078 // (which is greater than 8 bits). 1079 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 1080 .getRoundIntegerType(Context); 1081 1082 // Stop trying when getting a non-simple element type. 1083 // Note that vector elements may be greater than legal vector element 1084 // types. Example: X86 XMM registers hold 64bit element on 32bit 1085 // systems. 1086 if (!EltVT.isSimple()) 1087 break; 1088 1089 // Build a new vector type and check if it is legal. 1090 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1091 // Found a legal promoted vector type. 1092 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 1093 return LegalizeKind(TypePromoteInteger, 1094 EVT::getVectorVT(Context, EltVT, NumElts)); 1095 } 1096 1097 // Reset the type to the unexpanded type if we did not find a legal vector 1098 // type with a promoted vector element type. 1099 EltVT = OldEltVT; 1100 } 1101 1102 // Try to widen the vector until a legal type is found. 1103 // If there is no wider legal type, split the vector. 1104 while (true) { 1105 // Round up to the next power of 2. 1106 NumElts = NumElts.coefficientNextPowerOf2(); 1107 1108 // If there is no simple vector type with this many elements then there 1109 // cannot be a larger legal vector type. Note that this assumes that 1110 // there are no skipped intermediate vector types in the simple types. 1111 if (!EltVT.isSimple()) 1112 break; 1113 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1114 if (LargerVector == MVT()) 1115 break; 1116 1117 // If this type is legal then widen the vector. 1118 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1119 return LegalizeKind(TypeWidenVector, LargerVector); 1120 } 1121 1122 // Widen odd vectors to next power of two. 1123 if (!VT.isPow2VectorType()) { 1124 EVT NVT = VT.getPow2VectorType(Context); 1125 return LegalizeKind(TypeWidenVector, NVT); 1126 } 1127 1128 if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 1129 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1130 1131 // Vectors with illegal element types are expanded. 1132 EVT NVT = EVT::getVectorVT(Context, EltVT, 1133 VT.getVectorElementCount().divideCoefficientBy(2)); 1134 return LegalizeKind(TypeSplitVector, NVT); 1135 } 1136 1137 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1138 unsigned &NumIntermediates, 1139 MVT &RegisterVT, 1140 TargetLoweringBase *TLI) { 1141 // Figure out the right, legal destination reg to copy into. 1142 ElementCount EC = VT.getVectorElementCount(); 1143 MVT EltTy = VT.getVectorElementType(); 1144 1145 unsigned NumVectorRegs = 1; 1146 1147 // Scalable vectors cannot be scalarized, so splitting or widening is 1148 // required. 1149 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 1150 llvm_unreachable( 1151 "Splitting or widening of non-power-of-2 MVTs is not implemented."); 1152 1153 // FIXME: We don't support non-power-of-2-sized vectors for now. 1154 // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1155 if (!isPowerOf2_32(EC.getKnownMinValue())) { 1156 // Split EC to unit size (scalable property is preserved). 1157 NumVectorRegs = EC.getKnownMinValue(); 1158 EC = ElementCount::getFixed(1); 1159 } 1160 1161 // Divide the input until we get to a supported size. This will 1162 // always end up with an EC that represent a scalar or a scalable 1163 // scalar. 1164 while (EC.getKnownMinValue() > 1 && 1165 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1166 EC = EC.divideCoefficientBy(2); 1167 NumVectorRegs <<= 1; 1168 } 1169 1170 NumIntermediates = NumVectorRegs; 1171 1172 MVT NewVT = MVT::getVectorVT(EltTy, EC); 1173 if (!TLI->isTypeLegal(NewVT)) 1174 NewVT = EltTy; 1175 IntermediateVT = NewVT; 1176 1177 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 1178 1179 // Convert sizes such as i33 to i64. 1180 LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits); 1181 1182 MVT DestVT = TLI->getRegisterType(NewVT); 1183 RegisterVT = DestVT; 1184 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1185 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 1186 1187 // Otherwise, promotion or legal types use the same number of registers as 1188 // the vector decimated to the appropriate level. 1189 return NumVectorRegs; 1190 } 1191 1192 /// isLegalRC - Return true if the value types that can be represented by the 1193 /// specified register class are all legal. 1194 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1195 const TargetRegisterClass &RC) const { 1196 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1197 if (isTypeLegal(*I)) 1198 return true; 1199 return false; 1200 } 1201 1202 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1203 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1204 MachineBasicBlock * 1205 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1206 MachineBasicBlock *MBB) const { 1207 MachineInstr *MI = &InitialMI; 1208 MachineFunction &MF = *MI->getMF(); 1209 MachineFrameInfo &MFI = MF.getFrameInfo(); 1210 1211 // We're handling multiple types of operands here: 1212 // PATCHPOINT MetaArgs - live-in, read only, direct 1213 // STATEPOINT Deopt Spill - live-through, read only, indirect 1214 // STATEPOINT Deopt Alloca - live-through, read only, direct 1215 // (We're currently conservative and mark the deopt slots read/write in 1216 // practice.) 1217 // STATEPOINT GC Spill - live-through, read/write, indirect 1218 // STATEPOINT GC Alloca - live-through, read/write, direct 1219 // The live-in vs live-through is handled already (the live through ones are 1220 // all stack slots), but we need to handle the different type of stackmap 1221 // operands and memory effects here. 1222 1223 if (llvm::none_of(MI->operands(), 1224 [](MachineOperand &Operand) { return Operand.isFI(); })) 1225 return MBB; 1226 1227 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1228 1229 // Inherit previous memory operands. 1230 MIB.cloneMemRefs(*MI); 1231 1232 for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1233 MachineOperand &MO = MI->getOperand(i); 1234 if (!MO.isFI()) { 1235 // Index of Def operand this Use it tied to. 1236 // Since Defs are coming before Uses, if Use is tied, then 1237 // index of Def must be smaller that index of that Use. 1238 // Also, Defs preserve their position in new MI. 1239 unsigned TiedTo = i; 1240 if (MO.isReg() && MO.isTied()) 1241 TiedTo = MI->findTiedOperandIdx(i); 1242 MIB.add(MO); 1243 if (TiedTo < i) 1244 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 1245 continue; 1246 } 1247 1248 // foldMemoryOperand builds a new MI after replacing a single FI operand 1249 // with the canonical set of five x86 addressing-mode operands. 