xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/CodeGenTypes/MachineValueType.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/TargetParser/Triple.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 /// GetFPLibCall - Helper to return the right libcall for the given floating
102 /// point type, or UNKNOWN_LIBCALL if there is none.
103 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
104                                    RTLIB::Libcall Call_F32,
105                                    RTLIB::Libcall Call_F64,
106                                    RTLIB::Libcall Call_F80,
107                                    RTLIB::Libcall Call_F128,
108                                    RTLIB::Libcall Call_PPCF128) {
109   return
110     VT == MVT::f32 ? Call_F32 :
111     VT == MVT::f64 ? Call_F64 :
112     VT == MVT::f80 ? Call_F80 :
113     VT == MVT::f128 ? Call_F128 :
114     VT == MVT::ppcf128 ? Call_PPCF128 :
115     RTLIB::UNKNOWN_LIBCALL;
116 }
117 
118 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
119 /// UNKNOWN_LIBCALL if there is none.
120 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
121   if (OpVT == MVT::f16) {
122     if (RetVT == MVT::f32)
123       return FPEXT_F16_F32;
124     if (RetVT == MVT::f64)
125       return FPEXT_F16_F64;
126     if (RetVT == MVT::f80)
127       return FPEXT_F16_F80;
128     if (RetVT == MVT::f128)
129       return FPEXT_F16_F128;
130   } else if (OpVT == MVT::f32) {
131     if (RetVT == MVT::f64)
132       return FPEXT_F32_F64;
133     if (RetVT == MVT::f128)
134       return FPEXT_F32_F128;
135     if (RetVT == MVT::ppcf128)
136       return FPEXT_F32_PPCF128;
137   } else if (OpVT == MVT::f64) {
138     if (RetVT == MVT::f128)
139       return FPEXT_F64_F128;
140     else if (RetVT == MVT::ppcf128)
141       return FPEXT_F64_PPCF128;
142   } else if (OpVT == MVT::f80) {
143     if (RetVT == MVT::f128)
144       return FPEXT_F80_F128;
145   } else if (OpVT == MVT::bf16) {
146     if (RetVT == MVT::f32)
147       return FPEXT_BF16_F32;
148   }
149 
150   return UNKNOWN_LIBCALL;
151 }
152 
153 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
154 /// UNKNOWN_LIBCALL if there is none.
155 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
156   if (RetVT == MVT::f16) {
157     if (OpVT == MVT::f32)
158       return FPROUND_F32_F16;
159     if (OpVT == MVT::f64)
160       return FPROUND_F64_F16;
161     if (OpVT == MVT::f80)
162       return FPROUND_F80_F16;
163     if (OpVT == MVT::f128)
164       return FPROUND_F128_F16;
165     if (OpVT == MVT::ppcf128)
166       return FPROUND_PPCF128_F16;
167   } else if (RetVT == MVT::bf16) {
168     if (OpVT == MVT::f32)
169       return FPROUND_F32_BF16;
170     if (OpVT == MVT::f64)
171       return FPROUND_F64_BF16;
172   } else if (RetVT == MVT::f32) {
173     if (OpVT == MVT::f64)
174       return FPROUND_F64_F32;
175     if (OpVT == MVT::f80)
176       return FPROUND_F80_F32;
177     if (OpVT == MVT::f128)
178       return FPROUND_F128_F32;
179     if (OpVT == MVT::ppcf128)
180       return FPROUND_PPCF128_F32;
181   } else if (RetVT == MVT::f64) {
182     if (OpVT == MVT::f80)
183       return FPROUND_F80_F64;
184     if (OpVT == MVT::f128)
185       return FPROUND_F128_F64;
186     if (OpVT == MVT::ppcf128)
187       return FPROUND_PPCF128_F64;
188   } else if (RetVT == MVT::f80) {
189     if (OpVT == MVT::f128)
190       return FPROUND_F128_F80;
191   }
192 
193   return UNKNOWN_LIBCALL;
194 }
195 
196 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
197 /// UNKNOWN_LIBCALL if there is none.
198 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
199   if (OpVT == MVT::f16) {
200     if (RetVT == MVT::i32)
201       return FPTOSINT_F16_I32;
202     if (RetVT == MVT::i64)
203       return FPTOSINT_F16_I64;
204     if (RetVT == MVT::i128)
205       return FPTOSINT_F16_I128;
206   } else if (OpVT == MVT::f32) {
207     if (RetVT == MVT::i32)
208       return FPTOSINT_F32_I32;
209     if (RetVT == MVT::i64)
210       return FPTOSINT_F32_I64;
211     if (RetVT == MVT::i128)
212       return FPTOSINT_F32_I128;
213   } else if (OpVT == MVT::f64) {
214     if (RetVT == MVT::i32)
215       return FPTOSINT_F64_I32;
216     if (RetVT == MVT::i64)
217       return FPTOSINT_F64_I64;
218     if (RetVT == MVT::i128)
219       return FPTOSINT_F64_I128;
220   } else if (OpVT == MVT::f80) {
221     if (RetVT == MVT::i32)
222       return FPTOSINT_F80_I32;
223     if (RetVT == MVT::i64)
224       return FPTOSINT_F80_I64;
225     if (RetVT == MVT::i128)
226       return FPTOSINT_F80_I128;
227   } else if (OpVT == MVT::f128) {
228     if (RetVT == MVT::i32)
229       return FPTOSINT_F128_I32;
230     if (RetVT == MVT::i64)
231       return FPTOSINT_F128_I64;
232     if (RetVT == MVT::i128)
233       return FPTOSINT_F128_I128;
234   } else if (OpVT == MVT::ppcf128) {
235     if (RetVT == MVT::i32)
236       return FPTOSINT_PPCF128_I32;
237     if (RetVT == MVT::i64)
238       return FPTOSINT_PPCF128_I64;
239     if (RetVT == MVT::i128)
240       return FPTOSINT_PPCF128_I128;
241   }
242   return UNKNOWN_LIBCALL;
243 }
244 
245 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
246 /// UNKNOWN_LIBCALL if there is none.
247 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
248   if (OpVT == MVT::f16) {
249     if (RetVT == MVT::i32)
250       return FPTOUINT_F16_I32;
251     if (RetVT == MVT::i64)
252       return FPTOUINT_F16_I64;
253     if (RetVT == MVT::i128)
254       return FPTOUINT_F16_I128;
255   } else if (OpVT == MVT::f32) {
256     if (RetVT == MVT::i32)
257       return FPTOUINT_F32_I32;
258     if (RetVT == MVT::i64)
259       return FPTOUINT_F32_I64;
260     if (RetVT == MVT::i128)
261       return FPTOUINT_F32_I128;
262   } else if (OpVT == MVT::f64) {
263     if (RetVT == MVT::i32)
264       return FPTOUINT_F64_I32;
265     if (RetVT == MVT::i64)
266       return FPTOUINT_F64_I64;
267     if (RetVT == MVT::i128)
268       return FPTOUINT_F64_I128;
269   } else if (OpVT == MVT::f80) {
270     if (RetVT == MVT::i32)
271       return FPTOUINT_F80_I32;
272     if (RetVT == MVT::i64)
273       return FPTOUINT_F80_I64;
274     if (RetVT == MVT::i128)
275       return FPTOUINT_F80_I128;
276   } else if (OpVT == MVT::f128) {
277     if (RetVT == MVT::i32)
278       return FPTOUINT_F128_I32;
279     if (RetVT == MVT::i64)
280       return FPTOUINT_F128_I64;
281     if (RetVT == MVT::i128)
282       return FPTOUINT_F128_I128;
283   } else if (OpVT == MVT::ppcf128) {
284     if (RetVT == MVT::i32)
285       return FPTOUINT_PPCF128_I32;
286     if (RetVT == MVT::i64)
287       return FPTOUINT_PPCF128_I64;
288     if (RetVT == MVT::i128)
289       return FPTOUINT_PPCF128_I128;
290   }
291   return UNKNOWN_LIBCALL;
292 }
293 
294 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
295 /// UNKNOWN_LIBCALL if there is none.
296 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
297   if (OpVT == MVT::i32) {
298     if (RetVT == MVT::f16)
299       return SINTTOFP_I32_F16;
300     if (RetVT == MVT::f32)
301       return SINTTOFP_I32_F32;
302     if (RetVT == MVT::f64)
303       return SINTTOFP_I32_F64;
304     if (RetVT == MVT::f80)
305       return SINTTOFP_I32_F80;
306     if (RetVT == MVT::f128)
307       return SINTTOFP_I32_F128;
308     if (RetVT == MVT::ppcf128)
309       return SINTTOFP_I32_PPCF128;
310   } else if (OpVT == MVT::i64) {
311     if (RetVT == MVT::f16)
312       return SINTTOFP_I64_F16;
313     if (RetVT == MVT::f32)
314       return SINTTOFP_I64_F32;
315     if (RetVT == MVT::f64)
316       return SINTTOFP_I64_F64;
317     if (RetVT == MVT::f80)
318       return SINTTOFP_I64_F80;
319     if (RetVT == MVT::f128)
320       return SINTTOFP_I64_F128;
321     if (RetVT == MVT::ppcf128)
322       return SINTTOFP_I64_PPCF128;
323   } else if (OpVT == MVT::i128) {
324     if (RetVT == MVT::f16)
325       return SINTTOFP_I128_F16;
326     if (RetVT == MVT::f32)
327       return SINTTOFP_I128_F32;
328     if (RetVT == MVT::f64)
329       return SINTTOFP_I128_F64;
330     if (RetVT == MVT::f80)
331       return SINTTOFP_I128_F80;
332     if (RetVT == MVT::f128)
333       return SINTTOFP_I128_F128;
334     if (RetVT == MVT::ppcf128)
335       return SINTTOFP_I128_PPCF128;
336   }
337   return UNKNOWN_LIBCALL;
338 }
339 
340 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
341 /// UNKNOWN_LIBCALL if there is none.
