xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision b49b6e0f95c89f8dcb5898424c360b46019254b4)
1  //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This implements the TargetLoweringBase class.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/ADT/BitVector.h"
14  #include "llvm/ADT/STLExtras.h"
15  #include "llvm/ADT/SmallVector.h"
16  #include "llvm/ADT/StringExtras.h"
17  #include "llvm/ADT/StringRef.h"
18  #include "llvm/ADT/Triple.h"
19  #include "llvm/ADT/Twine.h"
20  #include "llvm/Analysis/Loads.h"
21  #include "llvm/Analysis/TargetTransformInfo.h"
22  #include "llvm/CodeGen/Analysis.h"
23  #include "llvm/CodeGen/ISDOpcodes.h"
24  #include "llvm/CodeGen/MachineBasicBlock.h"
25  #include "llvm/CodeGen/MachineFrameInfo.h"
26  #include "llvm/CodeGen/MachineFunction.h"
27  #include "llvm/CodeGen/MachineInstr.h"
28  #include "llvm/CodeGen/MachineInstrBuilder.h"
29  #include "llvm/CodeGen/MachineMemOperand.h"
30  #include "llvm/CodeGen/MachineOperand.h"
31  #include "llvm/CodeGen/MachineRegisterInfo.h"
32  #include "llvm/CodeGen/RuntimeLibcalls.h"
33  #include "llvm/CodeGen/StackMaps.h"
34  #include "llvm/CodeGen/TargetLowering.h"
35  #include "llvm/CodeGen/TargetOpcodes.h"
36  #include "llvm/CodeGen/TargetRegisterInfo.h"
37  #include "llvm/CodeGen/ValueTypes.h"
38  #include "llvm/IR/Attributes.h"
39  #include "llvm/IR/CallingConv.h"
40  #include "llvm/IR/DataLayout.h"
41  #include "llvm/IR/DerivedTypes.h"
42  #include "llvm/IR/Function.h"
43  #include "llvm/IR/GlobalValue.h"
44  #include "llvm/IR/GlobalVariable.h"
45  #include "llvm/IR/IRBuilder.h"
46  #include "llvm/IR/Module.h"
47  #include "llvm/IR/Type.h"
48  #include "llvm/Support/Casting.h"
49  #include "llvm/Support/CommandLine.h"
50  #include "llvm/Support/Compiler.h"
51  #include "llvm/Support/ErrorHandling.h"
52  #include "llvm/Support/MachineValueType.h"
53  #include "llvm/Support/MathExtras.h"
54  #include "llvm/Target/TargetMachine.h"
55  #include "llvm/Transforms/Utils/SizeOpts.h"
56  #include <algorithm>
57  #include <cassert>
58  #include <cstddef>
59  #include <cstdint>
60  #include <cstring>
61  #include <iterator>
62  #include <string>
63  #include <tuple>
64  #include <utility>
65  
66  using namespace llvm;
67  
68  static cl::opt<bool> JumpIsExpensiveOverride(
69      "jump-is-expensive", cl::init(false),
70      cl::desc("Do not create extra branches to split comparison logic."),
71      cl::Hidden);
72  
73  static cl::opt<unsigned> MinimumJumpTableEntries
74    ("min-jump-table-entries", cl::init(4), cl::Hidden,
75     cl::desc("Set minimum number of entries to use a jump table."));
76  
77  static cl::opt<unsigned> MaximumJumpTableSize
78    ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79     cl::desc("Set maximum size of jump tables."));
80  
81  /// Minimum jump table density for normal functions.
82  static cl::opt<unsigned>
83      JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                       cl::desc("Minimum density for building a jump table in "
85                                "a normal function"));
86  
87  /// Minimum jump table density for -Os or -Oz functions.
88  static cl::opt<unsigned> OptsizeJumpTableDensity(
89      "optsize-jump-table-density", cl::init(40), cl::Hidden,
90      cl::desc("Minimum density for building a jump table in "
91               "an optsize function"));
92  
93  // FIXME: This option is only to test if the strict fp operation processed
94  // correctly by preventing mutating strict fp operation to normal fp operation
95  // during development. When the backend supports strict float operation, this
96  // option will be meaningless.
97  static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98         cl::desc("Don't mutate strict-float node to a legalize node"),
99         cl::init(false), cl::Hidden);
100  
101  static bool darwinHasSinCos(const Triple &TT) {
102    assert(TT.isOSDarwin() && "should be called with darwin triple");
103    // Don't bother with 32 bit x86.
104    if (TT.getArch() == Triple::x86)
105      return false;
106    // Macos < 10.9 has no sincos_stret.
107    if (TT.isMacOSX())
108      return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109    // iOS < 7.0 has no sincos_stret.
110    if (TT.isiOS())
111      return !TT.isOSVersionLT(7, 0);
112    // Any other darwin such as WatchOS/TvOS is new enough.
113    return true;
114  }
115  
116  void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117  #define HANDLE_LIBCALL(code, name) \
118    setLibcallName(RTLIB::code, name);
119  #include "llvm/IR/RuntimeLibcalls.def"
120  #undef HANDLE_LIBCALL
121    // Initialize calling conventions to their default.
122    for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123      setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124  
125    // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126    if (TT.isPPC()) {
127      setLibcallName(RTLIB::ADD_F128, "__addkf3");
128      setLibcallName(RTLIB::SUB_F128, "__subkf3");
129      setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130      setLibcallName(RTLIB::DIV_F128, "__divkf3");
131      setLibcallName(RTLIB::POWI_F128, "__powikf2");
132      setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133      setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134      setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135      setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136      setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137      setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138      setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139      setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140      setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141      setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142      setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143      setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144      setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145      setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146      setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147      setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148      setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149      setLibcallName(RTLIB::UNE_F128, "__nekf2");
150      setLibcallName(RTLIB::OGE_F128, "__gekf2");
151      setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152      setLibcallName(RTLIB::OLE_F128, "__lekf2");
153      setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154      setLibcallName(RTLIB::UO_F128, "__unordkf2");
155    }
156  
157    // A few names are different on particular architectures or environments.
158    if (TT.isOSDarwin()) {
159      // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160      // of the gnueabi-style __gnu_*_ieee.
161      // FIXME: What about other targets?
162      setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163      setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
164  
165      // Some darwins have an optimized __bzero/bzero function.
166      switch (TT.getArch()) {
167      case Triple::x86:
168      case Triple::x86_64:
169        if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170          setLibcallName(RTLIB::BZERO, "__bzero");
171        break;
172      case Triple::aarch64:
173      case Triple::aarch64_32:
174        setLibcallName(RTLIB::BZERO, "bzero");
175        break;
176      default:
177        break;
178      }
179  
180      if (darwinHasSinCos(TT)) {
181        setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182        setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183        if (TT.isWatchABI()) {
184          setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185                                CallingConv::ARM_AAPCS_VFP);
186          setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187                                CallingConv::ARM_AAPCS_VFP);
188        }
189      }
190    } else {
191      setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192      setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
193    }
194  
195    if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196        (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197      setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198      setLibcallName(RTLIB::SINCOS_F64, "sincos");
199      setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200      setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201      setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
202    }
203  
204    if (TT.isPS4CPU()) {
205      setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206      setLibcallName(RTLIB::SINCOS_F64, "sincos");
207    }
208  
209    if (TT.isOSOpenBSD()) {
210      setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211    }
212  }
213  
214  /// GetFPLibCall - Helper to return the right libcall for the given floating
215  /// point type, or UNKNOWN_LIBCALL if there is none.
216  RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
217                                     RTLIB::Libcall Call_F32,
218                                     RTLIB::Libcall Call_F64,
219                                     RTLIB::Libcall Call_F80,
220                                     RTLIB::Libcall Call_F128,
221                                     RTLIB::Libcall Call_PPCF128) {
222    return
223      VT == MVT::f32 ? Call_F32 :
224      VT == MVT::f64 ? Call_F64 :
225      VT == MVT::f80 ? Call_F80 :
226      VT == MVT::f128 ? Call_F128 :
227      VT == MVT::ppcf128 ? Call_PPCF128 :
228      RTLIB::UNKNOWN_LIBCALL;
229  }
230  
231  /// getFPEXT - Return the FPEXT_*_* value for the given types, or
232  /// UNKNOWN_LIBCALL if there is none.