1250 int FI = MO.getIndex(); 1251 1252 // Add frame index operands recognized by stackmaps.cpp 1253 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1254 // indirect-mem-ref tag, size, #FI, offset. 1255 // Used for spills inserted by StatepointLowering. This codepath is not 1256 // used for patchpoints/stackmaps at all, for these spilling is done via 1257 // foldMemoryOperand callback only. 1258 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1259 MIB.addImm(StackMaps::IndirectMemRefOp); 1260 MIB.addImm(MFI.getObjectSize(FI)); 1261 MIB.add(MO); 1262 MIB.addImm(0); 1263 } else { 1264 // direct-mem-ref tag, #FI, offset. 1265 // Used by patchpoint, and direct alloca arguments to statepoints 1266 MIB.addImm(StackMaps::DirectMemRefOp); 1267 MIB.add(MO); 1268 MIB.addImm(0); 1269 } 1270 1271 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1272 1273 // Add a new memory operand for this FI. 1274 assert(MFI.getObjectOffset(FI) != -1); 1275 1276 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1277 // PATCHPOINT should be updated to do the same. (TODO) 1278 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1279 auto Flags = MachineMemOperand::MOLoad; 1280 MachineMemOperand *MMO = MF.getMachineMemOperand( 1281 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1282 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 1283 MIB->addMemOperand(MF, MMO); 1284 } 1285 } 1286 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1287 MI->eraseFromParent(); 1288 return MBB; 1289 } 1290 1291 /// findRepresentativeClass - Return the largest legal super-reg register class 1292 /// of the register class for the specified type and its associated "cost". 1293 // This function is in TargetLowering because it uses RegClassForVT which would 1294 // need to be moved to TargetRegisterInfo and would necessitate moving 1295 // isTypeLegal over as well - a massive change that would just require 1296 // TargetLowering having a TargetRegisterInfo class member that it would use. 1297 std::pair<const TargetRegisterClass *, uint8_t> 1298 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1299 MVT VT) const { 1300 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1301 if (!RC) 1302 return std::make_pair(RC, 0); 1303 1304 // Compute the set of all super-register classes. 1305 BitVector SuperRegRC(TRI->getNumRegClasses()); 1306 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1307 SuperRegRC.setBitsInMask(RCI.getMask()); 1308 1309 // Find the first legal register class with the largest spill size. 1310 const TargetRegisterClass *BestRC = RC; 1311 for (unsigned i : SuperRegRC.set_bits()) { 1312 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1313 // We want the largest possible spill size. 1314 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1315 continue; 1316 if (!isLegalRC(*TRI, *SuperRC)) 1317 continue; 1318 BestRC = SuperRC; 1319 } 1320 return std::make_pair(BestRC, 1); 1321 } 1322 1323 /// computeRegisterProperties - Once all of the register classes are added, 1324 /// this allows us to compute derived properties we expose. 1325 void TargetLoweringBase::computeRegisterProperties( 1326 const TargetRegisterInfo *TRI) { 1327 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, 1328 "Too many value types for ValueTypeActions to hold!"); 1329 1330 // Everything defaults to needing one register. 1331 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1332 NumRegistersForVT[i] = 1; 1333 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1334 } 1335 // ...except isVoid, which doesn't need any registers. 1336 NumRegistersForVT[MVT::isVoid] = 0; 1337 1338 // Find the largest integer register class. 1339 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1340 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1341 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1342 1343 // Every integer value type larger than this largest register takes twice as 1344 // many registers to represent as the previous ValueType. 1345 for (unsigned ExpandedReg = LargestIntReg + 1; 1346 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1347 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1348 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1349 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1350 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1351 TypeExpandInteger); 1352 } 1353 1354 // Inspect all of the ValueType's smaller than the largest integer 1355 // register to see which ones need promotion. 1356 unsigned LegalIntReg = LargestIntReg; 1357 for (unsigned IntReg = LargestIntReg - 1; 1358 IntReg >= (unsigned)MVT::i1; --IntReg) { 1359 MVT IVT = (MVT::SimpleValueType)IntReg; 1360 if (isTypeLegal(IVT)) { 1361 LegalIntReg = IntReg; 1362 } else { 1363 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1364 (MVT::SimpleValueType)LegalIntReg; 1365 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1366 } 1367 } 1368 1369 // ppcf128 type is really two f64's. 1370 if (!isTypeLegal(MVT::ppcf128)) { 1371 if (isTypeLegal(MVT::f64)) { 1372 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1373 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1374 TransformToType[MVT::ppcf128] = MVT::f64; 1375 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1376 } else { 1377 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1378 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1379 TransformToType[MVT::ppcf128] = MVT::i128; 1380 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1381 } 1382 } 1383 1384 // Decide how to handle f128. If the target does not have native f128 support, 1385 // expand it to i128 and we will be generating soft float library calls. 1386 if (!isTypeLegal(MVT::f128)) { 1387 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1388 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1389 TransformToType[MVT::f128] = MVT::i128; 1390 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1391 } 1392 1393 // Decide how to handle f80. If the target does not have native f80 support, 1394 // expand it to i96 and we will be generating soft float library calls. 