342 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
343   if (OpVT == MVT::i32) {
344     if (RetVT == MVT::f16)
345       return UINTTOFP_I32_F16;
346     if (RetVT == MVT::f32)
347       return UINTTOFP_I32_F32;
348     if (RetVT == MVT::f64)
349       return UINTTOFP_I32_F64;
350     if (RetVT == MVT::f80)
351       return UINTTOFP_I32_F80;
352     if (RetVT == MVT::f128)
353       return UINTTOFP_I32_F128;
354     if (RetVT == MVT::ppcf128)
355       return UINTTOFP_I32_PPCF128;
356   } else if (OpVT == MVT::i64) {
357     if (RetVT == MVT::f16)
358       return UINTTOFP_I64_F16;
359     if (RetVT == MVT::f32)
360       return UINTTOFP_I64_F32;
361     if (RetVT == MVT::f64)
362       return UINTTOFP_I64_F64;
363     if (RetVT == MVT::f80)
364       return UINTTOFP_I64_F80;
365     if (RetVT == MVT::f128)
366       return UINTTOFP_I64_F128;
367     if (RetVT == MVT::ppcf128)
368       return UINTTOFP_I64_PPCF128;
369   } else if (OpVT == MVT::i128) {
370     if (RetVT == MVT::f16)
371       return UINTTOFP_I128_F16;
372     if (RetVT == MVT::f32)
373       return UINTTOFP_I128_F32;
374     if (RetVT == MVT::f64)
375       return UINTTOFP_I128_F64;
376     if (RetVT == MVT::f80)
377       return UINTTOFP_I128_F80;
378     if (RetVT == MVT::f128)
379       return UINTTOFP_I128_F128;
380     if (RetVT == MVT::ppcf128)
381       return UINTTOFP_I128_PPCF128;
382   }
383   return UNKNOWN_LIBCALL;
384 }
385 
386 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
387   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
388                       POWI_PPCF128);
389 }
390 
391 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
392   return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
393                       LDEXP_PPCF128);
394 }
395 
396 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
397   return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
398                       FREXP_PPCF128);
399 }
400 
401 RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
402                                              AtomicOrdering Order,
403                                              uint64_t MemSize) {
404   unsigned ModeN, ModelN;
405   switch (MemSize) {
406   case 1:
407     ModeN = 0;
408     break;
409   case 2:
410     ModeN = 1;
411     break;
412   case 4:
413     ModeN = 2;
414     break;
415   case 8:
416     ModeN = 3;
417     break;
418   case 16:
419     ModeN = 4;
420     break;
421   default:
422     return RTLIB::UNKNOWN_LIBCALL;
423   }
424 
425   switch (Order) {
426   case AtomicOrdering::Monotonic:
427     ModelN = 0;
428     break;
429   case AtomicOrdering::Acquire:
430     ModelN = 1;
431     break;
432   case AtomicOrdering::Release:
433     ModelN = 2;
434     break;
435   case AtomicOrdering::AcquireRelease:
436   case AtomicOrdering::SequentiallyConsistent:
437     ModelN = 3;
438     break;
439   default:
440     return UNKNOWN_LIBCALL;
441   }
442 
443   return LC[ModeN][ModelN];
444 }
445 
446 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
447                                         MVT VT) {
448   if (!VT.isScalarInteger())
449     return UNKNOWN_LIBCALL;
450   uint64_t MemSize = VT.getScalarSizeInBits() / 8;
451 
452 #define LCALLS(A, B)                                                           \
453   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
454 #define LCALL5(A)                                                              \
455   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
456   switch (Opc) {
457   case ISD::ATOMIC_CMP_SWAP: {
458     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
459     return getOutlineAtomicHelper(LC, Order, MemSize);
460   }
461   case ISD::ATOMIC_SWAP: {
462     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
463     return getOutlineAtomicHelper(LC, Order, MemSize);
464   }
465   case ISD::ATOMIC_LOAD_ADD: {
466     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
467     return getOutlineAtomicHelper(LC, Order, MemSize);
468   }
469   case ISD::ATOMIC_LOAD_OR: {
470     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
471     return getOutlineAtomicHelper(LC, Order, MemSize);
472   }
473   case ISD::ATOMIC_LOAD_CLR: {
474     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
475     return getOutlineAtomicHelper(LC, Order, MemSize);
476   }
477   case ISD::ATOMIC_LOAD_XOR: {
478     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
479     return getOutlineAtomicHelper(LC, Order, MemSize);
480   }
481   default:
482     return UNKNOWN_LIBCALL;
483   }
484 #undef LCALLS
485 #undef LCALL5
486 }
487 
488 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
489 #define OP_TO_LIBCALL(Name, Enum)                                              \
490   case Name:                                                                   \
491     switch (VT.SimpleTy) {                                                     \
492     default:                                                                   \
493       return UNKNOWN_LIBCALL;                                                  \
494     case MVT::i8:                                                              \
495       return Enum##_1;                                                         \
496     case MVT::i16:                                                             \
497       return Enum##_2;                                                         \
498     case MVT::i32:                                                             \
499       return Enum##_4;                                                         \
500     case MVT::i64:                                                             \
501       return Enum##_8;                                                         \
502     case MVT::i128:                                                            \
503       return Enum##_16;                                                        \
504     }
505 
506   switch (Opc) {
507     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
508     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
509     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
510     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
511     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
512     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
513     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
514     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
515     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
516     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
517     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
518     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
519   }
520 
521 #undef OP_TO_LIBCALL
522 
523   return UNKNOWN_LIBCALL;
524 }
525 
526 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
527   switch (ElementSize) {
528   case 1:
529     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
530   case 2:
531     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
532   case 4:
533     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
534   case 8:
535     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
536   case 16:
537     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
538   default:
539     return UNKNOWN_LIBCALL;
540   }
541 }
542 
543 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
544   switch (ElementSize) {
545   case 1:
546     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
547   case 2:
548     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
549   case 4:
550     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
551   case 8:
552     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
553   case 16:
554     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
555   default:
556     return UNKNOWN_LIBCALL;
557   }
558 }
559 
560 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
561   switch (ElementSize) {
562   case 1:
563     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
564   case 2:
565     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
566   case 4:
567     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
568   case 8:
569     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
570   case 16:
571     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
572   default:
573     return UNKNOWN_LIBCALL;
574   }
575 }
576 
577 void RTLIB::initCmpLibcallCCs(ISD::CondCode *CmpLibcallCCs) {
578   std::fill(CmpLibcallCCs, CmpLibcallCCs + RTLIB::UNKNOWN_LIBCALL,
579             ISD::SETCC_INVALID);
580   CmpLibcallCCs[RTLIB::OEQ_F32] = ISD::SETEQ;
581   CmpLibcallCCs[RTLIB::OEQ_F64] = ISD::SETEQ;
582   CmpLibcallCCs[RTLIB::OEQ_F128] = ISD::SETEQ;
583   CmpLibcallCCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
584   CmpLibcallCCs[RTLIB::UNE_F32] = ISD::SETNE;
585   CmpLibcallCCs[RTLIB::UNE_F64] = ISD::SETNE;
586   CmpLibcallCCs[RTLIB::UNE_F128] = ISD::SETNE;
587   CmpLibcallCCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
588   CmpLibcallCCs[RTLIB::OGE_F32] = ISD::SETGE;
589   CmpLibcallCCs[RTLIB::OGE_F64] = ISD::SETGE;
590   CmpLibcallCCs[RTLIB::OGE_F128] = ISD::SETGE;
591   CmpLibcallCCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
592   CmpLibcallCCs[RTLIB::OLT_F32] = ISD::SETLT;
593   CmpLibcallCCs[RTLIB::OLT_F64] = ISD::SETLT;
594   CmpLibcallCCs[RTLIB::OLT_F128] = ISD::SETLT;
595   CmpLibcallCCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
596   CmpLibcallCCs[RTLIB::OLE_F32] = ISD::SETLE;
597   CmpLibcallCCs[RTLIB::OLE_F64] = ISD::SETLE;
598   CmpLibcallCCs[RTLIB::OLE_F128] = ISD::SETLE;
599   CmpLibcallCCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
600   CmpLibcallCCs[RTLIB::OGT_F32] = ISD::SETGT;
601   CmpLibcallCCs[RTLIB::OGT_F64] = ISD::SETGT;
602   CmpLibcallCCs[RTLIB::OGT_F128] = ISD::SETGT;
603   CmpLibcallCCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
604   CmpLibcallCCs[RTLIB::UO_F32] = ISD::SETNE;
605   CmpLibcallCCs[RTLIB::UO_F64] = ISD::SETNE;
606   CmpLibcallCCs[RTLIB::UO_F128] = ISD::SETNE;
607   CmpLibcallCCs[RTLIB::UO_PPCF128] = ISD::SETNE;
608 }
609 
610 /// NOTE: The TargetMachine owns TLOF.
611 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm)
612     : TM(tm), Libcalls(TM.getTargetTriple()) {
613   initActions();
614 
615   // Perform these initializations only once.