233  RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
234    if (OpVT == MVT::f16) {
235      if (RetVT == MVT::f32)
236        return FPEXT_F16_F32;
237      if (RetVT == MVT::f64)
238        return FPEXT_F16_F64;
239      if (RetVT == MVT::f128)
240        return FPEXT_F16_F128;
241    } else if (OpVT == MVT::f32) {
242      if (RetVT == MVT::f64)
243        return FPEXT_F32_F64;
244      if (RetVT == MVT::f128)
245        return FPEXT_F32_F128;
246      if (RetVT == MVT::ppcf128)
247        return FPEXT_F32_PPCF128;
248    } else if (OpVT == MVT::f64) {
249      if (RetVT == MVT::f128)
250        return FPEXT_F64_F128;
251      else if (RetVT == MVT::ppcf128)
252        return FPEXT_F64_PPCF128;
253    } else if (OpVT == MVT::f80) {
254      if (RetVT == MVT::f128)
255        return FPEXT_F80_F128;
256    }
257  
258    return UNKNOWN_LIBCALL;
259  }
260  
261  /// getFPROUND - Return the FPROUND_*_* value for the given types, or
262  /// UNKNOWN_LIBCALL if there is none.
263  RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
264    if (RetVT == MVT::f16) {
265      if (OpVT == MVT::f32)
266        return FPROUND_F32_F16;
267      if (OpVT == MVT::f64)
268        return FPROUND_F64_F16;
269      if (OpVT == MVT::f80)
270        return FPROUND_F80_F16;
271      if (OpVT == MVT::f128)
272        return FPROUND_F128_F16;
273      if (OpVT == MVT::ppcf128)
274        return FPROUND_PPCF128_F16;
275    } else if (RetVT == MVT::f32) {
276      if (OpVT == MVT::f64)
277        return FPROUND_F64_F32;
278      if (OpVT == MVT::f80)
279        return FPROUND_F80_F32;
280      if (OpVT == MVT::f128)
281        return FPROUND_F128_F32;
282      if (OpVT == MVT::ppcf128)
283        return FPROUND_PPCF128_F32;
284    } else if (RetVT == MVT::f64) {
285      if (OpVT == MVT::f80)
286        return FPROUND_F80_F64;
287      if (OpVT == MVT::f128)
288        return FPROUND_F128_F64;
289      if (OpVT == MVT::ppcf128)
290        return FPROUND_PPCF128_F64;
291    } else if (RetVT == MVT::f80) {
292      if (OpVT == MVT::f128)
293        return FPROUND_F128_F80;
294    }
295  
296    return UNKNOWN_LIBCALL;
297  }
298  
299  /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
300  /// UNKNOWN_LIBCALL if there is none.
301  RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
302    if (OpVT == MVT::f16) {
303      if (RetVT == MVT::i32)
304        return FPTOSINT_F16_I32;
305      if (RetVT == MVT::i64)
306        return FPTOSINT_F16_I64;
307      if (RetVT == MVT::i128)
308        return FPTOSINT_F16_I128;
309    } else if (OpVT == MVT::f32) {
310      if (RetVT == MVT::i32)
311        return FPTOSINT_F32_I32;
312      if (RetVT == MVT::i64)
313        return FPTOSINT_F32_I64;
314      if (RetVT == MVT::i128)
315        return FPTOSINT_F32_I128;
316    } else if (OpVT == MVT::f64) {
317      if (RetVT == MVT::i32)
318        return FPTOSINT_F64_I32;
319      if (RetVT == MVT::i64)
320        return FPTOSINT_F64_I64;
321      if (RetVT == MVT::i128)
322        return FPTOSINT_F64_I128;
323    } else if (OpVT == MVT::f80) {
324      if (RetVT == MVT::i32)
325        return FPTOSINT_F80_I32;
326      if (RetVT == MVT::i64)
327        return FPTOSINT_F80_I64;
328      if (RetVT == MVT::i128)
329        return FPTOSINT_F80_I128;
330    } else if (OpVT == MVT::f128) {
331      if (RetVT == MVT::i32)
332        return FPTOSINT_F128_I32;
333      if (RetVT == MVT::i64)
334        return FPTOSINT_F128_I64;
335      if (RetVT == MVT::i128)
336        return FPTOSINT_F128_I128;
337    } else if (OpVT == MVT::ppcf128) {
338      if (RetVT == MVT::i32)
339        return FPTOSINT_PPCF128_I32;
340      if (RetVT == MVT::i64)
341        return FPTOSINT_PPCF128_I64;
342      if (RetVT == MVT::i128)
343        return FPTOSINT_PPCF128_I128;
344    }
345    return UNKNOWN_LIBCALL;
346  }
347  
348  /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
349  /// UNKNOWN_LIBCALL if there is none.
350  RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
351    if (OpVT == MVT::f16) {
352      if (RetVT == MVT::i32)
353        return FPTOUINT_F16_I32;
354      if (RetVT == MVT::i64)
355        return FPTOUINT_F16_I64;
356      if (RetVT == MVT::i128)
357        return FPTOUINT_F16_I128;
358    } else if (OpVT == MVT::f32) {
359      if (RetVT == MVT::i32)
360        return FPTOUINT_F32_I32;
361      if (RetVT == MVT::i64)
362        return FPTOUINT_F32_I64;
363      if (RetVT == MVT::i128)
364        return FPTOUINT_F32_I128;
365    } else if (OpVT == MVT::f64) {
366      if (RetVT == MVT::i32)
367        return FPTOUINT_F64_I32;
368      if (RetVT == MVT::i64)
369        return FPTOUINT_F64_I64;
370      if (RetVT == MVT::i128)
371        return FPTOUINT_F64_I128;
372    } else if (OpVT == MVT::f80) {
373      if (RetVT == MVT::i32)
374        return FPTOUINT_F80_I32;
375      if (RetVT == MVT::i64)
376        return FPTOUINT_F80_I64;
377      if (RetVT == MVT::i128)
378        return FPTOUINT_F80_I128;
379    } else if (OpVT == MVT::f128) {
380      if (RetVT == MVT::i32)
381        return FPTOUINT_F128_I32;
382      if (RetVT == MVT::i64)
383        return FPTOUINT_F128_I64;
384      if (RetVT == MVT::i128)
385        return FPTOUINT_F128_I128;
386    } else if (OpVT == MVT::ppcf128) {
387      if (RetVT == MVT::i32)
388        return FPTOUINT_PPCF128_I32;
389      if (RetVT == MVT::i64)
390        return FPTOUINT_PPCF128_I64;
391      if (RetVT == MVT::i128)
392        return FPTOUINT_PPCF128_I128;
393    }
394    return UNKNOWN_LIBCALL;
395  }
396  
397  /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
398  /// UNKNOWN_LIBCALL if there is none.
399  RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
400    if (OpVT == MVT::i32) {
401      if (RetVT == MVT::f16)
402        return SINTTOFP_I32_F16;
403      if (RetVT == MVT::f32)
404        return SINTTOFP_I32_F32;
405      if (RetVT == MVT::f64)
406        return SINTTOFP_I32_F64;
407      if (RetVT == MVT::f80)
408        return SINTTOFP_I32_F80;
409      if (RetVT == MVT::f128)
410        return SINTTOFP_I32_F128;
411      if (RetVT == MVT::ppcf128)
412        return SINTTOFP_I32_PPCF128;
413    } else if (OpVT == MVT::i64) {
414      if (RetVT == MVT::f16)
415        return SINTTOFP_I64_F16;
416      if (RetVT == MVT::f32)
417        return SINTTOFP_I64_F32;
418      if (RetVT == MVT::f64)
419        return SINTTOFP_I64_F64;
420      if (RetVT == MVT::f80)
421        return SINTTOFP_I64_F80;
422      if (RetVT == MVT::f128)
423        return SINTTOFP_I64_F128;
424      if (RetVT == MVT::ppcf128)
425        return SINTTOFP_I64_PPCF128;
426    } else if (OpVT == MVT::i128) {
427      if (RetVT == MVT::f16)
428        return SINTTOFP_I128_F16;
429      if (RetVT == MVT::f32)
430        return SINTTOFP_I128_F32;
431      if (RetVT == MVT::f64)
432        return SINTTOFP_I128_F64;
433      if (RetVT == MVT::f80)
434        return SINTTOFP_I128_F80;
435      if (RetVT == MVT::f128)
436        return SINTTOFP_I128_F128;
437      if (RetVT == MVT::ppcf128)
438        return SINTTOFP_I128_PPCF128;
439    }
440    return UNKNOWN_LIBCALL;
441  }
442  
443  /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
444  /// UNKNOWN_LIBCALL if there is none.