1395 if (!isTypeLegal(MVT::f80)) { 1396 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32]; 1397 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32]; 1398 TransformToType[MVT::f80] = MVT::i32; 1399 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat); 1400 } 1401 1402 // Decide how to handle f64. If the target does not have native f64 support, 1403 // expand it to i64 and we will be generating soft float library calls. 1404 if (!isTypeLegal(MVT::f64)) { 1405 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1406 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1407 TransformToType[MVT::f64] = MVT::i64; 1408 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1409 } 1410 1411 // Decide how to handle f32. If the target does not have native f32 support, 1412 // expand it to i32 and we will be generating soft float library calls. 1413 if (!isTypeLegal(MVT::f32)) { 1414 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1415 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1416 TransformToType[MVT::f32] = MVT::i32; 1417 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1418 } 1419 1420 // Decide how to handle f16. If the target does not have native f16 support, 1421 // promote it to f32, because there are no f16 library calls (except for 1422 // conversions). 1423 if (!isTypeLegal(MVT::f16)) { 1424 // Allow targets to control how we legalize half. 1425 if (softPromoteHalfType()) { 1426 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 1427 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 1428 TransformToType[MVT::f16] = MVT::f32; 1429 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1430 } else { 1431 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1432 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1433 TransformToType[MVT::f16] = MVT::f32; 1434 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1435 } 1436 } 1437 1438 // Decide how to handle bf16. If the target does not have native bf16 support, 1439 // promote it to f32, because there are no bf16 library calls (except for 1440 // converting from f32 to bf16). 1441 if (!isTypeLegal(MVT::bf16)) { 1442 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32]; 1443 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32]; 1444 TransformToType[MVT::bf16] = MVT::f32; 1445 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf); 1446 } 1447 1448 // Loop over all of the vector value types to see which need transformations. 1449 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1450 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1451 MVT VT = (MVT::SimpleValueType) i; 1452 if (isTypeLegal(VT)) 1453 continue; 1454 1455 MVT EltVT = VT.getVectorElementType(); 1456 ElementCount EC = VT.getVectorElementCount(); 1457 bool IsLegalWiderType = false; 1458 bool IsScalable = VT.isScalableVector(); 1459 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1460 switch (PreferredAction) { 1461 case TypePromoteInteger: { 1462 MVT::SimpleValueType EndVT = IsScalable ? 1463 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1464 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1465 // Try to promote the elements of integer vectors. If no legal 1466 // promotion was found, fall through to the widen-vector method. 1467 for (unsigned nVT = i + 1; 1468 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1469 MVT SVT = (MVT::SimpleValueType) nVT; 1470 // Promote vectors of integers to vectors with the same number 1471 // of elements, with a wider element type. 1472 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 1473 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 1474 TransformToType[i] = SVT; 1475 RegisterTypeForVT[i] = SVT; 1476 NumRegistersForVT[i] = 1; 1477 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1478 IsLegalWiderType = true; 1479 break; 1480 } 1481 } 1482 if (IsLegalWiderType) 1483 break; 1484 [[fallthrough]]; 1485 } 1486 1487 case TypeWidenVector: 1488 if (isPowerOf2_32(EC.getKnownMinValue())) { 1489 // Try to widen the vector. 1490 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1491 MVT SVT = (MVT::SimpleValueType) nVT; 1492 if (SVT.getVectorElementType() == EltVT && 1493 SVT.isScalableVector() == IsScalable && 1494 SVT.getVectorElementCount().getKnownMinValue() > 1495 EC.getKnownMinValue() && 1496 isTypeLegal(SVT)) { 1497 TransformToType[i] = SVT; 1498 RegisterTypeForVT[i] = SVT; 1499 NumRegistersForVT[i] = 1; 1500 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1501 IsLegalWiderType = true; 1502 break; 1503 } 1504 } 1505 if (IsLegalWiderType) 1506 break; 1507 } else { 1508 // Only widen to the next power of 2 to keep consistency with EVT. 1509 MVT NVT = VT.getPow2VectorType(); 1510 if (isTypeLegal(NVT)) { 1511 TransformToType[i] = NVT; 1512 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1513 RegisterTypeForVT[i] = NVT; 1514 NumRegistersForVT[i] = 1; 1515 break; 1516 } 1517 } 1518 [[fallthrough]]; 1519 1520 case TypeSplitVector: 1521 case TypeScalarizeVector: { 1522 MVT IntermediateVT; 1523 MVT RegisterVT; 1524 unsigned NumIntermediates; 1525 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1526 NumIntermediates, RegisterVT, this); 1527 NumRegistersForVT[i] = NumRegisters; 1528 assert(NumRegistersForVT[i] == NumRegisters && 1529 "NumRegistersForVT size cannot represent NumRegisters!"); 1530 RegisterTypeForVT[i] = RegisterVT; 1531 1532 MVT NVT = VT.getPow2VectorType(); 1533 if (NVT == VT) { 1534 // Type is already a power of 2. The default action is to split. 1535 TransformToType[i] = MVT::Other; 1536 if (PreferredAction == TypeScalarizeVector) 1537 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1538 else if (PreferredAction == TypeSplitVector) 1539 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1540 else if (EC.getKnownMinValue() > 1) 1541 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1542 else 1543 ValueTypeActions.setTypeAction(VT, EC.isScalable() 1544 ? TypeScalarizeScalableVector 1545 : TypeScalarizeVector); 1546 } else { 1547 TransformToType[i] = NVT; 1548 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1549 } 1550 break; 1551 } 1552 default: 1553 llvm_unreachable("Unknown vector legalization action!"); 1554 } 1555 } 1556 1557 // Determine the 'representative' register class for each value type. 1558 // An representative register class is the largest (meaning one which is 1559 // not a sub-register class / subreg register class) legal register class for 1560 // a group of value types. For example, on i386, i8, i16, and i32 1561 // representative would be GR32; while on x86_64 it's GR64. 