616   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
617       MaxLoadsPerMemcmp = 8;
618   MaxGluedStoresPerMemcpy = 0;
619   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
620       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
621   HasMultipleConditionRegisters = false;
622   HasExtractBitsInsn = false;
623   JumpIsExpensive = JumpIsExpensiveOverride;
624   PredictableSelectIsExpensive = false;
625   EnableExtLdPromotion = false;
626   StackPointerRegisterToSaveRestore = 0;
627   BooleanContents = UndefinedBooleanContent;
628   BooleanFloatContents = UndefinedBooleanContent;
629   BooleanVectorContents = UndefinedBooleanContent;
630   SchedPreferenceInfo = Sched::ILP;
631   GatherAllAliasesMaxDepth = 18;
632   IsStrictFPEnabled = DisableStrictNodeMutation;
633   MaxBytesForAlignment = 0;
634   MaxAtomicSizeInBitsSupported = 0;
635 
636   // Assume that even with libcalls, no target supports wider than 128 bit
637   // division.
638   MaxDivRemBitWidthSupported = 128;
639 
640   MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
641 
642   MinCmpXchgSizeInBits = 0;
643   SupportsUnalignedAtomics = false;
644 
645   RTLIB::initCmpLibcallCCs(CmpLibcallCCs);
646 }
647 
648 void TargetLoweringBase::initActions() {
649   // All operations default to being supported.
650   memset(OpActions, 0, sizeof(OpActions));
651   memset(LoadExtActions, 0, sizeof(LoadExtActions));
652   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
653   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
654   memset(CondCodeActions, 0, sizeof(CondCodeActions));
655   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
656   std::fill(std::begin(TargetDAGCombineArray),
657             std::end(TargetDAGCombineArray), 0);
658 
659   // Let extending atomic loads be unsupported by default.
660   for (MVT ValVT : MVT::all_valuetypes())
661     for (MVT MemVT : MVT::all_valuetypes())
662       setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT, MemVT,
663                              Expand);
664 
665   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
666   // remove this and targets should individually set these types if not legal.
667   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
668                                    force_iteration_on_noniterable_enum)) {
669     for (MVT VT : {MVT::i2, MVT::i4})
670       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
671   }
672   for (MVT AVT : MVT::all_valuetypes()) {
673     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
674       setTruncStoreAction(AVT, VT, Expand);
675       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
676       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
677     }
678   }
679   for (unsigned IM = (unsigned)ISD::PRE_INC;
680        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
681     for (MVT VT : {MVT::i2, MVT::i4}) {
682       setIndexedLoadAction(IM, VT, Expand);
683       setIndexedStoreAction(IM, VT, Expand);
684       setIndexedMaskedLoadAction(IM, VT, Expand);
685       setIndexedMaskedStoreAction(IM, VT, Expand);
686     }
687   }
688 
689   for (MVT VT : MVT::fp_valuetypes()) {
690     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
691     if (IntVT.isValid()) {
692       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
693       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
694     }
695   }
696 
697   // Set default actions for various operations.
698   for (MVT VT : MVT::all_valuetypes()) {
699     // Default all indexed load / store to expand.
700     for (unsigned IM = (unsigned)ISD::PRE_INC;
701          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
702       setIndexedLoadAction(IM, VT, Expand);
703       setIndexedStoreAction(IM, VT, Expand);
704       setIndexedMaskedLoadAction(IM, VT, Expand);
705       setIndexedMaskedStoreAction(IM, VT, Expand);
706     }
707 
708     // Most backends expect to see the node which just returns the value loaded.
709     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
710 
711     // These operations default to expand.
712     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
713                         ISD::FMINNUM,        ISD::FMAXNUM,
714                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
715                         ISD::FMINIMUM,       ISD::FMAXIMUM,
716                         ISD::FMAD,           ISD::SMIN,
717                         ISD::SMAX,           ISD::UMIN,
718                         ISD::UMAX,           ISD::ABS,
719                         ISD::FSHL,           ISD::FSHR,
720                         ISD::SADDSAT,        ISD::UADDSAT,
721                         ISD::SSUBSAT,        ISD::USUBSAT,
722                         ISD::SSHLSAT,        ISD::USHLSAT,
723                         ISD::SMULFIX,        ISD::SMULFIXSAT,
724                         ISD::UMULFIX,        ISD::UMULFIXSAT,
725                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
726                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
727                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
728                         ISD::IS_FPCLASS},
729                        VT, Expand);
730 
731     // Overflow operations default to expand
732     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
733                         ISD::SMULO, ISD::UMULO},
734                        VT, Expand);
735 
736     // Carry-using overflow operations default to expand.
737     setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
738                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
739                        VT, Expand);
740 
741     // ADDC/ADDE/SUBC/SUBE default to expand.
742     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
743                        Expand);
744 
745     // [US]CMP default to expand
746     setOperationAction({ISD::UCMP, ISD::SCMP}, VT, Expand);
747 
748     // Halving adds
749     setOperationAction(
750         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
751         Expand);
752 
753     // Absolute difference
754     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
755 
756     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
757     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
758                        Expand);
759 
760     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
761 
762     // These library functions default to expand.
763     setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT,
764                        Expand);
765 
766     // These operations default to expand for vector types.
767     if (VT.isVector())
768       setOperationAction(
769           {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG,
770            ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG,
771            ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT, ISD::FTAN, ISD::FACOS,
772            ISD::FASIN, ISD::FATAN, ISD::FCOSH, ISD::FSINH, ISD::FTANH},
773           VT, Expand);
774 
775       // Constrained floating-point operations default to expand.
776 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
777     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
778 #include "llvm/IR/ConstrainedOps.def"
779 
780     // For most targets @llvm.get.dynamic.area.offset just returns 0.
781     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
782 
783     // Vector reduction default to expand.
784     setOperationAction(
785         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
786          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
787          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
788          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
789          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
790          ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
791         VT, Expand);
792 
793     // Named vector shuffles default to expand.
794     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
795 
796     // Only some target support this vector operation. Most need to expand it.
797     setOperationAction(ISD::VECTOR_COMPRESS, VT, Expand);
798 
799     // VP operations default to expand.
800 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
801     setOperationAction(ISD::SDOPC, VT, Expand);
802 #include "llvm/IR/VPIntrinsics.def"
803 
804     // FP environment operations default to expand.
805     setOperationAction(ISD::GET_FPENV, VT, Expand);
806     setOperationAction(ISD::SET_FPENV, VT, Expand);
807     setOperationAction(ISD::RESET_FPENV, VT, Expand);
808   }
809 
810   // Most targets ignore the @llvm.prefetch intrinsic.
811   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
812 
813   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
814   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
815 
816   // Most targets also ignore the @llvm.readsteadycounter intrinsic.
817   setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
818 
819   // ConstantFP nodes default to expand.  Targets can either change this to
820   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
821   // to optimize expansions for certain constants.
822   setOperationAction(ISD::ConstantFP,
823                      {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
824                      Expand);
825 
826   // These library functions default to expand.
827   setOperationAction({ISD::FCBRT,      ISD::FLOG,    ISD::FLOG2,  ISD::FLOG10,
828                       ISD::FEXP,       ISD::FEXP2,   ISD::FEXP10, ISD::FFLOOR,
829                       ISD::FNEARBYINT, ISD::FCEIL,   ISD::FRINT,  ISD::FTRUNC,
830                       ISD::LROUND,     ISD::LLROUND, ISD::LRINT,  ISD::LLRINT,
831                       ISD::FROUNDEVEN, ISD::FTAN,    ISD::FACOS,  ISD::FASIN,
832                       ISD::FATAN,      ISD::FCOSH,   ISD::FSINH,  ISD::FTANH},
833                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
834 
835   setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
836                       ISD::FSINH, ISD::FTANH},
837                      MVT::f16, Promote);
838   // Default ISD::TRAP to expand (which turns it into abort).
839   setOperationAction(ISD::TRAP, MVT::Other, Expand);
840 
841   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
842   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
843   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
844 
845   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
846 
847   setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
848   setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
849 
850   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
851     setOperationAction(ISD::GET_FPMODE, VT, Expand);
852     setOperationAction(ISD::SET_FPMODE, VT, Expand);
853   }
854   setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
855 
856   // This one by default will call __clear_cache unless the target
857   // wants something different.
858   setOperationAction(ISD::CLEAR_CACHE, MVT::Other, LibCall);
859 }
860 
861 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
862                                                EVT) const {
863   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
864 }
865 
866 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
867                                          const DataLayout &DL) const {
868   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
869   if (LHSTy.isVector())
870     return LHSTy;
871   MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
872   // If any possible shift value won't fit in the prefered type, just use
873   // something safe. Assume it will be legalized when the shift is expanded.
874   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
875     ShiftVT = MVT::i32;
876   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
877          "ShiftVT is still too small!");
878   return ShiftVT;
879 }
880 
881 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
882   assert(isTypeLegal(VT));
883   switch (Op) {
884   default:
885     return false;
886   case ISD::SDIV:
887   case ISD::UDIV:
888   case ISD::SREM:
889   case ISD::UREM:
890     return true;
891   }
892 }
893 
894 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
895                                              unsigned DestAS) const {
896   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
897 }
898 
899 unsigned TargetLoweringBase::getBitWidthForCttzElements(
900     Type *RetTy, ElementCount EC, bool ZeroIsPoison,
901     const ConstantRange *VScaleRange) const {
902   // Find the smallest "sensible" element type to use for the expansion.
903   ConstantRange CR(APInt(64, EC.getKnownMinValue()));
904   if (EC.isScalable())
905     CR = CR.umul_sat(*VScaleRange);
906 
907   if (ZeroIsPoison)
908     CR = CR.subtract(APInt(64, 1));
909 
910   unsigned EltWidth = RetTy->getScalarSizeInBits();
911   EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
912   EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
913 
914   return EltWidth;
915 }
916 
917 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
918   // If the command-line option was specified, ignore this request.
919   if (!JumpIsExpensiveOverride.getNumOccurrences())
920     JumpIsExpensive = isExpensive;
921 }
922 
923 TargetLoweringBase::LegalizeKind
924 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
925   // If this is a simple type, use the ComputeRegisterProp mechanism.