445  RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
446    if (OpVT == MVT::i32) {
447      if (RetVT == MVT::f16)
448        return UINTTOFP_I32_F16;
449      if (RetVT == MVT::f32)
450        return UINTTOFP_I32_F32;
451      if (RetVT == MVT::f64)
452        return UINTTOFP_I32_F64;
453      if (RetVT == MVT::f80)
454        return UINTTOFP_I32_F80;
455      if (RetVT == MVT::f128)
456        return UINTTOFP_I32_F128;
457      if (RetVT == MVT::ppcf128)
458        return UINTTOFP_I32_PPCF128;
459    } else if (OpVT == MVT::i64) {
460      if (RetVT == MVT::f16)
461        return UINTTOFP_I64_F16;
462      if (RetVT == MVT::f32)
463        return UINTTOFP_I64_F32;
464      if (RetVT == MVT::f64)
465        return UINTTOFP_I64_F64;
466      if (RetVT == MVT::f80)
467        return UINTTOFP_I64_F80;
468      if (RetVT == MVT::f128)
469        return UINTTOFP_I64_F128;
470      if (RetVT == MVT::ppcf128)
471        return UINTTOFP_I64_PPCF128;
472    } else if (OpVT == MVT::i128) {
473      if (RetVT == MVT::f16)
474        return UINTTOFP_I128_F16;
475      if (RetVT == MVT::f32)
476        return UINTTOFP_I128_F32;
477      if (RetVT == MVT::f64)
478        return UINTTOFP_I128_F64;
479      if (RetVT == MVT::f80)
480        return UINTTOFP_I128_F80;
481      if (RetVT == MVT::f128)
482        return UINTTOFP_I128_F128;
483      if (RetVT == MVT::ppcf128)
484        return UINTTOFP_I128_PPCF128;
485    }
486    return UNKNOWN_LIBCALL;
487  }
488  
489  RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
490    return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
491                        POWI_PPCF128);
492  }
493  
494  RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
495                                          MVT VT) {
496    unsigned ModeN, ModelN;
497    switch (VT.SimpleTy) {
498    case MVT::i8:
499      ModeN = 0;
500      break;
501    case MVT::i16:
502      ModeN = 1;
503      break;
504    case MVT::i32:
505      ModeN = 2;
506      break;
507    case MVT::i64:
508      ModeN = 3;
509      break;
510    case MVT::i128:
511      ModeN = 4;
512      break;
513    default:
514      return UNKNOWN_LIBCALL;
515    }
516  
517    switch (Order) {
518    case AtomicOrdering::Monotonic:
519      ModelN = 0;
520      break;
521    case AtomicOrdering::Acquire:
522      ModelN = 1;
523      break;
524    case AtomicOrdering::Release:
525      ModelN = 2;
526      break;
527    case AtomicOrdering::AcquireRelease:
528    case AtomicOrdering::SequentiallyConsistent:
529      ModelN = 3;
530      break;
531    default:
532      return UNKNOWN_LIBCALL;
533    }
534  
535  #define LCALLS(A, B)                                                           \
536    { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
537  #define LCALL5(A)                                                              \
538    LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
539    switch (Opc) {
540    case ISD::ATOMIC_CMP_SWAP: {
541      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
542      return LC[ModeN][ModelN];
543    }
544    case ISD::ATOMIC_SWAP: {
545      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
546      return LC[ModeN][ModelN];
547    }
548    case ISD::ATOMIC_LOAD_ADD: {
549      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
550      return LC[ModeN][ModelN];
551    }
552    case ISD::ATOMIC_LOAD_OR: {
553      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
554      return LC[ModeN][ModelN];
555    }
556    case ISD::ATOMIC_LOAD_CLR: {
557      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
558      return LC[ModeN][ModelN];
559    }
560    case ISD::ATOMIC_LOAD_XOR: {
561      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
562      return LC[ModeN][ModelN];
563    }
564    default:
565      return UNKNOWN_LIBCALL;
566    }
567  #undef LCALLS
568  #undef LCALL5
569  }
570  
571  RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
572  #define OP_TO_LIBCALL(Name, Enum)                                              \
573    case Name:                                                                   \
574      switch (VT.SimpleTy) {                                                     \
575      default:                                                                   \
576        return UNKNOWN_LIBCALL;                                                  \
577      case MVT::i8:                                                              \
578        return Enum##_1;                                                         \
579      case MVT::i16:                                                             \
580        return Enum##_2;                                                         \
581      case MVT::i32:                                                             \
582        return Enum##_4;                                                         \
583      case MVT::i64:                                                             \
584        return Enum##_8;                                                         \
585      case MVT::i128:                                                            \
586        return Enum##_16;                                                        \
587      }
588  
589    switch (Opc) {
590      OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
591      OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
592      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
593      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
594      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
595      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
596      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
597      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
598      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
599      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
600      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
601      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
602    }
603  
604  #undef OP_TO_LIBCALL
605  
606    return UNKNOWN_LIBCALL;
607  }
608  
609  RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
610    switch (ElementSize) {
611    case 1:
612      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
613    case 2:
614      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
615    case 4:
616      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
617    case 8:
618      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
619    case 16:
620      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
621    default:
622      return UNKNOWN_LIBCALL;
623    }
624  }
625  
626  RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
627    switch (ElementSize) {
628    case 1:
629      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
630    case 2:
631      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
632    case 4:
633      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
634    case 8:
635      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
636    case 16:
637      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
638    default:
639      return UNKNOWN_LIBCALL;
640    }
641  }
642  
643  RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
644    switch (ElementSize) {
645    case 1:
646      return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
647    case 2:
648      return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
649    case 4:
650      return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
651    case 8:
652      return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
653    case 16:
654      return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
655    default:
656      return UNKNOWN_LIBCALL;
657    }
658  }
659  
660  /// InitCmpLibcallCCs - Set default comparison libcall CC.
661  static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
662    memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
663    CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
664    CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
665    CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
666    CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
667    CCs[RTLIB::UNE_F32] = ISD::SETNE;
668    CCs[RTLIB::UNE_F64] = ISD::SETNE;
669    CCs[RTLIB::UNE_F128] = ISD::SETNE;
670    CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
671    CCs[RTLIB::OGE_F32] = ISD::SETGE;
672    CCs[RTLIB::OGE_F64] = ISD::SETGE;
673    CCs[RTLIB::OGE_F128] = ISD::SETGE;
674    CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
675    CCs[RTLIB::OLT_F32] = ISD::SETLT;
676    CCs[RTLIB::OLT_F64] = ISD::SETLT;
677    CCs[RTLIB::OLT_F128] = ISD::SETLT;
678    CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
679    CCs[RTLIB::OLE_F32] = ISD::SETLE;
680    CCs[RTLIB::OLE_F64] = ISD::SETLE;
681    CCs[RTLIB::OLE_F128] = ISD::SETLE;
682    CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
683    CCs[RTLIB::OGT_F32] = ISD::SETGT;
684    CCs[RTLIB::OGT_F64] = ISD::SETGT;
685    CCs[RTLIB::OGT_F128] = ISD::SETGT;
686    CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
687    CCs[RTLIB::UO_F32] = ISD::SETNE;
688    CCs[RTLIB::UO_F64] = ISD::SETNE;
689    CCs[RTLIB::UO_F128] = ISD::SETNE;
690    CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
691  }
692  
693  /// NOTE: The TargetMachine owns TLOF.
694  TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
695    initActions();
696  
697    // Perform these initializations only once.