1562 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1563 const TargetRegisterClass* RRC; 1564 uint8_t Cost; 1565 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1566 RepRegClassForVT[i] = RRC; 1567 RepRegClassCostForVT[i] = Cost; 1568 } 1569 } 1570 1571 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1572 EVT VT) const { 1573 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1574 return getPointerTy(DL).SimpleTy; 1575 } 1576 1577 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1578 return MVT::i32; // return the default value 1579 } 1580 1581 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1582 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1583 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1584 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1585 /// 1586 /// This method returns the number of registers needed, and the VT for each 1587 /// register. It also returns the VT and quantity of the intermediate values 1588 /// before they are promoted/expanded. 1589 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, 1590 EVT VT, EVT &IntermediateVT, 1591 unsigned &NumIntermediates, 1592 MVT &RegisterVT) const { 1593 ElementCount EltCnt = VT.getVectorElementCount(); 1594 1595 // If there is a wider vector type with the same element type as this one, 1596 // or a promoted vector type that has the same number of elements which 1597 // are wider, then we should convert to that legal vector type. 1598 // This handles things like <2 x float> -> <4 x float> and 1599 // <4 x i1> -> <4 x i32>. 1600 LegalizeTypeAction TA = getTypeAction(Context, VT); 1601 if (!EltCnt.isScalar() && 1602 (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1603 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1604 if (isTypeLegal(RegisterEVT)) { 1605 IntermediateVT = RegisterEVT; 1606 RegisterVT = RegisterEVT.getSimpleVT(); 1607 NumIntermediates = 1; 1608 return 1; 1609 } 1610 } 1611 1612 // Figure out the right, legal destination reg to copy into. 1613 EVT EltTy = VT.getVectorElementType(); 1614 1615 unsigned NumVectorRegs = 1; 1616 1617 // Scalable vectors cannot be scalarized, so handle the legalisation of the 1618 // types like done elsewhere in SelectionDAG. 1619 if (EltCnt.isScalable()) { 1620 LegalizeKind LK; 1621 EVT PartVT = VT; 1622 do { 1623 // Iterate until we've found a legal (part) type to hold VT. 1624 LK = getTypeConversion(Context, PartVT); 1625 PartVT = LK.second; 1626 } while (LK.first != TypeLegal); 1627 1628 if (!PartVT.isVector()) { 1629 report_fatal_error( 1630 "Don't know how to legalize this scalable vector type"); 1631 } 1632 1633 NumIntermediates = 1634 divideCeil(VT.getVectorElementCount().getKnownMinValue(), 1635 PartVT.getVectorElementCount().getKnownMinValue()); 1636 IntermediateVT = PartVT; 1637 RegisterVT = getRegisterType(Context, IntermediateVT); 1638 return NumIntermediates; 1639 } 1640 1641 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 1642 // we could break down into LHS/RHS like LegalizeDAG does. 1643 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1644 NumVectorRegs = EltCnt.getKnownMinValue(); 1645 EltCnt = ElementCount::getFixed(1); 1646 } 1647 1648 // Divide the input until we get to a supported size. This will always 1649 // end with a scalar if the target doesn't support vectors. 1650 while (EltCnt.getKnownMinValue() > 1 && 1651 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1652 EltCnt = EltCnt.divideCoefficientBy(2); 1653 NumVectorRegs <<= 1; 1654 } 1655 1656 NumIntermediates = NumVectorRegs; 1657 1658 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 1659 if (!isTypeLegal(NewVT)) 1660 NewVT = EltTy; 1661 IntermediateVT = NewVT; 1662 1663 MVT DestVT = getRegisterType(Context, NewVT); 1664 RegisterVT = DestVT; 1665 1666 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 1667 TypeSize NewVTSize = NewVT.getSizeInBits(); 1668 // Convert sizes such as i33 to i64. 1669 if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue())) 1670 NewVTSize = NewVTSize.coefficientNextPowerOf2(); 1671 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1672 } 1673 1674 // Otherwise, promotion or legal types use the same number of registers as 1675 // the vector decimated to the appropriate level. 1676 return NumVectorRegs; 1677 } 1678 1679 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1680 uint64_t NumCases, 1681 uint64_t Range, 1682 ProfileSummaryInfo *PSI, 1683 BlockFrequencyInfo *BFI) const { 1684 // FIXME: This function check the maximum table size and density, but the 1685 // minimum size is not checked. It would be nice if the minimum size is 1686 // also combined within this function. Currently, the minimum size check is 1687 // performed in findJumpTable() in SelectionDAGBuiler and 1688 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1689 const bool OptForSize = 1690 SI->getParent()->getParent()->hasOptSize() || 1691 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1692 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1693 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1694 1695 // Check whether the number of cases is small enough and 1696 // the range is dense enough for a jump table. 1697 return (OptForSize || Range <= MaxJumpTableSize) && 1698 (NumCases * 100 >= Range * MinDensity); 1699 } 1700 1701 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context, 1702 EVT ConditionVT) const { 1703 return getRegisterType(Context, ConditionVT); 1704 } 1705 1706 /// Get the EVTs and ArgFlags collections that represent the legalized return 1707 /// type of the given function. This does not require a DAG or a return value, 1708 /// and is suitable for use before any DAGs for the function are constructed. 