926   if (VT.isSimple()) {
927     MVT SVT = VT.getSimpleVT();
928     assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
929     MVT NVT = TransformToType[SVT.SimpleTy];
930     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
931 
932     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
933             LA == TypeSoftPromoteHalf ||
934             (NVT.isVector() ||
935              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
936            "Promote may not follow Expand or Promote");
937 
938     if (LA == TypeSplitVector)
939       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
940     if (LA == TypeScalarizeVector)
941       return LegalizeKind(LA, SVT.getVectorElementType());
942     return LegalizeKind(LA, NVT);
943   }
944 
945   // Handle Extended Scalar Types.
946   if (!VT.isVector()) {
947     assert(VT.isInteger() && "Float types must be simple");
948     unsigned BitSize = VT.getSizeInBits();
949     // First promote to a power-of-two size, then expand if necessary.
950     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
951       EVT NVT = VT.getRoundIntegerType(Context);
952       assert(NVT != VT && "Unable to round integer VT");
953       LegalizeKind NextStep = getTypeConversion(Context, NVT);
954       // Avoid multi-step promotion.
955       if (NextStep.first == TypePromoteInteger)
956         return NextStep;
957       // Return rounded integer type.
958       return LegalizeKind(TypePromoteInteger, NVT);
959     }
960 
961     return LegalizeKind(TypeExpandInteger,
962                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
963   }
964 
965   // Handle vector types.
966   ElementCount NumElts = VT.getVectorElementCount();
967   EVT EltVT = VT.getVectorElementType();
968 
969   // Vectors with only one element are always scalarized.
970   if (NumElts.isScalar())
971     return LegalizeKind(TypeScalarizeVector, EltVT);
972 
973   // Try to widen vector elements until the element type is a power of two and
974   // promote it to a legal type later on, for example:
975   // <3 x i8> -> <4 x i8> -> <4 x i32>
976   if (EltVT.isInteger()) {
977     // Vectors with a number of elements that is not a power of two are always
978     // widened, for example <3 x i8> -> <4 x i8>.
979     if (!VT.isPow2VectorType()) {
980       NumElts = NumElts.coefficientNextPowerOf2();
981       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
982       return LegalizeKind(TypeWidenVector, NVT);
983     }
984 
985     // Examine the element type.
986     LegalizeKind LK = getTypeConversion(Context, EltVT);
987 
988     // If type is to be expanded, split the vector.
989     //  <4 x i140> -> <2 x i140>
990     if (LK.first == TypeExpandInteger) {
991       if (VT.getVectorElementCount().isScalable())
992         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
993       return LegalizeKind(TypeSplitVector,
994                           VT.getHalfNumVectorElementsVT(Context));
995     }
996 
997     // Promote the integer element types until a legal vector type is found
998     // or until the element integer type is too big. If a legal type was not
999     // found, fallback to the usual mechanism of widening/splitting the
1000     // vector.
1001     EVT OldEltVT = EltVT;
1002     while (true) {
1003       // Increase the bitwidth of the element to the next pow-of-two
1004       // (which is greater than 8 bits).
1005       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1006                   .getRoundIntegerType(Context);
1007 
1008       // Stop trying when getting a non-simple element type.
1009       // Note that vector elements may be greater than legal vector element
1010       // types. Example: X86 XMM registers hold 64bit element on 32bit
1011       // systems.
1012       if (!EltVT.isSimple())
1013         break;
1014 
1015       // Build a new vector type and check if it is legal.
1016       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1017       // Found a legal promoted vector type.
1018       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1019         return LegalizeKind(TypePromoteInteger,
1020                             EVT::getVectorVT(Context, EltVT, NumElts));
1021     }
1022 
1023     // Reset the type to the unexpanded type if we did not find a legal vector
1024     // type with a promoted vector element type.
1025     EltVT = OldEltVT;
1026   }
1027 
1028   // Try to widen the vector until a legal type is found.
1029   // If there is no wider legal type, split the vector.
1030   while (true) {
1031     // Round up to the next power of 2.
1032     NumElts = NumElts.coefficientNextPowerOf2();
1033 
1034     // If there is no simple vector type with this many elements then there
1035     // cannot be a larger legal vector type.  Note that this assumes that
1036     // there are no skipped intermediate vector types in the simple types.
1037     if (!EltVT.isSimple())
1038       break;
1039     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1040     if (LargerVector == MVT())
1041       break;
1042 
1043     // If this type is legal then widen the vector.
1044     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1045       return LegalizeKind(TypeWidenVector, LargerVector);
1046   }
1047 
1048   // Widen odd vectors to next power of two.
1049   if (!VT.isPow2VectorType()) {
1050     EVT NVT = VT.getPow2VectorType(Context);
1051     return LegalizeKind(TypeWidenVector, NVT);
1052   }
1053 
1054   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1055     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1056 
1057   // Vectors with illegal element types are expanded.
1058   EVT NVT = EVT::getVectorVT(Context, EltVT,
1059                              VT.getVectorElementCount().divideCoefficientBy(2));
1060   return LegalizeKind(TypeSplitVector, NVT);
1061 }
1062 
1063 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1064                                           unsigned &NumIntermediates,
1065                                           MVT &RegisterVT,
1066                                           TargetLoweringBase *TLI) {
1067   // Figure out the right, legal destination reg to copy into.
1068   ElementCount EC = VT.getVectorElementCount();
1069   MVT EltTy = VT.getVectorElementType();
1070 
1071   unsigned NumVectorRegs = 1;
1072 
1073   // Scalable vectors cannot be scalarized, so splitting or widening is
1074   // required.
1075   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1076     llvm_unreachable(
1077         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1078 
1079   // FIXME: We don't support non-power-of-2-sized vectors for now.
1080   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1081   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1082     // Split EC to unit size (scalable property is preserved).
1083     NumVectorRegs = EC.getKnownMinValue();
1084     EC = ElementCount::getFixed(1);
1085   }
1086 
1087   // Divide the input until we get to a supported size. This will
1088   // always end up with an EC that represent a scalar or a scalable
1089   // scalar.
1090   while (EC.getKnownMinValue() > 1 &&
1091          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1092     EC = EC.divideCoefficientBy(2);
1093     NumVectorRegs <<= 1;
1094   }
1095 
1096   NumIntermediates = NumVectorRegs;
1097 
1098   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1099   if (!TLI->isTypeLegal(NewVT))
1100     NewVT = EltTy;
1101   IntermediateVT = NewVT;
1102 
1103   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1104 
1105   // Convert sizes such as i33 to i64.
1106   LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1107 
1108   MVT DestVT = TLI->getRegisterType(NewVT);
1109   RegisterVT = DestVT;
1110   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1111     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1112 
1113   // Otherwise, promotion or legal types use the same number of registers as
1114   // the vector decimated to the appropriate level.
1115   return NumVectorRegs;
1116 }
1117 
1118 /// isLegalRC - Return true if the value types that can be represented by the
1119 /// specified register class are all legal.
1120 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1121                                    const TargetRegisterClass &RC) const {
1122   for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1123     if (isTypeLegal(*I))
1124       return true;
1125   return false;
1126 }
1127 
1128 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1129 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1130 MachineBasicBlock *
1131 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1132                                    MachineBasicBlock *MBB) const {
1133   MachineInstr *MI = &InitialMI;
1134   MachineFunction &MF = *MI->getMF();
1135   MachineFrameInfo &MFI = MF.getFrameInfo();
1136 
1137   // We're handling multiple types of operands here:
1138   // PATCHPOINT MetaArgs - live-in, read only, direct
1139   // STATEPOINT Deopt Spill - live-through, read only, indirect
1140   // STATEPOINT Deopt Alloca - live-through, read only, direct
1141   // (We're currently conservative and mark the deopt slots read/write in
1142   // practice.)
1143   // STATEPOINT GC Spill - live-through, read/write, indirect
1144   // STATEPOINT GC Alloca - live-through, read/write, direct
1145   // The live-in vs live-through is handled already (the live through ones are
1146   // all stack slots), but we need to handle the different type of stackmap
1147   // operands and memory effects here.
1148 
1149   if (llvm::none_of(MI->operands(),
1150                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1151     return MBB;
1152 
1153   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1154 
1155   // Inherit previous memory operands.
1156   MIB.cloneMemRefs(*MI);
1157 
1158   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1159     MachineOperand &MO = MI->getOperand(i);
1160     if (!MO.isFI()) {
1161       // Index of Def operand this Use it tied to.
1162       // Since Defs are coming before Uses, if Use is tied, then
1163       // index of Def must be smaller that index of that Use.
1164       // Also, Defs preserve their position in new MI.
1165       unsigned TiedTo = i;
1166       if (MO.isReg() && MO.isTied())
1167         TiedTo = MI->findTiedOperandIdx(i);
1168       MIB.add(MO);
1169       if (TiedTo < i)
1170         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1171       continue;
1172     }
1173 
1174     // foldMemoryOperand builds a new MI after replacing a single FI operand
1175     // with the canonical set of five x86 addressing-mode operands.
1176     int FI = MO.getIndex();
1177 
1178     // Add frame index operands recognized by stackmaps.cpp
1179     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1180       // indirect-mem-ref tag, size, #FI, offset.
1181       // Used for spills inserted by StatepointLowering.  This codepath is not
1182       // used for patchpoints/stackmaps at all, for these spilling is done via
1183       // foldMemoryOperand callback only.
1184       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1185       MIB.addImm(StackMaps::IndirectMemRefOp);
1186       MIB.addImm(MFI.getObjectSize(FI));
1187       MIB.add(MO);
1188       MIB.addImm(0);
1189     } else {
1190       // direct-mem-ref tag, #FI, offset.