698    MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
699        MaxLoadsPerMemcmp = 8;
700    MaxGluedStoresPerMemcpy = 0;
701    MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
702        MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
703    HasMultipleConditionRegisters = false;
704    HasExtractBitsInsn = false;
705    JumpIsExpensive = JumpIsExpensiveOverride;
706    PredictableSelectIsExpensive = false;
707    EnableExtLdPromotion = false;
708    StackPointerRegisterToSaveRestore = 0;
709    BooleanContents = UndefinedBooleanContent;
710    BooleanFloatContents = UndefinedBooleanContent;
711    BooleanVectorContents = UndefinedBooleanContent;
712    SchedPreferenceInfo = Sched::ILP;
713    GatherAllAliasesMaxDepth = 18;
714    IsStrictFPEnabled = DisableStrictNodeMutation;
715    // TODO: the default will be switched to 0 in the next commit, along
716    // with the Target-specific changes necessary.
717    MaxAtomicSizeInBitsSupported = 1024;
718  
719    MinCmpXchgSizeInBits = 0;
720    SupportsUnalignedAtomics = false;
721  
722    std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
723  
724    InitLibcalls(TM.getTargetTriple());
725    InitCmpLibcallCCs(CmpLibcallCCs);
726  }
727  
728  void TargetLoweringBase::initActions() {
729    // All operations default to being supported.
730    memset(OpActions, 0, sizeof(OpActions));
731    memset(LoadExtActions, 0, sizeof(LoadExtActions));
732    memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
733    memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
734    memset(CondCodeActions, 0, sizeof(CondCodeActions));
735    std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
736    std::fill(std::begin(TargetDAGCombineArray),
737              std::end(TargetDAGCombineArray), 0);
738  
739    for (MVT VT : MVT::fp_valuetypes()) {
740      MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
741      if (IntVT.isValid()) {
742        setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
743        AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
744      }
745    }
746  
747    // Set default actions for various operations.
748    for (MVT VT : MVT::all_valuetypes()) {
749      // Default all indexed load / store to expand.
750      for (unsigned IM = (unsigned)ISD::PRE_INC;
751           IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
752        setIndexedLoadAction(IM, VT, Expand);
753        setIndexedStoreAction(IM, VT, Expand);
754        setIndexedMaskedLoadAction(IM, VT, Expand);
755        setIndexedMaskedStoreAction(IM, VT, Expand);
756      }
757  
758      // Most backends expect to see the node which just returns the value loaded.
759      setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
760  
761      // These operations default to expand.
762      setOperationAction(ISD::FGETSIGN, VT, Expand);
763      setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
764      setOperationAction(ISD::FMINNUM, VT, Expand);
765      setOperationAction(ISD::FMAXNUM, VT, Expand);
766      setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
767      setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
768      setOperationAction(ISD::FMINIMUM, VT, Expand);
769      setOperationAction(ISD::FMAXIMUM, VT, Expand);
770      setOperationAction(ISD::FMAD, VT, Expand);
771      setOperationAction(ISD::SMIN, VT, Expand);
772      setOperationAction(ISD::SMAX, VT, Expand);
773      setOperationAction(ISD::UMIN, VT, Expand);
774      setOperationAction(ISD::UMAX, VT, Expand);
775      setOperationAction(ISD::ABS, VT, Expand);
776      setOperationAction(ISD::FSHL, VT, Expand);
777      setOperationAction(ISD::FSHR, VT, Expand);
778      setOperationAction(ISD::SADDSAT, VT, Expand);
779      setOperationAction(ISD::UADDSAT, VT, Expand);
780      setOperationAction(ISD::SSUBSAT, VT, Expand);
781      setOperationAction(ISD::USUBSAT, VT, Expand);
782      setOperationAction(ISD::SSHLSAT, VT, Expand);
783      setOperationAction(ISD::USHLSAT, VT, Expand);
784      setOperationAction(ISD::SMULFIX, VT, Expand);
785      setOperationAction(ISD::SMULFIXSAT, VT, Expand);
786      setOperationAction(ISD::UMULFIX, VT, Expand);
787      setOperationAction(ISD::UMULFIXSAT, VT, Expand);
788      setOperationAction(ISD::SDIVFIX, VT, Expand);
789      setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
790      setOperationAction(ISD::UDIVFIX, VT, Expand);
791      setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
792      setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand);
793      setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand);
794  
795      // Overflow operations default to expand
796      setOperationAction(ISD::SADDO, VT, Expand);
797      setOperationAction(ISD::SSUBO, VT, Expand);
798      setOperationAction(ISD::UADDO, VT, Expand);
799      setOperationAction(ISD::USUBO, VT, Expand);
800      setOperationAction(ISD::SMULO, VT, Expand);
801      setOperationAction(ISD::UMULO, VT, Expand);
802  
803      // ADDCARRY operations default to expand
804      setOperationAction(ISD::ADDCARRY, VT, Expand);
805      setOperationAction(ISD::SUBCARRY, VT, Expand);
806      setOperationAction(ISD::SETCCCARRY, VT, Expand);
807      setOperationAction(ISD::SADDO_CARRY, VT, Expand);
808      setOperationAction(ISD::SSUBO_CARRY, VT, Expand);
809  
810      // ADDC/ADDE/SUBC/SUBE default to expand.
811      setOperationAction(ISD::ADDC, VT, Expand);
812      setOperationAction(ISD::ADDE, VT, Expand);
813      setOperationAction(ISD::SUBC, VT, Expand);
814      setOperationAction(ISD::SUBE, VT, Expand);
815  
816      // Absolute difference
817      setOperationAction(ISD::ABDS, VT, Expand);
818      setOperationAction(ISD::ABDU, VT, Expand);
819  
820      // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
821      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
822      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
823  
824      setOperationAction(ISD::BITREVERSE, VT, Expand);
825      setOperationAction(ISD::PARITY, VT, Expand);
826  
827      // These library functions default to expand.
828      setOperationAction(ISD::FROUND, VT, Expand);
829      setOperationAction(ISD::FROUNDEVEN, VT, Expand);
830      setOperationAction(ISD::FPOWI, VT, Expand);
831  
832      // These operations default to expand for vector types.
833      if (VT.isVector()) {
834        setOperationAction(ISD::FCOPYSIGN, VT, Expand);
835        setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
836        setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
837        setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
838        setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
839        setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
840      }
841  
842      // Constrained floating-point operations default to expand.
843  #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
844      setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
845  #include "llvm/IR/ConstrainedOps.def"
846  
847      // For most targets @llvm.get.dynamic.area.offset just returns 0.
848      setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
849  
850      // Vector reduction default to expand.
851      setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
852      setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
853      setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
854      setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
855      setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
856      setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
857      setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
858      setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
859      setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
860      setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
861      setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
862      setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
863      setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
864      setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand);
865      setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand);
866  
867      // Named vector shuffles default to expand.
868      setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
869    }
870  
871    // Most targets ignore the @llvm.prefetch intrinsic.
872    setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
873  
874    // Most targets also ignore the @llvm.readcyclecounter intrinsic.
875    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
876  
877    // ConstantFP nodes default to expand.  Targets can either change this to
878    // Legal, in which case all fp constants are legal, or use isFPImmLegal()
879    // to optimize expansions for certain constants.
880    setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
881    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
882    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
883    setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
884    setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
885  
886    // These library functions default to expand.
887    for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
888      setOperationAction(ISD::FCBRT,      VT, Expand);
889      setOperationAction(ISD::FLOG ,      VT, Expand);
890      setOperationAction(ISD::FLOG2,      VT, Expand);
891      setOperationAction(ISD::FLOG10,     VT, Expand);
892      setOperationAction(ISD::FEXP ,      VT, Expand);
893      setOperationAction(ISD::FEXP2,      VT, Expand);
894      setOperationAction(ISD::FFLOOR,     VT, Expand);
895      setOperationAction(ISD::FNEARBYINT, VT, Expand);
896      setOperationAction(ISD::FCEIL,      VT, Expand);
897      setOperationAction(ISD::FRINT,      VT, Expand);
898      setOperationAction(ISD::FTRUNC,     VT, Expand);
899      setOperationAction(ISD::FROUND,     VT, Expand);
900      setOperationAction(ISD::FROUNDEVEN, VT, Expand);
901      setOperationAction(ISD::LROUND,     VT, Expand);
902      setOperationAction(ISD::LLROUND,    VT, Expand);
903      setOperationAction(ISD::LRINT,      VT, Expand);
904      setOperationAction(ISD::LLRINT,     VT, Expand);
905    }
906  
907    // Default ISD::TRAP to expand (which turns it into abort).