1709 /// TODO: Move this out of TargetLowering.cpp. 1710 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1711 AttributeList attr, 1712 SmallVectorImpl<ISD::OutputArg> &Outs, 1713 const TargetLowering &TLI, const DataLayout &DL) { 1714 SmallVector<EVT, 4> ValueVTs; 1715 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1716 unsigned NumValues = ValueVTs.size(); 1717 if (NumValues == 0) return; 1718 1719 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1720 EVT VT = ValueVTs[j]; 1721 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1722 1723 if (attr.hasRetAttr(Attribute::SExt)) 1724 ExtendKind = ISD::SIGN_EXTEND; 1725 else if (attr.hasRetAttr(Attribute::ZExt)) 1726 ExtendKind = ISD::ZERO_EXTEND; 1727 1728 // FIXME: C calling convention requires the return type to be promoted to 1729 // at least 32-bit. But this is not necessary for non-C calling 1730 // conventions. The frontend should mark functions whose return values 1731 // require promoting with signext or zeroext attributes. 1732 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1733 MVT MinVT = TLI.getRegisterType(MVT::i32); 1734 if (VT.bitsLT(MinVT)) 1735 VT = MinVT; 1736 } 1737 1738 unsigned NumParts = 1739 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1740 MVT PartVT = 1741 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1742 1743 // 'inreg' on function refers to return value 1744 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1745 if (attr.hasRetAttr(Attribute::InReg)) 1746 Flags.setInReg(); 1747 1748 // Propagate extension type if any 1749 if (attr.hasRetAttr(Attribute::SExt)) 1750 Flags.setSExt(); 1751 else if (attr.hasRetAttr(Attribute::ZExt)) 1752 Flags.setZExt(); 1753 1754 for (unsigned i = 0; i < NumParts; ++i) 1755 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1756 } 1757 } 1758 1759 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1760 /// function arguments in the caller parameter area. This is the actual 1761 /// alignment, not its logarithm. 1762 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1763 const DataLayout &DL) const { 1764 return DL.getABITypeAlign(Ty).value(); 1765 } 1766 1767 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1768 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1769 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { 1770 // Check if the specified alignment is sufficient based on the data layout. 1771 // TODO: While using the data layout works in practice, a better solution 1772 // would be to implement this check directly (make this a virtual function). 1773 // For example, the ABI alignment may change based on software platform while 1774 // this function should only be affected by hardware implementation. 1775 Type *Ty = VT.getTypeForEVT(Context); 1776 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { 1777 // Assume that an access that meets the ABI-specified alignment is fast. 1778 if (Fast != nullptr) 1779 *Fast = 1; 1780 return true; 1781 } 1782 1783 // This is a misaligned access. 1784 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 1785 } 1786 1787 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1788 LLVMContext &Context, const DataLayout &DL, EVT VT, 1789 const MachineMemOperand &MMO, unsigned *Fast) const { 1790 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1791 MMO.getAlign(), MMO.getFlags(), Fast); 1792 } 1793 1794 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1795 const DataLayout &DL, EVT VT, 1796 unsigned AddrSpace, Align Alignment, 1797 MachineMemOperand::Flags Flags, 1798 unsigned *Fast) const { 1799 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1800 Flags, Fast); 1801 } 1802 1803 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1804 const DataLayout &DL, EVT VT, 1805 const MachineMemOperand &MMO, 1806 unsigned *Fast) const { 1807 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1808 MMO.getFlags(), Fast); 1809 } 1810 1811 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1812 const DataLayout &DL, LLT Ty, 1813 const MachineMemOperand &MMO, 1814 unsigned *Fast) const { 1815 EVT VT = getApproximateEVTForLLT(Ty, DL, Context); 1816 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1817 MMO.getFlags(), Fast); 1818 } 1819 1820 //===----------------------------------------------------------------------===// 1821 // TargetTransformInfo Helpers 1822 //===----------------------------------------------------------------------===// 1823 1824 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1825 enum InstructionOpcodes { 1826 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1827 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1828 #include "llvm/IR/Instruction.def" 1829 }; 1830 switch (static_cast<InstructionOpcodes>(Opcode)) { 1831 case Ret: return 0; 1832 case Br: return 0; 1833 case Switch: return 0; 1834 case IndirectBr: return 0; 1835 case Invoke: return 0; 1836 case CallBr: return 0; 1837 case Resume: return 0; 1838 case Unreachable: return 0; 1839 case CleanupRet: return 0; 1840 case CatchRet: return 0; 1841 case CatchPad: return 0; 1842 case CatchSwitch: return 0; 1843 case CleanupPad: return 0; 1844 case FNeg: return ISD::FNEG; 1845 case Add: return ISD::ADD; 1846 case FAdd: return ISD::FADD; 1847 case Sub: return ISD::SUB; 1848 case FSub: return ISD::FSUB; 1849 case Mul: return ISD::MUL; 1850 case FMul: return ISD::FMUL; 1851 case UDiv: return ISD::UDIV; 1852 case SDiv: return ISD::SDIV; 1853 case FDiv: return ISD::FDIV; 1854 case URem: return ISD::UREM; 1855 case SRem: return ISD::SREM; 1856 case FRem: return ISD::FREM; 1857 case Shl: return ISD::SHL; 1858 case LShr: return ISD::SRL; 1859 case AShr: return ISD::SRA; 1860 case And: return ISD::AND; 1861 case Or: return ISD::OR; 1862 case Xor: return ISD::XOR; 1863 case Alloca: return 0; 1864 case Load: return ISD::LOAD; 1865 case Store: return ISD::STORE; 1866 case GetElementPtr: return 0; 1867 case Fence: return 0; 1868 case AtomicCmpXchg: return 0; 1869 case AtomicRMW: return 0; 1870 case Trunc: return ISD::TRUNCATE; 1871 case ZExt: return ISD::ZERO_EXTEND; 1872 case SExt: return ISD::SIGN_EXTEND; 1873 case FPToUI: return ISD::FP_TO_UINT; 1874 case FPToSI: return ISD::FP_TO_SINT; 1875 case UIToFP: return ISD::UINT_TO_FP; 1876 case SIToFP: return ISD::SINT_TO_FP; 1877 case FPTrunc: return ISD::FP_ROUND; 1878 case FPExt: return ISD::FP_EXTEND; 1879 case PtrToInt: return ISD::BITCAST; 1880 case IntToPtr: return ISD::BITCAST; 1881 case BitCast: return ISD::BITCAST; 1882 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1883 case ICmp: return ISD::SETCC; 1884 case FCmp: return ISD::SETCC; 1885 case PHI: return 0; 1886 case Call: return 0; 1887 case Select: return ISD::SELECT; 1888 case UserOp1: return 0; 1889 case UserOp2: return 0; 1890 case VAArg: return 0; 1891 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1892 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1893 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1894 case ExtractValue: return ISD::MERGE_VALUES; 1895 case InsertValue: return ISD::MERGE_VALUES; 1896 case LandingPad: return 0; 1897 case Freeze: return ISD::FREEZE; 1898 } 1899 1900 llvm_unreachable("Unknown instruction type encountered!"); 1901 } 1902 1903 Value * 1904 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, 1905 bool UseTLS) const { 1906 // compiler-rt provides a variable with a magic name. Targets that do not 1907 // link with compiler-rt may also provide such a variable. 