1191       // Used by patchpoint, and direct alloca arguments to statepoints
1192       MIB.addImm(StackMaps::DirectMemRefOp);
1193       MIB.add(MO);
1194       MIB.addImm(0);
1195     }
1196 
1197     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1198 
1199     // Add a new memory operand for this FI.
1200     assert(MFI.getObjectOffset(FI) != -1);
1201 
1202     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1203     // PATCHPOINT should be updated to do the same. (TODO)
1204     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1205       auto Flags = MachineMemOperand::MOLoad;
1206       MachineMemOperand *MMO = MF.getMachineMemOperand(
1207           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1208           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1209       MIB->addMemOperand(MF, MMO);
1210     }
1211   }
1212   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1213   MI->eraseFromParent();
1214   return MBB;
1215 }
1216 
1217 /// findRepresentativeClass - Return the largest legal super-reg register class
1218 /// of the register class for the specified type and its associated "cost".
1219 // This function is in TargetLowering because it uses RegClassForVT which would
1220 // need to be moved to TargetRegisterInfo and would necessitate moving
1221 // isTypeLegal over as well - a massive change that would just require
1222 // TargetLowering having a TargetRegisterInfo class member that it would use.
1223 std::pair<const TargetRegisterClass *, uint8_t>
1224 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1225                                             MVT VT) const {
1226   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1227   if (!RC)
1228     return std::make_pair(RC, 0);
1229 
1230   // Compute the set of all super-register classes.
1231   BitVector SuperRegRC(TRI->getNumRegClasses());
1232   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1233     SuperRegRC.setBitsInMask(RCI.getMask());
1234 
1235   // Find the first legal register class with the largest spill size.
1236   const TargetRegisterClass *BestRC = RC;
1237   for (unsigned i : SuperRegRC.set_bits()) {
1238     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1239     // We want the largest possible spill size.
1240     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1241       continue;
1242     if (!isLegalRC(*TRI, *SuperRC))
1243       continue;
1244     BestRC = SuperRC;
1245   }
1246   return std::make_pair(BestRC, 1);
1247 }
1248 
1249 /// computeRegisterProperties - Once all of the register classes are added,
1250 /// this allows us to compute derived properties we expose.
1251 void TargetLoweringBase::computeRegisterProperties(
1252     const TargetRegisterInfo *TRI) {
1253   // Everything defaults to needing one register.
1254   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1255     NumRegistersForVT[i] = 1;
1256     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1257   }
1258   // ...except isVoid, which doesn't need any registers.
1259   NumRegistersForVT[MVT::isVoid] = 0;
1260 
1261   // Find the largest integer register class.
1262   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1263   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1264     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1265 
1266   // Every integer value type larger than this largest register takes twice as
1267   // many registers to represent as the previous ValueType.
1268   for (unsigned ExpandedReg = LargestIntReg + 1;
1269        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1270     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1271     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1272     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1273     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1274                                    TypeExpandInteger);
1275   }
1276 
1277   // Inspect all of the ValueType's smaller than the largest integer
1278   // register to see which ones need promotion.
1279   unsigned LegalIntReg = LargestIntReg;
1280   for (unsigned IntReg = LargestIntReg - 1;
1281        IntReg >= (unsigned)MVT::i1; --IntReg) {
1282     MVT IVT = (MVT::SimpleValueType)IntReg;
1283     if (isTypeLegal(IVT)) {
1284       LegalIntReg = IntReg;
1285     } else {
1286       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1287         (MVT::SimpleValueType)LegalIntReg;
1288       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1289     }
1290   }
1291 
1292   // ppcf128 type is really two f64's.
1293   if (!isTypeLegal(MVT::ppcf128)) {
1294     if (isTypeLegal(MVT::f64)) {
1295       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1296       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1297       TransformToType[MVT::ppcf128] = MVT::f64;
1298       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1299     } else {
1300       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1301       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1302       TransformToType[MVT::ppcf128] = MVT::i128;
1303       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1304     }
1305   }
1306 
1307   // Decide how to handle f128. If the target does not have native f128 support,
1308   // expand it to i128 and we will be generating soft float library calls.
1309   if (!isTypeLegal(MVT::f128)) {
1310     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1311     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1312     TransformToType[MVT::f128] = MVT::i128;
1313     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1314   }
1315 
1316   // Decide how to handle f80. If the target does not have native f80 support,
1317   // expand it to i96 and we will be generating soft float library calls.
1318   if (!isTypeLegal(MVT::f80)) {
1319     NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1320     RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1321     TransformToType[MVT::f80] = MVT::i32;
1322     ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1323   }
1324 
1325   // Decide how to handle f64. If the target does not have native f64 support,
1326   // expand it to i64 and we will be generating soft float library calls.
1327   if (!isTypeLegal(MVT::f64)) {
1328     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1329     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1330     TransformToType[MVT::f64] = MVT::i64;
1331     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1332   }
1333 
1334   // Decide how to handle f32. If the target does not have native f32 support,
1335   // expand it to i32 and we will be generating soft float library calls.
1336   if (!isTypeLegal(MVT::f32)) {
1337     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1338     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1339     TransformToType[MVT::f32] = MVT::i32;
1340     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1341   }
1342 
1343   // Decide how to handle f16. If the target does not have native f16 support,
1344   // promote it to f32, because there are no f16 library calls (except for
1345   // conversions).
1346   if (!isTypeLegal(MVT::f16)) {
1347     // Allow targets to control how we legalize half.
1348     bool SoftPromoteHalfType = softPromoteHalfType();
1349     bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1350 
1351     if (!UseFPRegsForHalfType) {
1352       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1353       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1354     } else {
1355       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1356       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1357     }
1358     TransformToType[MVT::f16] = MVT::f32;
1359     if (SoftPromoteHalfType) {
1360       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1361     } else {
1362       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1363     }
1364   }
1365 
1366   // Decide how to handle bf16. If the target does not have native bf16 support,
1367   // promote it to f32, because there are no bf16 library calls (except for
1368   // converting from f32 to bf16).
1369   if (!isTypeLegal(MVT::bf16)) {
1370     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1371     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1372     TransformToType[MVT::bf16] = MVT::f32;
1373     ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1374   }
1375 
1376   // Loop over all of the vector value types to see which need transformations.
1377   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1378        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1379     MVT VT = (MVT::SimpleValueType) i;
1380     if (isTypeLegal(VT))
1381       continue;
1382 
1383     MVT EltVT = VT.getVectorElementType();
1384     ElementCount EC = VT.getVectorElementCount();
1385     bool IsLegalWiderType = false;
1386     bool IsScalable = VT.isScalableVector();
1387     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1388     switch (PreferredAction) {
1389     case TypePromoteInteger: {
1390       MVT::SimpleValueType EndVT = IsScalable ?
1391                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1392                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1393       // Try to promote the elements of integer vectors. If no legal
1394       // promotion was found, fall through to the widen-vector method.
1395       for (unsigned nVT = i + 1;
1396            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1397         MVT SVT = (MVT::SimpleValueType) nVT;
1398         // Promote vectors of integers to vectors with the same number
1399         // of elements, with a wider element type.
1400         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1401             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1402           TransformToType[i] = SVT;
1403           RegisterTypeForVT[i] = SVT;
1404           NumRegistersForVT[i] = 1;
1405           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1406           IsLegalWiderType = true;
1407           break;
1408         }
1409       }
1410       if (IsLegalWiderType)
1411         break;
1412       [[fallthrough]];
1413     }
1414 
1415     case TypeWidenVector:
1416       if (isPowerOf2_32(EC.getKnownMinValue())) {
1417         // Try to widen the vector.
1418         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1419           MVT SVT = (MVT::SimpleValueType) nVT;
1420           if (SVT.getVectorElementType() == EltVT &&
1421               SVT.isScalableVector() == IsScalable &&
1422               SVT.getVectorElementCount().getKnownMinValue() >
1423                   EC.getKnownMinValue() &&
1424               isTypeLegal(SVT)) {
1425             TransformToType[i] = SVT;
1426             RegisterTypeForVT[i] = SVT;
1427             NumRegistersForVT[i] = 1;
1428             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1429             IsLegalWiderType = true;
1430             break;
1431           }
1432         }
1433         if (IsLegalWiderType)
1434           break;
1435       } else {
1436         // Only widen to the next power of 2 to keep consistency with EVT.
1437         MVT NVT = VT.getPow2VectorType();
1438         if (isTypeLegal(NVT)) {
1439           TransformToType[i] = NVT;
1440           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1441           RegisterTypeForVT[i] = NVT;
1442           NumRegistersForVT[i] = 1;
1443           break;
1444         }
1445       }
1446       [[fallthrough]];
1447 
1448     case TypeSplitVector:
1449     case TypeScalarizeVector: {
1450       MVT IntermediateVT;
1451       MVT RegisterVT;
1452       unsigned NumIntermediates;
1453       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1454           NumIntermediates, RegisterVT, this);
1455       NumRegistersForVT[i] = NumRegisters;
1456       assert(NumRegistersForVT[i] == NumRegisters &&
1457              "NumRegistersForVT size cannot represent NumRegisters!");
1458       RegisterTypeForVT[i] = RegisterVT;
1459 
1460       MVT NVT = VT.getPow2VectorType();
1461       if (NVT == VT) {
1462         // Type is already a power of 2.  The default action is to split.