908    setOperationAction(ISD::TRAP, MVT::Other, Expand);
909  
910    // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
911    // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
912    setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
913  
914    setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
915  }
916  
917  MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
918                                                 EVT) const {
919    return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
920  }
921  
922  EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
923                                           bool LegalTypes) const {
924    assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
925    if (LHSTy.isVector())
926      return LHSTy;
927    return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
928                      : getPointerTy(DL);
929  }
930  
931  bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
932    assert(isTypeLegal(VT));
933    switch (Op) {
934    default:
935      return false;
936    case ISD::SDIV:
937    case ISD::UDIV:
938    case ISD::SREM:
939    case ISD::UREM:
940      return true;
941    }
942  }
943  
944  bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
945                                               unsigned DestAS) const {
946    return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
947  }
948  
949  void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
950    // If the command-line option was specified, ignore this request.
951    if (!JumpIsExpensiveOverride.getNumOccurrences())
952      JumpIsExpensive = isExpensive;
953  }
954  
955  TargetLoweringBase::LegalizeKind
956  TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
957    // If this is a simple type, use the ComputeRegisterProp mechanism.
958    if (VT.isSimple()) {
959      MVT SVT = VT.getSimpleVT();
960      assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
961      MVT NVT = TransformToType[SVT.SimpleTy];
962      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
963  
964      assert((LA == TypeLegal || LA == TypeSoftenFloat ||
965              LA == TypeSoftPromoteHalf ||
966              (NVT.isVector() ||
967               ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
968             "Promote may not follow Expand or Promote");
969  
970      if (LA == TypeSplitVector)
971        return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
972      if (LA == TypeScalarizeVector)
973        return LegalizeKind(LA, SVT.getVectorElementType());
974      return LegalizeKind(LA, NVT);
975    }
976  
977    // Handle Extended Scalar Types.
978    if (!VT.isVector()) {
979      assert(VT.isInteger() && "Float types must be simple");
980      unsigned BitSize = VT.getSizeInBits();
981      // First promote to a power-of-two size, then expand if necessary.
982      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
983        EVT NVT = VT.getRoundIntegerType(Context);
984        assert(NVT != VT && "Unable to round integer VT");
985        LegalizeKind NextStep = getTypeConversion(Context, NVT);
986        // Avoid multi-step promotion.
987        if (NextStep.first == TypePromoteInteger)
988          return NextStep;
989        // Return rounded integer type.
990        return LegalizeKind(TypePromoteInteger, NVT);
991      }
992  
993      return LegalizeKind(TypeExpandInteger,
994                          EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
995    }
996  
997    // Handle vector types.
998    ElementCount NumElts = VT.getVectorElementCount();
999    EVT EltVT = VT.getVectorElementType();
1000  
1001    // Vectors with only one element are always scalarized.
1002    if (NumElts.isScalar())
1003      return LegalizeKind(TypeScalarizeVector, EltVT);
1004  
1005    // Try to widen vector elements until the element type is a power of two and
1006    // promote it to a legal type later on, for example:
1007    // <3 x i8> -> <4 x i8> -> <4 x i32>
1008    if (EltVT.isInteger()) {
1009      // Vectors with a number of elements that is not a power of two are always
1010      // widened, for example <3 x i8> -> <4 x i8>.
1011      if (!VT.isPow2VectorType()) {
1012        NumElts = NumElts.coefficientNextPowerOf2();
1013        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1014        return LegalizeKind(TypeWidenVector, NVT);
1015      }
1016  
1017      // Examine the element type.
1018      LegalizeKind LK = getTypeConversion(Context, EltVT);
1019  
1020      // If type is to be expanded, split the vector.
1021      //  <4 x i140> -> <2 x i140>
1022      if (LK.first == TypeExpandInteger) {
1023        if (VT.getVectorElementCount().isScalable())
1024          return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1025        return LegalizeKind(TypeSplitVector,
1026                            VT.getHalfNumVectorElementsVT(Context));
1027      }
1028  
1029      // Promote the integer element types until a legal vector type is found
1030      // or until the element integer type is too big. If a legal type was not
1031      // found, fallback to the usual mechanism of widening/splitting the
1032      // vector.
1033      EVT OldEltVT = EltVT;
1034      while (true) {
1035        // Increase the bitwidth of the element to the next pow-of-two
1036        // (which is greater than 8 bits).
1037        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1038                    .getRoundIntegerType(Context);
1039  
1040        // Stop trying when getting a non-simple element type.
1041        // Note that vector elements may be greater than legal vector element
1042        // types. Example: X86 XMM registers hold 64bit element on 32bit
1043        // systems.
1044        if (!EltVT.isSimple())
1045          break;
1046  
1047        // Build a new vector type and check if it is legal.
1048        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1049        // Found a legal promoted vector type.
1050        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1051          return LegalizeKind(TypePromoteInteger,
1052                              EVT::getVectorVT(Context, EltVT, NumElts));
1053      }
1054  
1055      // Reset the type to the unexpanded type if we did not find a legal vector
1056      // type with a promoted vector element type.
1057      EltVT = OldEltVT;
1058    }
1059  
1060    // Try to widen the vector until a legal type is found.
1061    // If there is no wider legal type, split the vector.
1062    while (true) {
1063      // Round up to the next power of 2.
1064      NumElts = NumElts.coefficientNextPowerOf2();
1065  
1066      // If there is no simple vector type with this many elements then there
1067      // cannot be a larger legal vector type.  Note that this assumes that
1068      // there are no skipped intermediate vector types in the simple types.
1069      if (!EltVT.isSimple())
1070        break;
1071      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1072      if (LargerVector == MVT())
1073        break;
1074  
1075      // If this type is legal then widen the vector.
1076      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1077        return LegalizeKind(TypeWidenVector, LargerVector);
1078    }
1079  
1080    // Widen odd vectors to next power of two.
1081    if (!VT.isPow2VectorType()) {
1082      EVT NVT = VT.getPow2VectorType(Context);
1083      return LegalizeKind(TypeWidenVector, NVT);
1084    }
1085  
1086    if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1087      return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1088  
1089    // Vectors with illegal element types are expanded.
1090    EVT NVT = EVT::getVectorVT(Context, EltVT,
1091                               VT.getVectorElementCount().divideCoefficientBy(2));
1092    return LegalizeKind(TypeSplitVector, NVT);
1093  }
1094  
1095  static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1096                                            unsigned &NumIntermediates,
1097                                            MVT &RegisterVT,
1098                                            TargetLoweringBase *TLI) {
1099    // Figure out the right, legal destination reg to copy into.
1100    ElementCount EC = VT.getVectorElementCount();
1101    MVT EltTy = VT.getVectorElementType();
1102  
1103    unsigned NumVectorRegs = 1;
1104  
1105    // Scalable vectors cannot be scalarized, so splitting or widening is
1106    // required.
1107    if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1108      llvm_unreachable(
1109          "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1110  
1111    // FIXME: We don't support non-power-of-2-sized vectors for now.
1112    // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1113    if (!isPowerOf2_32(EC.getKnownMinValue())) {
1114      // Split EC to unit size (scalable property is preserved).
1115      NumVectorRegs = EC.getKnownMinValue();
1116      EC = ElementCount::getFixed(1);
1117    }
1118  
1119    // Divide the input until we get to a supported size. This will
1120    // always end up with an EC that represent a scalar or a scalable
1121    // scalar.
1122    while (EC.getKnownMinValue() > 1 &&
1123           !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1124      EC = EC.divideCoefficientBy(2);
1125      NumVectorRegs <<= 1;
1126    }
1127  
1128    NumIntermediates = NumVectorRegs;
1129  
1130    MVT NewVT = MVT::getVectorVT(EltTy, EC);
1131    if (!TLI->isTypeLegal(NewVT))
1132      NewVT = EltTy;
1133    IntermediateVT = NewVT;
1134  
1135    unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1136  
1137    // Convert sizes such as i33 to i64.