1908 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1909 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1910 auto UnsafeStackPtr = 1911 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1912 1913 Type *StackPtrTy = PointerType::getUnqual(M->getContext()); 1914 1915 if (!UnsafeStackPtr) { 1916 auto TLSModel = UseTLS ? 1917 GlobalValue::InitialExecTLSModel : 1918 GlobalValue::NotThreadLocal; 1919 // The global variable is not defined yet, define it ourselves. 1920 // We use the initial-exec TLS model because we do not support the 1921 // variable living anywhere other than in the main executable. 1922 UnsafeStackPtr = new GlobalVariable( 1923 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1924 UnsafeStackPtrVar, nullptr, TLSModel); 1925 } else { 1926 // The variable exists, check its type and attributes. 1927 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1928 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1929 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1930 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1931 (UseTLS ? "" : "not ") + "be thread-local"); 1932 } 1933 return UnsafeStackPtr; 1934 } 1935 1936 Value * 1937 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { 1938 if (!TM.getTargetTriple().isAndroid()) 1939 return getDefaultSafeStackPointerLocation(IRB, true); 1940 1941 // Android provides a libc function to retrieve the address of the current 1942 // thread's unsafe stack pointer. 1943 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1944 auto *PtrTy = PointerType::getUnqual(M->getContext()); 1945 FunctionCallee Fn = 1946 M->getOrInsertFunction("__safestack_pointer_address", PtrTy); 1947 return IRB.CreateCall(Fn); 1948 } 1949 1950 //===----------------------------------------------------------------------===// 1951 // Loop Strength Reduction hooks 1952 //===----------------------------------------------------------------------===// 1953 1954 /// isLegalAddressingMode - Return true if the addressing mode represented 1955 /// by AM is legal for this target, for a load/store of the specified type. 1956 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1957 const AddrMode &AM, Type *Ty, 1958 unsigned AS, Instruction *I) const { 1959 // The default implementation of this implements a conservative RISCy, r+r and 1960 // r+i addr mode. 1961 1962 // Allows a sign-extended 16-bit immediate field. 1963 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1964 return false; 1965 1966 // No global is ever allowed as a base. 1967 if (AM.BaseGV) 1968 return false; 1969 1970 // Only support r+r, 1971 switch (AM.Scale) { 1972 case 0: // "r+i" or just "i", depending on HasBaseReg. 1973 break; 1974 case 1: 1975 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1976 return false; 1977 // Otherwise we have r+r or r+i. 1978 break; 1979 case 2: 1980 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1981 return false; 1982 // Allow 2*r as r+r. 1983 break; 1984 default: // Don't allow n * r 1985 return false; 1986 } 1987 1988 return true; 1989 } 1990 1991 //===----------------------------------------------------------------------===// 1992 // Stack Protector 1993 //===----------------------------------------------------------------------===// 1994 1995 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1996 // so that SelectionDAG handle SSP. 1997 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { 1998 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1999 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 2000 PointerType *PtrTy = PointerType::getUnqual(M.getContext()); 2001 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 2002 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 2003 G->setVisibility(GlobalValue::HiddenVisibility); 2004 return C; 2005 } 2006 return nullptr; 2007 } 2008 2009 // Currently only support "standard" __stack_chk_guard. 2010 // TODO: add LOAD_STACK_GUARD support. 2011 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 2012 if (!M.getNamedValue("__stack_chk_guard")) { 2013 auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()), 2014 false, GlobalVariable::ExternalLinkage, 2015 nullptr, "__stack_chk_guard"); 2016 2017 // FreeBSD has "__stack_chk_guard" defined externally on libc.so 2018 if (M.getDirectAccessExternalData() && 2019 !TM.getTargetTriple().isWindowsGNUEnvironment() && 2020 !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD()) && 2021 (!TM.getTargetTriple().isOSDarwin() || 2022 TM.getRelocationModel() == Reloc::Static)) 2023 GV->setDSOLocal(true); 2024 } 2025 } 2026 2027 // Currently only support "standard" __stack_chk_guard. 2028 // TODO: add LOAD_STACK_GUARD support. 2029 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 2030 return M.getNamedValue("__stack_chk_guard"); 2031 } 2032 2033 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 2034 return nullptr; 2035 } 2036 2037 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 2038 return MinimumJumpTableEntries; 2039 } 2040 2041 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 2042 MinimumJumpTableEntries = Val; 2043 } 2044 2045 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 2046 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 2047 } 2048 2049 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 2050 return MaximumJumpTableSize; 2051 } 2052 2053 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 2054 MaximumJumpTableSize = Val; 2055 } 2056 2057 bool TargetLoweringBase::isJumpTableRelative() const { 2058 return getTargetMachine().isPositionIndependent(); 2059 } 2060 2061 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { 2062 if (TM.Options.LoopAlignment) 2063 return Align(TM.Options.LoopAlignment); 2064 return PrefLoopAlignment; 2065 } 2066 2067 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment( 2068 MachineBasicBlock *MBB) const { 2069 return MaxBytesForAlignment; 2070 } 2071 2072 //===----------------------------------------------------------------------===// 2073 // Reciprocal Estimates 2074 //===----------------------------------------------------------------------===// 2075 2076 /// Get the reciprocal estimate attribute string for a function that will 2077 /// override the target defaults. 