1463         TransformToType[i] = MVT::Other;
1464         if (PreferredAction == TypeScalarizeVector)
1465           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1466         else if (PreferredAction == TypeSplitVector)
1467           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1468         else if (EC.getKnownMinValue() > 1)
1469           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1470         else
1471           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1472                                                  ? TypeScalarizeScalableVector
1473                                                  : TypeScalarizeVector);
1474       } else {
1475         TransformToType[i] = NVT;
1476         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1477       }
1478       break;
1479     }
1480     default:
1481       llvm_unreachable("Unknown vector legalization action!");
1482     }
1483   }
1484 
1485   // Determine the 'representative' register class for each value type.
1486   // An representative register class is the largest (meaning one which is
1487   // not a sub-register class / subreg register class) legal register class for
1488   // a group of value types. For example, on i386, i8, i16, and i32
1489   // representative would be GR32; while on x86_64 it's GR64.
1490   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1491     const TargetRegisterClass* RRC;
1492     uint8_t Cost;
1493     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1494     RepRegClassForVT[i] = RRC;
1495     RepRegClassCostForVT[i] = Cost;
1496   }
1497 }
1498 
1499 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1500                                            EVT VT) const {
1501   assert(!VT.isVector() && "No default SetCC type for vectors!");
1502   return getPointerTy(DL).SimpleTy;
1503 }
1504 
1505 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1506   return MVT::i32; // return the default value
1507 }
1508 
1509 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1510 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1511 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1512 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1513 ///
1514 /// This method returns the number of registers needed, and the VT for each
1515 /// register.  It also returns the VT and quantity of the intermediate values
1516 /// before they are promoted/expanded.
1517 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1518                                                     EVT VT, EVT &IntermediateVT,
1519                                                     unsigned &NumIntermediates,
1520                                                     MVT &RegisterVT) const {
1521   ElementCount EltCnt = VT.getVectorElementCount();
1522 
1523   // If there is a wider vector type with the same element type as this one,
1524   // or a promoted vector type that has the same number of elements which
1525   // are wider, then we should convert to that legal vector type.
1526   // This handles things like <2 x float> -> <4 x float> and
1527   // <4 x i1> -> <4 x i32>.
1528   LegalizeTypeAction TA = getTypeAction(Context, VT);
1529   if (!EltCnt.isScalar() &&
1530       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1531     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1532     if (isTypeLegal(RegisterEVT)) {
1533       IntermediateVT = RegisterEVT;
1534       RegisterVT = RegisterEVT.getSimpleVT();
1535       NumIntermediates = 1;
1536       return 1;
1537     }
1538   }
1539 
1540   // Figure out the right, legal destination reg to copy into.
1541   EVT EltTy = VT.getVectorElementType();
1542 
1543   unsigned NumVectorRegs = 1;
1544 
1545   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1546   // types like done elsewhere in SelectionDAG.
1547   if (EltCnt.isScalable()) {
1548     LegalizeKind LK;
1549     EVT PartVT = VT;
1550     do {
1551       // Iterate until we've found a legal (part) type to hold VT.
1552       LK = getTypeConversion(Context, PartVT);
1553       PartVT = LK.second;
1554     } while (LK.first != TypeLegal);
1555 
1556     if (!PartVT.isVector()) {
1557       report_fatal_error(
1558           "Don't know how to legalize this scalable vector type");
1559     }
1560 
1561     NumIntermediates =
1562         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1563                    PartVT.getVectorElementCount().getKnownMinValue());
1564     IntermediateVT = PartVT;
1565     RegisterVT = getRegisterType(Context, IntermediateVT);
1566     return NumIntermediates;
1567   }
1568 
1569   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1570   // we could break down into LHS/RHS like LegalizeDAG does.
1571   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1572     NumVectorRegs = EltCnt.getKnownMinValue();
1573     EltCnt = ElementCount::getFixed(1);
1574   }
1575 
1576   // Divide the input until we get to a supported size.  This will always
1577   // end with a scalar if the target doesn't support vectors.
1578   while (EltCnt.getKnownMinValue() > 1 &&
1579          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1580     EltCnt = EltCnt.divideCoefficientBy(2);
1581     NumVectorRegs <<= 1;
1582   }
1583 
1584   NumIntermediates = NumVectorRegs;
1585 
1586   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1587   if (!isTypeLegal(NewVT))
1588     NewVT = EltTy;
1589   IntermediateVT = NewVT;
1590 
1591   MVT DestVT = getRegisterType(Context, NewVT);
1592   RegisterVT = DestVT;
1593 
1594   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1595     TypeSize NewVTSize = NewVT.getSizeInBits();
1596     // Convert sizes such as i33 to i64.
1597     if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1598       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1599     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1600   }
1601 
1602   // Otherwise, promotion or legal types use the same number of registers as
1603   // the vector decimated to the appropriate level.
1604   return NumVectorRegs;
1605 }
1606 
1607 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1608                                                 uint64_t NumCases,
1609                                                 uint64_t Range,
1610                                                 ProfileSummaryInfo *PSI,
1611                                                 BlockFrequencyInfo *BFI) const {
1612   // FIXME: This function check the maximum table size and density, but the
1613   // minimum size is not checked. It would be nice if the minimum size is
1614   // also combined within this function. Currently, the minimum size check is
1615   // performed in findJumpTable() in SelectionDAGBuiler and
1616   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1617   const bool OptForSize =
1618       SI->getParent()->getParent()->hasOptSize() ||
1619       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1620   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1621   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1622 
1623   // Check whether the number of cases is small enough and
1624   // the range is dense enough for a jump table.
1625   return (OptForSize || Range <= MaxJumpTableSize) &&
1626          (NumCases * 100 >= Range * MinDensity);
1627 }
1628 
1629 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1630                                                         EVT ConditionVT) const {
1631   return getRegisterType(Context, ConditionVT);
1632 }
1633 
1634 /// Get the EVTs and ArgFlags collections that represent the legalized return
1635 /// type of the given function.  This does not require a DAG or a return value,
1636 /// and is suitable for use before any DAGs for the function are constructed.
1637 /// TODO: Move this out of TargetLowering.cpp.
1638 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1639                          AttributeList attr,
1640                          SmallVectorImpl<ISD::OutputArg> &Outs,
1641                          const TargetLowering &TLI, const DataLayout &DL) {
1642   SmallVector<EVT, 4> ValueVTs;
1643   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1644   unsigned NumValues = ValueVTs.size();
1645   if (NumValues == 0) return;
1646 
1647   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1648     EVT VT = ValueVTs[j];
1649     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1650 
1651     if (attr.hasRetAttr(Attribute::SExt))
1652       ExtendKind = ISD::SIGN_EXTEND;
1653     else if (attr.hasRetAttr(Attribute::ZExt))
1654       ExtendKind = ISD::ZERO_EXTEND;
1655 
1656     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1657       VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1658 
1659     unsigned NumParts =
1660         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1661     MVT PartVT =
1662         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1663 
1664     // 'inreg' on function refers to return value
1665     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1666     if (attr.hasRetAttr(Attribute::InReg))
1667       Flags.setInReg();
1668 
1669     // Propagate extension type if any
1670     if (attr.hasRetAttr(Attribute::SExt))
1671       Flags.setSExt();
1672     else if (attr.hasRetAttr(Attribute::ZExt))
1673       Flags.setZExt();
1674 
1675     for (unsigned i = 0; i < NumParts; ++i) {
1676       ISD::ArgFlagsTy OutFlags = Flags;
1677       if (NumParts > 1 && i == 0)
1678         OutFlags.setSplit();
1679       else if (i == NumParts - 1 && i != 0)
1680         OutFlags.setSplitEnd();
1681 
1682       Outs.push_back(
1683           ISD::OutputArg(OutFlags, PartVT, VT, /*isfixed=*/true, 0, 0));
1684     }
1685   }
1686 }
1687 
1688 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1689 /// function arguments in the caller parameter area.  This is the actual
1690 /// alignment, not its logarithm.
1691 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1692                                                    const DataLayout &DL) const {
1693   return DL.getABITypeAlign(Ty).value();
1694 }
1695 
1696 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1697     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1698     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1699   // Check if the specified alignment is sufficient based on the data layout.
1700   // TODO: While using the data layout works in practice, a better solution
1701   // would be to implement this check directly (make this a virtual function).
1702   // For example, the ABI alignment may change based on software platform while
1703   // this function should only be affected by hardware implementation.
1704   Type *Ty = VT.getTypeForEVT(Context);
1705   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1706     // Assume that an access that meets the ABI-specified alignment is fast.
1707     if (Fast != nullptr)
1708       *Fast = 1;
1709     return true;
1710   }
1711 
1712   // This is a misaligned access.