1138    if (!isPowerOf2_32(LaneSizeInBits))
1139      LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1140  
1141    MVT DestVT = TLI->getRegisterType(NewVT);
1142    RegisterVT = DestVT;
1143    if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1144      return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1145  
1146    // Otherwise, promotion or legal types use the same number of registers as
1147    // the vector decimated to the appropriate level.
1148    return NumVectorRegs;
1149  }
1150  
1151  /// isLegalRC - Return true if the value types that can be represented by the
1152  /// specified register class are all legal.
1153  bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1154                                     const TargetRegisterClass &RC) const {
1155    for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1156      if (isTypeLegal(*I))
1157        return true;
1158    return false;
1159  }
1160  
1161  /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1162  /// sequence of memory operands that is recognized by PrologEpilogInserter.
1163  MachineBasicBlock *
1164  TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1165                                     MachineBasicBlock *MBB) const {
1166    MachineInstr *MI = &InitialMI;
1167    MachineFunction &MF = *MI->getMF();
1168    MachineFrameInfo &MFI = MF.getFrameInfo();
1169  
1170    // We're handling multiple types of operands here:
1171    // PATCHPOINT MetaArgs - live-in, read only, direct
1172    // STATEPOINT Deopt Spill - live-through, read only, indirect
1173    // STATEPOINT Deopt Alloca - live-through, read only, direct
1174    // (We're currently conservative and mark the deopt slots read/write in
1175    // practice.)
1176    // STATEPOINT GC Spill - live-through, read/write, indirect
1177    // STATEPOINT GC Alloca - live-through, read/write, direct
1178    // The live-in vs live-through is handled already (the live through ones are
1179    // all stack slots), but we need to handle the different type of stackmap
1180    // operands and memory effects here.
1181  
1182    if (!llvm::any_of(MI->operands(),
1183                      [](MachineOperand &Operand) { return Operand.isFI(); }))
1184      return MBB;
1185  
1186    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1187  
1188    // Inherit previous memory operands.
1189    MIB.cloneMemRefs(*MI);
1190  
1191    for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1192      MachineOperand &MO = MI->getOperand(i);
1193      if (!MO.isFI()) {
1194        // Index of Def operand this Use it tied to.
1195        // Since Defs are coming before Uses, if Use is tied, then
1196        // index of Def must be smaller that index of that Use.
1197        // Also, Defs preserve their position in new MI.
1198        unsigned TiedTo = i;
1199        if (MO.isReg() && MO.isTied())
1200          TiedTo = MI->findTiedOperandIdx(i);
1201        MIB.add(MO);
1202        if (TiedTo < i)
1203          MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1204        continue;
1205      }
1206  
1207      // foldMemoryOperand builds a new MI after replacing a single FI operand
1208      // with the canonical set of five x86 addressing-mode operands.
1209      int FI = MO.getIndex();
1210  
1211      // Add frame index operands recognized by stackmaps.cpp
1212      if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1213        // indirect-mem-ref tag, size, #FI, offset.
1214        // Used for spills inserted by StatepointLowering.  This codepath is not
1215        // used for patchpoints/stackmaps at all, for these spilling is done via
1216        // foldMemoryOperand callback only.
1217        assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1218        MIB.addImm(StackMaps::IndirectMemRefOp);
1219        MIB.addImm(MFI.getObjectSize(FI));
1220        MIB.add(MO);
1221        MIB.addImm(0);
1222      } else {
1223        // direct-mem-ref tag, #FI, offset.
1224        // Used by patchpoint, and direct alloca arguments to statepoints
1225        MIB.addImm(StackMaps::DirectMemRefOp);
1226        MIB.add(MO);
1227        MIB.addImm(0);
1228      }
1229  
1230      assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1231  
1232      // Add a new memory operand for this FI.
1233      assert(MFI.getObjectOffset(FI) != -1);
1234  
1235      // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1236      // PATCHPOINT should be updated to do the same. (TODO)
1237      if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1238        auto Flags = MachineMemOperand::MOLoad;
1239        MachineMemOperand *MMO = MF.getMachineMemOperand(
1240            MachinePointerInfo::getFixedStack(MF, FI), Flags,
1241            MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1242        MIB->addMemOperand(MF, MMO);
1243      }
1244    }
1245    MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1246    MI->eraseFromParent();
1247    return MBB;
1248  }
1249  
1250  /// findRepresentativeClass - Return the largest legal super-reg register class
1251  /// of the register class for the specified type and its associated "cost".
1252  // This function is in TargetLowering because it uses RegClassForVT which would
1253  // need to be moved to TargetRegisterInfo and would necessitate moving
1254  // isTypeLegal over as well - a massive change that would just require
1255  // TargetLowering having a TargetRegisterInfo class member that it would use.
1256  std::pair<const TargetRegisterClass *, uint8_t>
1257  TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1258                                              MVT VT) const {
1259    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1260    if (!RC)
1261      return std::make_pair(RC, 0);
1262  
1263    // Compute the set of all super-register classes.
1264    BitVector SuperRegRC(TRI->getNumRegClasses());
1265    for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1266      SuperRegRC.setBitsInMask(RCI.getMask());
1267  
1268    // Find the first legal register class with the largest spill size.
1269    const TargetRegisterClass *BestRC = RC;
1270    for (unsigned i : SuperRegRC.set_bits()) {
1271      const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1272      // We want the largest possible spill size.
1273      if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1274        continue;
1275      if (!isLegalRC(*TRI, *SuperRC))
1276        continue;
1277      BestRC = SuperRC;
1278    }
1279    return std::make_pair(BestRC, 1);
1280  }
1281  
1282  /// computeRegisterProperties - Once all of the register classes are added,
1283  /// this allows us to compute derived properties we expose.
1284  void TargetLoweringBase::computeRegisterProperties(
1285      const TargetRegisterInfo *TRI) {
1286    static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1287                  "Too many value types for ValueTypeActions to hold!");
1288  
1289    // Everything defaults to needing one register.
1290    for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1291      NumRegistersForVT[i] = 1;
1292      RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1293    }
1294    // ...except isVoid, which doesn't need any registers.
1295    NumRegistersForVT[MVT::isVoid] = 0;
1296  
1297    // Find the largest integer register class.
1298    unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1299    for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1300      assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1301  
1302    // Every integer value type larger than this largest register takes twice as
1303    // many registers to represent as the previous ValueType.
1304    for (unsigned ExpandedReg = LargestIntReg + 1;
1305         ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1306      NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1307      RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1308      TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1309      ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1310                                     TypeExpandInteger);
1311    }
1312  
1313    // Inspect all of the ValueType's smaller than the largest integer
1314    // register to see which ones need promotion.
1315    unsigned LegalIntReg = LargestIntReg;
1316    for (unsigned IntReg = LargestIntReg - 1;
1317         IntReg >= (unsigned)MVT::i1; --IntReg) {
1318      MVT IVT = (MVT::SimpleValueType)IntReg;
1319      if (isTypeLegal(IVT)) {
1320        LegalIntReg = IntReg;
1321      } else {
1322        RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1323          (MVT::SimpleValueType)LegalIntReg;
1324        ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1325      }
1326    }
1327  
1328    // ppcf128 type is really two f64's.
1329    if (!isTypeLegal(MVT::ppcf128)) {
1330      if (isTypeLegal(MVT::f64)) {
1331        NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1332        RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1333        TransformToType[MVT::ppcf128] = MVT::f64;
1334        ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1335      } else {
1336        NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1337        RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1338        TransformToType[MVT::ppcf128] = MVT::i128;
1339        ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1340      }
1341    }
1342  
1343    // Decide how to handle f128. If the target does not have native f128 support,
1344    // expand it to i128 and we will be generating soft float library calls.
1345    if (!isTypeLegal(MVT::f128)) {
1346      NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1347      RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1348      TransformToType[MVT::f128] = MVT::i128;
1349      ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1350    }
1351  
1352    // Decide how to handle f64. If the target does not have native f64 support,
1353    // expand it to i64 and we will be generating soft float library calls.
1354    if (!isTypeLegal(MVT::f64)) {
1355      NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1356      RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1357      TransformToType[MVT::f64] = MVT::i64;
1358      ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1359    }
1360  
1361    // Decide how to handle f32. If the target does not have native f32 support,
1362    // expand it to i32 and we will be generating soft float library calls.