2078 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 2079 const Function &F = MF.getFunction(); 2080 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 2081 } 2082 2083 /// Construct a string for the given reciprocal operation of the given type. 2084 /// This string should match the corresponding option to the front-end's 2085 /// "-mrecip" flag assuming those strings have been passed through in an 2086 /// attribute string. For example, "vec-divf" for a division of a vXf32. 2087 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 2088 std::string Name = VT.isVector() ? "vec-" : ""; 2089 2090 Name += IsSqrt ? "sqrt" : "div"; 2091 2092 // TODO: Handle other float types? 2093 if (VT.getScalarType() == MVT::f64) { 2094 Name += "d"; 2095 } else if (VT.getScalarType() == MVT::f16) { 2096 Name += "h"; 2097 } else { 2098 assert(VT.getScalarType() == MVT::f32 && 2099 "Unexpected FP type for reciprocal estimate"); 2100 Name += "f"; 2101 } 2102 2103 return Name; 2104 } 2105 2106 /// Return the character position and value (a single numeric character) of a 2107 /// customized refinement operation in the input string if it exists. Return 2108 /// false if there is no customized refinement step count. 2109 static bool parseRefinementStep(StringRef In, size_t &Position, 2110 uint8_t &Value) { 2111 const char RefStepToken = ':'; 2112 Position = In.find(RefStepToken); 2113 if (Position == StringRef::npos) 2114 return false; 2115 2116 StringRef RefStepString = In.substr(Position + 1); 2117 // Allow exactly one numeric character for the additional refinement 2118 // step parameter. 2119 if (RefStepString.size() == 1) { 2120 char RefStepChar = RefStepString[0]; 2121 if (isDigit(RefStepChar)) { 2122 Value = RefStepChar - '0'; 2123 return true; 2124 } 2125 } 2126 report_fatal_error("Invalid refinement step for -recip."); 2127 } 2128 2129 /// For the input attribute string, return one of the ReciprocalEstimate enum 2130 /// status values (enabled, disabled, or not specified) for this operation on 2131 /// the specified data type. 2132 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 2133 if (Override.empty()) 2134 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2135 2136 SmallVector<StringRef, 4> OverrideVector; 2137 Override.split(OverrideVector, ','); 2138 unsigned NumArgs = OverrideVector.size(); 2139 2140 // Check if "all", "none", or "default" was specified. 2141 if (NumArgs == 1) { 2142 // Look for an optional setting of the number of refinement steps needed 2143 // for this type of reciprocal operation. 2144 size_t RefPos; 2145 uint8_t RefSteps; 2146 if (parseRefinementStep(Override, RefPos, RefSteps)) { 2147 // Split the string for further processing. 2148 Override = Override.substr(0, RefPos); 2149 } 2150 2151 // All reciprocal types are enabled. 2152 if (Override == "all") 2153 return TargetLoweringBase::ReciprocalEstimate::Enabled; 2154 2155 // All reciprocal types are disabled. 2156 if (Override == "none") 2157 return TargetLoweringBase::ReciprocalEstimate::Disabled; 2158 2159 // Target defaults for enablement are used. 2160 if (Override == "default") 2161 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2162 } 2163 2164 // The attribute string may omit the size suffix ('f'/'d'). 2165 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2166 std::string VTNameNoSize = VTName; 2167 VTNameNoSize.pop_back(); 2168 static const char DisabledPrefix = '!'; 2169 2170 for (StringRef RecipType : OverrideVector) { 2171 size_t RefPos; 2172 uint8_t RefSteps; 2173 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 2174 RecipType = RecipType.substr(0, RefPos); 2175 2176 // Ignore the disablement token for string matching. 2177 bool IsDisabled = RecipType[0] == DisabledPrefix; 2178 if (IsDisabled) 2179 RecipType = RecipType.substr(1); 2180 2181 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2182 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 2183 : TargetLoweringBase::ReciprocalEstimate::Enabled; 2184 } 2185 2186 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2187 } 2188 2189 /// For the input attribute string, return the customized refinement step count 2190 /// for this operation on the specified data type. If the step count does not 2191 /// exist, return the ReciprocalEstimate enum value for unspecified. 2192 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 2193 if (Override.empty()) 2194 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2195 2196 SmallVector<StringRef, 4> OverrideVector; 2197 Override.split(OverrideVector, ','); 2198 unsigned NumArgs = OverrideVector.size(); 2199 2200 // Check if "all", "default", or "none" was specified. 2201 if (NumArgs == 1) { 2202 // Look for an optional setting of the number of refinement steps needed 2203 // for this type of reciprocal operation. 2204 size_t RefPos; 2205 uint8_t RefSteps; 2206 if (!parseRefinementStep(Override, RefPos, RefSteps)) 2207 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2208 2209 // Split the string for further processing. 2210 Override = Override.substr(0, RefPos); 2211 assert(Override != "none" && 2212 "Disabled reciprocals, but specifed refinement steps?"); 2213 2214 // If this is a general override, return the specified number of steps. 2215 if (Override == "all" || Override == "default") 2216 return RefSteps; 2217 } 2218 2219 // The attribute string may omit the size suffix ('f'/'d'). 