1713   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1714 }
1715 
1716 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1717     LLVMContext &Context, const DataLayout &DL, EVT VT,
1718     const MachineMemOperand &MMO, unsigned *Fast) const {
1719   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1720                                         MMO.getAlign(), MMO.getFlags(), Fast);
1721 }
1722 
1723 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1724                                             const DataLayout &DL, EVT VT,
1725                                             unsigned AddrSpace, Align Alignment,
1726                                             MachineMemOperand::Flags Flags,
1727                                             unsigned *Fast) const {
1728   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1729                                         Flags, Fast);
1730 }
1731 
1732 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1733                                             const DataLayout &DL, EVT VT,
1734                                             const MachineMemOperand &MMO,
1735                                             unsigned *Fast) const {
1736   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1737                             MMO.getFlags(), Fast);
1738 }
1739 
1740 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1741                                             const DataLayout &DL, LLT Ty,
1742                                             const MachineMemOperand &MMO,
1743                                             unsigned *Fast) const {
1744   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1745   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1746                             MMO.getFlags(), Fast);
1747 }
1748 
1749 //===----------------------------------------------------------------------===//
1750 //  TargetTransformInfo Helpers
1751 //===----------------------------------------------------------------------===//
1752 
1753 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1754   enum InstructionOpcodes {
1755 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1756 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1757 #include "llvm/IR/Instruction.def"
1758   };
1759   switch (static_cast<InstructionOpcodes>(Opcode)) {
1760   case Ret:            return 0;
1761   case Br:             return 0;
1762   case Switch:         return 0;
1763   case IndirectBr:     return 0;
1764   case Invoke:         return 0;
1765   case CallBr:         return 0;
1766   case Resume:         return 0;
1767   case Unreachable:    return 0;
1768   case CleanupRet:     return 0;
1769   case CatchRet:       return 0;
1770   case CatchPad:       return 0;
1771   case CatchSwitch:    return 0;
1772   case CleanupPad:     return 0;
1773   case FNeg:           return ISD::FNEG;
1774   case Add:            return ISD::ADD;
1775   case FAdd:           return ISD::FADD;
1776   case Sub:            return ISD::SUB;
1777   case FSub:           return ISD::FSUB;
1778   case Mul:            return ISD::MUL;
1779   case FMul:           return ISD::FMUL;
1780   case UDiv:           return ISD::UDIV;
1781   case SDiv:           return ISD::SDIV;
1782   case FDiv:           return ISD::FDIV;
1783   case URem:           return ISD::UREM;
1784   case SRem:           return ISD::SREM;
1785   case FRem:           return ISD::FREM;
1786   case Shl:            return ISD::SHL;
1787   case LShr:           return ISD::SRL;
1788   case AShr:           return ISD::SRA;
1789   case And:            return ISD::AND;
1790   case Or:             return ISD::OR;
1791   case Xor:            return ISD::XOR;
1792   case Alloca:         return 0;
1793   case Load:           return ISD::LOAD;
1794   case Store:          return ISD::STORE;
1795   case GetElementPtr:  return 0;
1796   case Fence:          return 0;
1797   case AtomicCmpXchg:  return 0;
1798   case AtomicRMW:      return 0;
1799   case Trunc:          return ISD::TRUNCATE;
1800   case ZExt:           return ISD::ZERO_EXTEND;
1801   case SExt:           return ISD::SIGN_EXTEND;
1802   case FPToUI:         return ISD::FP_TO_UINT;
1803   case FPToSI:         return ISD::FP_TO_SINT;
1804   case UIToFP:         return ISD::UINT_TO_FP;
1805   case SIToFP:         return ISD::SINT_TO_FP;
1806   case FPTrunc:        return ISD::FP_ROUND;
1807   case FPExt:          return ISD::FP_EXTEND;
1808   case PtrToInt:       return ISD::BITCAST;
1809   case IntToPtr:       return ISD::BITCAST;
1810   case BitCast:        return ISD::BITCAST;
1811   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1812   case ICmp:           return ISD::SETCC;
1813   case FCmp:           return ISD::SETCC;
1814   case PHI:            return 0;
1815   case Call:           return 0;
1816   case Select:         return ISD::SELECT;
1817   case UserOp1:        return 0;
1818   case UserOp2:        return 0;
1819   case VAArg:          return 0;
1820   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1821   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1822   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1823   case ExtractValue:   return ISD::MERGE_VALUES;
1824   case InsertValue:    return ISD::MERGE_VALUES;
1825   case LandingPad:     return 0;
1826   case Freeze:         return ISD::FREEZE;
1827   }
1828 
1829   llvm_unreachable("Unknown instruction type encountered!");
1830 }
1831 
1832 Value *
1833 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1834                                                        bool UseTLS) const {
1835   // compiler-rt provides a variable with a magic name.  Targets that do not
1836   // link with compiler-rt may also provide such a variable.
1837   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1838   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1839   auto UnsafeStackPtr =
1840       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1841 
1842   Type *StackPtrTy = PointerType::getUnqual(M->getContext());
1843 
1844   if (!UnsafeStackPtr) {
1845     auto TLSModel = UseTLS ?
1846         GlobalValue::InitialExecTLSModel :
1847         GlobalValue::NotThreadLocal;
1848     // The global variable is not defined yet, define it ourselves.
1849     // We use the initial-exec TLS model because we do not support the
1850     // variable living anywhere other than in the main executable.
1851     UnsafeStackPtr = new GlobalVariable(
1852         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1853         UnsafeStackPtrVar, nullptr, TLSModel);
1854   } else {
1855     // The variable exists, check its type and attributes.
1856     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1857       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1858     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1859       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1860                          (UseTLS ? "" : "not ") + "be thread-local");
1861   }
1862   return UnsafeStackPtr;
1863 }
1864 
1865 Value *
1866 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1867   if (!TM.getTargetTriple().isAndroid())
1868     return getDefaultSafeStackPointerLocation(IRB, true);
1869 
1870   // Android provides a libc function to retrieve the address of the current
1871   // thread's unsafe stack pointer.
1872   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1873   auto *PtrTy = PointerType::getUnqual(M->getContext());
1874   FunctionCallee Fn =
1875       M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
1876   return IRB.CreateCall(Fn);
1877 }
1878 
1879 //===----------------------------------------------------------------------===//
1880 //  Loop Strength Reduction hooks
1881 //===----------------------------------------------------------------------===//
1882 
1883 /// isLegalAddressingMode - Return true if the addressing mode represented
1884 /// by AM is legal for this target, for a load/store of the specified type.
1885 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1886                                                const AddrMode &AM, Type *Ty,
1887                                                unsigned AS, Instruction *I) const {
1888   // The default implementation of this implements a conservative RISCy, r+r and
1889   // r+i addr mode.
1890 
1891   // Scalable offsets not supported
1892   if (AM.ScalableOffset)
1893     return false;
1894 
1895   // Allows a sign-extended 16-bit immediate field.
1896   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1897     return false;
1898 
1899   // No global is ever allowed as a base.
1900   if (AM.BaseGV)
1901     return false;
1902 
1903   // Only support r+r,
1904   switch (AM.Scale) {
1905   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1906     break;
1907   case 1:
1908     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1909       return false;
1910     // Otherwise we have r+r or r+i.
1911     break;
1912   case 2:
1913     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1914       return false;
1915     // Allow 2*r as r+r.
1916     break;
1917   default: // Don't allow n * r
1918     return false;
1919   }
1920 
1921   return true;
1922 }
1923 
1924 //===----------------------------------------------------------------------===//
1925 //  Stack Protector
1926 //===----------------------------------------------------------------------===//
1927 
1928 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1929 // so that SelectionDAG handle SSP.
1930 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1931   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1932     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1933     PointerType *PtrTy = PointerType::getUnqual(M.getContext());
1934     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1935     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1936       G->setVisibility(GlobalValue::HiddenVisibility);
1937     return C;
1938   }
1939   return nullptr;
1940 }
1941 
1942 // Currently only support "standard" __stack_chk_guard.
1943 // TODO: add LOAD_STACK_GUARD support.
1944 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1945   if (!M.getNamedValue("__stack_chk_guard")) {
1946     auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
1947                                   false, GlobalVariable::ExternalLinkage,
1948                                   nullptr, "__stack_chk_guard");
1949 
1950     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1951     if (M.getDirectAccessExternalData() &&
1952         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1953         !(TM.getTargetTriple().isPPC64() &&
1954           TM.getTargetTriple().isOSFreeBSD()) &&
1955         (!TM.getTargetTriple().isOSDarwin() ||
1956          TM.getRelocationModel() == Reloc::Static))
1957       GV->setDSOLocal(true);
1958   }
1959 }
1960 
1961 // Currently only support "standard" __stack_chk_guard.
1962 // TODO: add LOAD_STACK_GUARD support.
1963 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1964   return M.getNamedValue("__stack_chk_guard");
1965 }
1966 
1967 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1968   return nullptr;
1969 }
1970 
1971 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1972   return MinimumJumpTableEntries;
1973 }
1974 
1975 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1976   MinimumJumpTableEntries = Val;
1977 }
1978 
1979 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1980   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1981 }
1982 
1983 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1984   return MaximumJumpTableSize;
1985 }
1986 
1987 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1988   MaximumJumpTableSize = Val;
1989 }
1990 
1991 bool TargetLoweringBase::isJumpTableRelative() const {
1992   return getTargetMachine().isPositionIndependent();
1993 }
1994 
1995 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
1996   if (TM.Options.LoopAlignment)
1997     return Align(TM.Options.LoopAlignment);
1998   return PrefLoopAlignment;
1999 }
2000 
2001 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2002     MachineBasicBlock *MBB) const {
2003   return MaxBytesForAlignment;
2004 }
2005 
2006 //===----------------------------------------------------------------------===//
2007 //  Reciprocal Estimates
2008 //===----------------------------------------------------------------------===//
2009 
2010 /// Get the reciprocal estimate attribute string for a function that will
2011 /// override the target defaults.
2012 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2013   const Function &F = MF.getFunction();
2014   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2015 }
2016 
2017 /// Construct a string for the given reciprocal operation of the given type.
2018 /// This string should match the corresponding option to the front-end's
2019 /// "-mrecip" flag assuming those strings have been passed through in an
2020 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2021 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2022   std::string Name = VT.isVector() ? "vec-" : "";
2023 
2024   Name += IsSqrt ? "sqrt" : "div";
2025 
2026   // TODO: Handle other float types?
2027   if (VT.getScalarType() == MVT::f64) {
2028     Name += "d";
2029   } else if (VT.getScalarType() == MVT::f16) {
2030     Name += "h";
2031   } else {
2032     assert(VT.getScalarType() == MVT::f32 &&
2033            "Unexpected FP type for reciprocal estimate");
2034     Name += "f";
2035   }
2036 
2037   return Name;
2038 }
2039 
2040 /// Return the character position and value (a single numeric character) of a
2041 /// customized refinement operation in the input string if it exists. Return
2042 /// false if there is no customized refinement step count.