1363    if (!isTypeLegal(MVT::f32)) {
1364      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1365      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1366      TransformToType[MVT::f32] = MVT::i32;
1367      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1368    }
1369  
1370    // Decide how to handle f16. If the target does not have native f16 support,
1371    // promote it to f32, because there are no f16 library calls (except for
1372    // conversions).
1373    if (!isTypeLegal(MVT::f16)) {
1374      // Allow targets to control how we legalize half.
1375      if (softPromoteHalfType()) {
1376        NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1377        RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1378        TransformToType[MVT::f16] = MVT::f32;
1379        ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1380      } else {
1381        NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1382        RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1383        TransformToType[MVT::f16] = MVT::f32;
1384        ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1385      }
1386    }
1387  
1388    // Loop over all of the vector value types to see which need transformations.
1389    for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1390         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1391      MVT VT = (MVT::SimpleValueType) i;
1392      if (isTypeLegal(VT))
1393        continue;
1394  
1395      MVT EltVT = VT.getVectorElementType();
1396      ElementCount EC = VT.getVectorElementCount();
1397      bool IsLegalWiderType = false;
1398      bool IsScalable = VT.isScalableVector();
1399      LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1400      switch (PreferredAction) {
1401      case TypePromoteInteger: {
1402        MVT::SimpleValueType EndVT = IsScalable ?
1403                                     MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1404                                     MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1405        // Try to promote the elements of integer vectors. If no legal
1406        // promotion was found, fall through to the widen-vector method.
1407        for (unsigned nVT = i + 1;
1408             (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1409          MVT SVT = (MVT::SimpleValueType) nVT;
1410          // Promote vectors of integers to vectors with the same number
1411          // of elements, with a wider element type.
1412          if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1413              SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1414            TransformToType[i] = SVT;
1415            RegisterTypeForVT[i] = SVT;
1416            NumRegistersForVT[i] = 1;
1417            ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1418            IsLegalWiderType = true;
1419            break;
1420          }
1421        }
1422        if (IsLegalWiderType)
1423          break;
1424        LLVM_FALLTHROUGH;
1425      }
1426  
1427      case TypeWidenVector:
1428        if (isPowerOf2_32(EC.getKnownMinValue())) {
1429          // Try to widen the vector.
1430          for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1431            MVT SVT = (MVT::SimpleValueType) nVT;
1432            if (SVT.getVectorElementType() == EltVT &&
1433                SVT.isScalableVector() == IsScalable &&
1434                SVT.getVectorElementCount().getKnownMinValue() >
1435                    EC.getKnownMinValue() &&
1436                isTypeLegal(SVT)) {
1437              TransformToType[i] = SVT;
1438              RegisterTypeForVT[i] = SVT;
1439              NumRegistersForVT[i] = 1;
1440              ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1441              IsLegalWiderType = true;
1442              break;
1443            }
1444          }
1445          if (IsLegalWiderType)
1446            break;
1447        } else {
1448          // Only widen to the next power of 2 to keep consistency with EVT.
1449          MVT NVT = VT.getPow2VectorType();
1450          if (isTypeLegal(NVT)) {
1451            TransformToType[i] = NVT;
1452            ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1453            RegisterTypeForVT[i] = NVT;
1454            NumRegistersForVT[i] = 1;
1455            break;
1456          }
1457        }
1458        LLVM_FALLTHROUGH;
1459  
1460      case TypeSplitVector:
1461      case TypeScalarizeVector: {
1462        MVT IntermediateVT;
1463        MVT RegisterVT;
1464        unsigned NumIntermediates;
1465        unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1466            NumIntermediates, RegisterVT, this);
1467        NumRegistersForVT[i] = NumRegisters;
1468        assert(NumRegistersForVT[i] == NumRegisters &&
1469               "NumRegistersForVT size cannot represent NumRegisters!");
1470        RegisterTypeForVT[i] = RegisterVT;
1471  
1472        MVT NVT = VT.getPow2VectorType();
1473        if (NVT == VT) {
1474          // Type is already a power of 2.  The default action is to split.
1475          TransformToType[i] = MVT::Other;
1476          if (PreferredAction == TypeScalarizeVector)
1477            ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1478          else if (PreferredAction == TypeSplitVector)
1479            ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1480          else if (EC.getKnownMinValue() > 1)
1481            ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1482          else
1483            ValueTypeActions.setTypeAction(VT, EC.isScalable()
1484                                                   ? TypeScalarizeScalableVector
1485                                                   : TypeScalarizeVector);
1486        } else {
1487          TransformToType[i] = NVT;
1488          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1489        }
1490        break;
1491      }
1492      default:
1493        llvm_unreachable("Unknown vector legalization action!");
1494      }
1495    }
1496  
1497    // Determine the 'representative' register class for each value type.
1498    // An representative register class is the largest (meaning one which is
1499    // not a sub-register class / subreg register class) legal register class for
1500    // a group of value types. For example, on i386, i8, i16, and i32
1501    // representative would be GR32; while on x86_64 it's GR64.
1502    for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1503      const TargetRegisterClass* RRC;
1504      uint8_t Cost;
1505      std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1506      RepRegClassForVT[i] = RRC;
1507      RepRegClassCostForVT[i] = Cost;
1508    }
1509  }
1510  
1511  EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1512                                             EVT VT) const {
1513    assert(!VT.isVector() && "No default SetCC type for vectors!");
1514    return getPointerTy(DL).SimpleTy;
1515  }
1516  
1517  MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1518    return MVT::i32; // return the default value
1519  }
1520  
1521  /// getVectorTypeBreakdown - Vector types are broken down into some number of
1522  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1523  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1524  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1525  ///
1526  /// This method returns the number of registers needed, and the VT for each
1527  /// register.  It also returns the VT and quantity of the intermediate values
1528  /// before they are promoted/expanded.
1529  unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1530                                                      EVT VT, EVT &IntermediateVT,
1531                                                      unsigned &NumIntermediates,
1532                                                      MVT &RegisterVT) const {
1533    ElementCount EltCnt = VT.getVectorElementCount();
1534  
1535    // If there is a wider vector type with the same element type as this one,
1536    // or a promoted vector type that has the same number of elements which
1537    // are wider, then we should convert to that legal vector type.
1538    // This handles things like <2 x float> -> <4 x float> and
1539    // <4 x i1> -> <4 x i32>.
1540    LegalizeTypeAction TA = getTypeAction(Context, VT);
1541    if (!EltCnt.isScalar() &&
1542        (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1543      EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1544      if (isTypeLegal(RegisterEVT)) {
1545        IntermediateVT = RegisterEVT;
1546        RegisterVT = RegisterEVT.getSimpleVT();
1547        NumIntermediates = 1;
1548        return 1;
1549      }
1550    }
1551  
1552    // Figure out the right, legal destination reg to copy into.
1553    EVT EltTy = VT.getVectorElementType();
1554  
1555    unsigned NumVectorRegs = 1;
1556  
1557    // Scalable vectors cannot be scalarized, so handle the legalisation of the
1558    // types like done elsewhere in SelectionDAG.
1559    if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) {
1560      LegalizeKind LK;
1561      EVT PartVT = VT;
1562      do {
1563        // Iterate until we've found a legal (part) type to hold VT.
1564        LK = getTypeConversion(Context, PartVT);
1565        PartVT = LK.second;
1566      } while (LK.first != TypeLegal);
1567  
1568      NumIntermediates = VT.getVectorElementCount().getKnownMinValue() /
1569                         PartVT.getVectorElementCount().getKnownMinValue();
1570  
1571      // FIXME: This code needs to be extended to handle more complex vector
1572      // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only
1573      // supported cases are vectors that are broken down into equal parts
1574      // such as nxv6i64 -> 3 x nxv2i64.
1575      assert((PartVT.getVectorElementCount() * NumIntermediates) ==
1576                 VT.getVectorElementCount() &&
1577             "Expected an integer multiple of PartVT");
1578      IntermediateVT = PartVT;
1579      RegisterVT = getRegisterType(Context, IntermediateVT);
1580      return NumIntermediates;
1581    }
1582  
1583    // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1584    // we could break down into LHS/RHS like LegalizeDAG does.