2220 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2221 std::string VTNameNoSize = VTName; 2222 VTNameNoSize.pop_back(); 2223 2224 for (StringRef RecipType : OverrideVector) { 2225 size_t RefPos; 2226 uint8_t RefSteps; 2227 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 2228 continue; 2229 2230 RecipType = RecipType.substr(0, RefPos); 2231 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2232 return RefSteps; 2233 } 2234 2235 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2236 } 2237 2238 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 2239 MachineFunction &MF) const { 2240 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 2241 } 2242 2243 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 2244 MachineFunction &MF) const { 2245 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 2246 } 2247 2248 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 2249 MachineFunction &MF) const { 2250 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 2251 } 2252 2253 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2254 MachineFunction &MF) const { 2255 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2256 } 2257 2258 bool TargetLoweringBase::isLoadBitCastBeneficial( 2259 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, 2260 const MachineMemOperand &MMO) const { 2261 // Single-element vectors are scalarized, so we should generally avoid having 2262 // any memory operations on such types, as they would get scalarized too. 2263 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() && 2264 BitcastVT.getVectorNumElements() == 1) 2265 return false; 2266 2267 // Don't do if we could do an indexed load on the original type, but not on 2268 // the new one. 2269 if (!LoadVT.isSimple() || !BitcastVT.isSimple()) 2270 return true; 2271 2272 MVT LoadMVT = LoadVT.getSimpleVT(); 2273 2274 // Don't bother doing this if it's just going to be promoted again later, as 2275 // doing so might interfere with other combines. 2276 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && 2277 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) 2278 return false; 2279 2280 unsigned Fast = 0; 2281 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT, 2282 MMO, &Fast) && 2283 Fast; 2284 } 2285 2286 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2287 MF.getRegInfo().freezeReservedRegs(MF); 2288 } 2289 2290 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags( 2291 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC, 2292 const TargetLibraryInfo *LibInfo) const { 2293 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 2294 if (LI.isVolatile()) 2295 Flags |= MachineMemOperand::MOVolatile; 2296 2297 if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 2298 Flags |= MachineMemOperand::MONonTemporal; 2299 2300 if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 2301 Flags |= MachineMemOperand::MOInvariant; 2302 2303 if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(), 2304 LI.getAlign(), DL, &LI, AC, 2305 /*DT=*/nullptr, LibInfo)) 2306 Flags |= MachineMemOperand::MODereferenceable; 2307 2308 Flags |= getTargetMMOFlags(LI); 2309 return Flags; 2310 } 2311 2312 MachineMemOperand::Flags 2313 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 2314 const DataLayout &DL) const { 2315 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 2316 2317 if (SI.isVolatile()) 2318 Flags |= MachineMemOperand::MOVolatile; 2319 2320 if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 2321 Flags |= MachineMemOperand::MONonTemporal; 2322 2323 // FIXME: Not preserving dereferenceable 2324 Flags |= getTargetMMOFlags(SI); 2325 return Flags; 2326 } 2327 2328 MachineMemOperand::Flags 2329 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 2330 const DataLayout &DL) const { 2331 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2332 2333 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 2334 if (RMW->isVolatile()) 2335 Flags |= MachineMemOperand::MOVolatile; 2336 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 2337 if (CmpX->isVolatile()) 2338 Flags |= MachineMemOperand::MOVolatile; 2339 } else 2340 llvm_unreachable("not an atomic instruction"); 2341 2342 // FIXME: Not preserving dereferenceable 2343 Flags |= getTargetMMOFlags(AI); 2344 return Flags; 2345 } 2346 2347 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, 2348 Instruction *Inst, 2349 AtomicOrdering Ord) const { 2350 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) 2351 return Builder.CreateFence(Ord); 2352 else 2353 return nullptr; 2354 } 2355 2356 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, 2357 Instruction *Inst, 2358 AtomicOrdering Ord) const { 2359 if (isAcquireOrStronger(Ord)) 2360 return Builder.CreateFence(Ord); 2361 else 2362 return nullptr; 2363 } 2364 2365 //===----------------------------------------------------------------------===// 2366 // GlobalISel Hooks 2367 //===----------------------------------------------------------------------===// 2368 2369 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 2370 const TargetTransformInfo *TTI) const { 2371 auto &MF = *MI.getMF(); 2372 auto &MRI = MF.getRegInfo(); 2373 // Assuming a spill and reload of a value has a cost of 1 instruction each, 2374 // this helper function computes the maximum number of uses we should consider 2375 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 2376 // break even in terms of code size when the original MI has 2 users vs 2377 // choosing to potentially spill. Any more than 2 users we we have a net code 2378 // size increase. This doesn't take into account register pressure though. 2379 auto maxUses = [](unsigned RematCost) { 2380 // A cost of 1 means remats are basically free. 2381 if (RematCost == 1) 2382 return std::numeric_limits<unsigned>::max(); 2383 if (RematCost == 2) 2384 return 2U; 2385 2386 // Remat is too expensive, only sink if there's one user. 2387 if (RematCost > 2) 2388 return 1U; 2389 llvm_unreachable("Unexpected remat cost"); 2390 }; 2391 2392 switch (MI.getOpcode()) { 2393 default: 2394 return false; 2395 // Constants-like instructions should be close to their users. 2396 // We don't want long live-ranges for them. 2397 case TargetOpcode::G_CONSTANT: 2398 case TargetOpcode::G_FCONSTANT: 2399 case TargetOpcode::G_FRAME_INDEX: 2400 case TargetOpcode::G_INTTOPTR: 2401 return true; 2402 case TargetOpcode::G_GLOBAL_VALUE: { 2403 unsigned RematCost = TTI->getGISelRematGlobalCost(); 2404 Register Reg = MI.getOperand(0).getReg(); 2405 unsigned MaxUses = maxUses(RematCost); 2406 if (MaxUses == UINT_MAX) 2407 return true; // Remats are "free" so always localize. 2408 return MRI.hasAtMostUserInstrs(Reg, MaxUses); 2409 } 2410 } 2411 } 2412