2043 static bool parseRefinementStep(StringRef In, size_t &Position,
2044                                 uint8_t &Value) {
2045   const char RefStepToken = ':';
2046   Position = In.find(RefStepToken);
2047   if (Position == StringRef::npos)
2048     return false;
2049 
2050   StringRef RefStepString = In.substr(Position + 1);
2051   // Allow exactly one numeric character for the additional refinement
2052   // step parameter.
2053   if (RefStepString.size() == 1) {
2054     char RefStepChar = RefStepString[0];
2055     if (isDigit(RefStepChar)) {
2056       Value = RefStepChar - '0';
2057       return true;
2058     }
2059   }
2060   report_fatal_error("Invalid refinement step for -recip.");
2061 }
2062 
2063 /// For the input attribute string, return one of the ReciprocalEstimate enum
2064 /// status values (enabled, disabled, or not specified) for this operation on
2065 /// the specified data type.
2066 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2067   if (Override.empty())
2068     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2069 
2070   SmallVector<StringRef, 4> OverrideVector;
2071   Override.split(OverrideVector, ',');
2072   unsigned NumArgs = OverrideVector.size();
2073 
2074   // Check if "all", "none", or "default" was specified.
2075   if (NumArgs == 1) {
2076     // Look for an optional setting of the number of refinement steps needed
2077     // for this type of reciprocal operation.
2078     size_t RefPos;
2079     uint8_t RefSteps;
2080     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2081       // Split the string for further processing.
2082       Override = Override.substr(0, RefPos);
2083     }
2084 
2085     // All reciprocal types are enabled.
2086     if (Override == "all")
2087       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2088 
2089     // All reciprocal types are disabled.
2090     if (Override == "none")
2091       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2092 
2093     // Target defaults for enablement are used.
2094     if (Override == "default")
2095       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2096   }
2097 
2098   // The attribute string may omit the size suffix ('f'/'d').
2099   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2100   std::string VTNameNoSize = VTName;
2101   VTNameNoSize.pop_back();
2102   static const char DisabledPrefix = '!';
2103 
2104   for (StringRef RecipType : OverrideVector) {
2105     size_t RefPos;
2106     uint8_t RefSteps;
2107     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2108       RecipType = RecipType.substr(0, RefPos);
2109 
2110     // Ignore the disablement token for string matching.
2111     bool IsDisabled = RecipType[0] == DisabledPrefix;
2112     if (IsDisabled)
2113       RecipType = RecipType.substr(1);
2114 
2115     if (RecipType == VTName || RecipType == VTNameNoSize)
2116       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2117                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2118   }
2119 
2120   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2121 }
2122 
2123 /// For the input attribute string, return the customized refinement step count
2124 /// for this operation on the specified data type. If the step count does not
2125 /// exist, return the ReciprocalEstimate enum value for unspecified.
2126 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2127   if (Override.empty())
2128     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2129 
2130   SmallVector<StringRef, 4> OverrideVector;
2131   Override.split(OverrideVector, ',');
2132   unsigned NumArgs = OverrideVector.size();
2133 
2134   // Check if "all", "default", or "none" was specified.
2135   if (NumArgs == 1) {
2136     // Look for an optional setting of the number of refinement steps needed
2137     // for this type of reciprocal operation.
2138     size_t RefPos;
2139     uint8_t RefSteps;
2140     if (!parseRefinementStep(Override, RefPos, RefSteps))
2141       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2142 
2143     // Split the string for further processing.
2144     Override = Override.substr(0, RefPos);
2145     assert(Override != "none" &&
2146            "Disabled reciprocals, but specifed refinement steps?");
2147 
2148     // If this is a general override, return the specified number of steps.
2149     if (Override == "all" || Override == "default")
2150       return RefSteps;
2151   }
2152 
2153   // The attribute string may omit the size suffix ('f'/'d').
2154   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2155   std::string VTNameNoSize = VTName;
2156   VTNameNoSize.pop_back();
2157 
2158   for (StringRef RecipType : OverrideVector) {
2159     size_t RefPos;
2160     uint8_t RefSteps;
2161     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2162       continue;
2163 
2164     RecipType = RecipType.substr(0, RefPos);
2165     if (RecipType == VTName || RecipType == VTNameNoSize)
2166       return RefSteps;
2167   }
2168 
2169   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2170 }
2171 
2172 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2173                                                     MachineFunction &MF) const {
2174   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2175 }
2176 
2177 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2178                                                    MachineFunction &MF) const {
2179   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2180 }
2181 
2182 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2183                                                MachineFunction &MF) const {
2184   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2185 }
2186 
2187 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2188                                               MachineFunction &MF) const {
2189   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2190 }
2191 
2192 bool TargetLoweringBase::isLoadBitCastBeneficial(
2193     EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2194     const MachineMemOperand &MMO) const {
2195   // Single-element vectors are scalarized, so we should generally avoid having
2196   // any memory operations on such types, as they would get scalarized too.
2197   if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2198       BitcastVT.getVectorNumElements() == 1)
2199     return false;
2200 
2201   // Don't do if we could do an indexed load on the original type, but not on
2202   // the new one.
2203   if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2204     return true;
2205 
2206   MVT LoadMVT = LoadVT.getSimpleVT();
2207 
2208   // Don't bother doing this if it's just going to be promoted again later, as
2209   // doing so might interfere with other combines.
2210   if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2211       getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2212     return false;
2213 
2214   unsigned Fast = 0;
2215   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2216                             MMO, &Fast) &&
2217          Fast;
2218 }
2219 
2220 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2221   MF.getRegInfo().freezeReservedRegs();
2222 }
2223 
2224 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2225     const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2226     const TargetLibraryInfo *LibInfo) const {
2227   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2228   if (LI.isVolatile())
2229     Flags |= MachineMemOperand::MOVolatile;
2230 
2231   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2232     Flags |= MachineMemOperand::MONonTemporal;
2233 
2234   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2235     Flags |= MachineMemOperand::MOInvariant;
2236 
2237   if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2238                                          LI.getAlign(), DL, &LI, AC,
2239                                          /*DT=*/nullptr, LibInfo))
2240     Flags |= MachineMemOperand::MODereferenceable;
2241 
2242   Flags |= getTargetMMOFlags(LI);
2243   return Flags;
2244 }
2245 
2246 MachineMemOperand::Flags
2247 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2248                                             const DataLayout &DL) const {
2249   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2250 
2251   if (SI.isVolatile())
2252     Flags |= MachineMemOperand::MOVolatile;
2253 
2254   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2255     Flags |= MachineMemOperand::MONonTemporal;
2256 
2257   // FIXME: Not preserving dereferenceable
2258   Flags |= getTargetMMOFlags(SI);
2259   return Flags;
2260 }
2261 
2262 MachineMemOperand::Flags
2263 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2264                                              const DataLayout &DL) const {
2265   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2266 
2267   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2268     if (RMW->isVolatile())
2269       Flags |= MachineMemOperand::MOVolatile;
2270   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2271     if (CmpX->isVolatile())
2272       Flags |= MachineMemOperand::MOVolatile;
2273   } else
2274     llvm_unreachable("not an atomic instruction");
2275 
2276   // FIXME: Not preserving dereferenceable
2277   Flags |= getTargetMMOFlags(AI);
2278   return Flags;
2279 }
2280 
2281 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2282                                                   Instruction *Inst,
2283                                                   AtomicOrdering Ord) const {
2284   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2285     return Builder.CreateFence(Ord);
2286   else
2287     return nullptr;
2288 }
2289 
2290 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2291                                                    Instruction *Inst,
2292                                                    AtomicOrdering Ord) const {
2293   if (isAcquireOrStronger(Ord))
2294     return Builder.CreateFence(Ord);
2295   else
2296     return nullptr;
2297 }
2298 
2299 //===----------------------------------------------------------------------===//
2300 //  GlobalISel Hooks
2301 //===----------------------------------------------------------------------===//
2302 
2303 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2304                                         const TargetTransformInfo *TTI) const {
2305   auto &MF = *MI.getMF();
2306   auto &MRI = MF.getRegInfo();
2307   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2308   // this helper function computes the maximum number of uses we should consider
2309   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2310   // break even in terms of code size when the original MI has 2 users vs
2311   // choosing to potentially spill. Any more than 2 users we we have a net code
2312   // size increase. This doesn't take into account register pressure though.
2313   auto maxUses = [](unsigned RematCost) {
2314     // A cost of 1 means remats are basically free.
2315     if (RematCost == 1)
2316       return std::numeric_limits<unsigned>::max();
2317     if (RematCost == 2)
2318       return 2U;
2319 
2320     // Remat is too expensive, only sink if there's one user.
2321     if (RematCost > 2)
2322       return 1U;
2323     llvm_unreachable("Unexpected remat cost");
2324   };
2325 
2326   switch (MI.getOpcode()) {
2327   default:
2328     return false;
2329   // Constants-like instructions should be close to their users.
2330   // We don't want long live-ranges for them.
2331   case TargetOpcode::G_CONSTANT:
2332   case TargetOpcode::G_FCONSTANT:
2333   case TargetOpcode::G_FRAME_INDEX:
2334   case TargetOpcode::G_INTTOPTR:
2335     return true;
2336   case TargetOpcode::G_GLOBAL_VALUE: {
2337     unsigned RematCost = TTI->getGISelRematGlobalCost();
2338     Register Reg = MI.getOperand(0).getReg();
2339     unsigned MaxUses = maxUses(RematCost);
2340     if (MaxUses == UINT_MAX)
2341       return true; // Remats are "free" so always localize.
2342     return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2343   }
2344   }
2345 }
2346