1585    if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1586      NumVectorRegs = EltCnt.getKnownMinValue();
1587      EltCnt = ElementCount::getFixed(1);
1588    }
1589  
1590    // Divide the input until we get to a supported size.  This will always
1591    // end with a scalar if the target doesn't support vectors.
1592    while (EltCnt.getKnownMinValue() > 1 &&
1593           !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1594      EltCnt = EltCnt.divideCoefficientBy(2);
1595      NumVectorRegs <<= 1;
1596    }
1597  
1598    NumIntermediates = NumVectorRegs;
1599  
1600    EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1601    if (!isTypeLegal(NewVT))
1602      NewVT = EltTy;
1603    IntermediateVT = NewVT;
1604  
1605    MVT DestVT = getRegisterType(Context, NewVT);
1606    RegisterVT = DestVT;
1607  
1608    if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1609      TypeSize NewVTSize = NewVT.getSizeInBits();
1610      // Convert sizes such as i33 to i64.
1611      if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1612        NewVTSize = NewVTSize.coefficientNextPowerOf2();
1613      return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1614    }
1615  
1616    // Otherwise, promotion or legal types use the same number of registers as
1617    // the vector decimated to the appropriate level.
1618    return NumVectorRegs;
1619  }
1620  
1621  bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1622                                                  uint64_t NumCases,
1623                                                  uint64_t Range,
1624                                                  ProfileSummaryInfo *PSI,
1625                                                  BlockFrequencyInfo *BFI) const {
1626    // FIXME: This function check the maximum table size and density, but the
1627    // minimum size is not checked. It would be nice if the minimum size is
1628    // also combined within this function. Currently, the minimum size check is
1629    // performed in findJumpTable() in SelectionDAGBuiler and
1630    // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1631    const bool OptForSize =
1632        SI->getParent()->getParent()->hasOptSize() ||
1633        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1634    const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1635    const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1636  
1637    // Check whether the number of cases is small enough and
1638    // the range is dense enough for a jump table.
1639    return (OptForSize || Range <= MaxJumpTableSize) &&
1640           (NumCases * 100 >= Range * MinDensity);
1641  }
1642  
1643  /// Get the EVTs and ArgFlags collections that represent the legalized return
1644  /// type of the given function.  This does not require a DAG or a return value,
1645  /// and is suitable for use before any DAGs for the function are constructed.
1646  /// TODO: Move this out of TargetLowering.cpp.
1647  void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1648                           AttributeList attr,
1649                           SmallVectorImpl<ISD::OutputArg> &Outs,
1650                           const TargetLowering &TLI, const DataLayout &DL) {
1651    SmallVector<EVT, 4> ValueVTs;
1652    ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1653    unsigned NumValues = ValueVTs.size();
1654    if (NumValues == 0) return;
1655  
1656    for (unsigned j = 0, f = NumValues; j != f; ++j) {
1657      EVT VT = ValueVTs[j];
1658      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1659  
1660      if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1661        ExtendKind = ISD::SIGN_EXTEND;
1662      else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1663        ExtendKind = ISD::ZERO_EXTEND;
1664  
1665      // FIXME: C calling convention requires the return type to be promoted to
1666      // at least 32-bit. But this is not necessary for non-C calling
1667      // conventions. The frontend should mark functions whose return values
1668      // require promoting with signext or zeroext attributes.
1669      if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1670        MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1671        if (VT.bitsLT(MinVT))
1672          VT = MinVT;
1673      }
1674  
1675      unsigned NumParts =
1676          TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1677      MVT PartVT =
1678          TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1679  
1680      // 'inreg' on function refers to return value
1681      ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1682      if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1683        Flags.setInReg();
1684  
1685      // Propagate extension type if any
1686      if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1687        Flags.setSExt();
1688      else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1689        Flags.setZExt();
1690  
1691      for (unsigned i = 0; i < NumParts; ++i)
1692        Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1693    }
1694  }
1695  
1696  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1697  /// function arguments in the caller parameter area.  This is the actual
1698  /// alignment, not its logarithm.
1699  unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1700                                                     const DataLayout &DL) const {
1701    return DL.getABITypeAlign(Ty).value();
1702  }
1703  
1704  bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1705      LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1706      Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1707    // Check if the specified alignment is sufficient based on the data layout.
1708    // TODO: While using the data layout works in practice, a better solution
1709    // would be to implement this check directly (make this a virtual function).
1710    // For example, the ABI alignment may change based on software platform while
1711    // this function should only be affected by hardware implementation.
1712    Type *Ty = VT.getTypeForEVT(Context);
1713    if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1714      // Assume that an access that meets the ABI-specified alignment is fast.
1715      if (Fast != nullptr)
1716        *Fast = true;
1717      return true;
1718    }
1719  
1720    // This is a misaligned access.
1721    return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1722  }
1723  
1724  bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1725      LLVMContext &Context, const DataLayout &DL, EVT VT,
1726      const MachineMemOperand &MMO, bool *Fast) const {
1727    return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1728                                          MMO.getAlign(), MMO.getFlags(), Fast);
1729  }
1730  
1731  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1732                                              const DataLayout &DL, EVT VT,
1733                                              unsigned AddrSpace, Align Alignment,
1734                                              MachineMemOperand::Flags Flags,
1735                                              bool *Fast) const {
1736    return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1737                                          Flags, Fast);
1738  }
1739  
1740  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1741                                              const DataLayout &DL, EVT VT,
1742                                              const MachineMemOperand &MMO,
1743                                              bool *Fast) const {
1744    return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1745                              MMO.getFlags(), Fast);
1746  }
1747  
1748  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1749                                              const DataLayout &DL, LLT Ty,
1750                                              const MachineMemOperand &MMO,
1751                                              bool *Fast) const {
1752    return allowsMemoryAccess(Context, DL, getMVTForLLT(Ty), MMO.getAddrSpace(),
1753                              MMO.getAlign(), MMO.getFlags(), Fast);
1754  }
1755  
1756  //===----------------------------------------------------------------------===//
1757  //  TargetTransformInfo Helpers
1758  //===----------------------------------------------------------------------===//
1759  
1760  int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1761    enum InstructionOpcodes {
1762  #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1763  #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1764  #include "llvm/IR/Instruction.def"
1765    };
1766    switch (static_cast<InstructionOpcodes>(Opcode)) {
1767    case Ret:            return 0;
1768    case Br:             return 0;
1769    case Switch:         return 0;
1770    case IndirectBr:     return 0;
1771    case Invoke:         return 0;
1772    case CallBr:         return 0;
1773    case Resume:         return 0;
1774    case Unreachable:    return 0;
1775    case CleanupRet:     return 0;
1776    case CatchRet:       return 0;
1777    case CatchPad:       return 0;
1778    case CatchSwitch:    return 0;
1779    case CleanupPad:     return 0;
1780    case FNeg:           return ISD::FNEG;
1781    case Add:            return ISD::ADD;
1782    case FAdd:           return ISD::FADD;
1783    case Sub:            return ISD::SUB;
1784    case FSub:           return ISD::FSUB;
1785    case Mul:            return ISD::MUL;
1786    case FMul:           return ISD::FMUL;
1787    case UDiv:           return ISD::UDIV;
1788    case SDiv:           return ISD::SDIV;
1789    case FDiv:           return ISD::FDIV;
1790    case URem:           return ISD::UREM;
1791    case SRem:           return ISD::SREM;
1792    case FRem:           return ISD::FREM;
1793    case Shl:            return ISD::SHL;
1794    case LShr:           return ISD::SRL;
1795    case AShr:           return ISD::SRA;
1796    case And:            return ISD::AND;
1797    case Or:             return ISD::OR;
1798    case Xor:            return ISD::XOR;
1799    case Alloca:         return 0;
1800    case Load:           return ISD::LOAD;
1801    case Store:          return ISD::STORE;
1802    case GetElementPtr:  return 0;
1803    case Fence:          return 0;
1804    case AtomicCmpXchg:  return 0;
1805    case AtomicRMW:      return 0;
1806    case Trunc:          return ISD::TRUNCATE;
1807    case ZExt:           return ISD::ZERO_EXTEND;
1808    case SExt:           return ISD::SIGN_EXTEND;
1809    case FPToUI:         return ISD::FP_TO_UINT;
1810    case FPToSI:         return ISD::FP_TO_SINT;
1811    case UIToFP:         return ISD::UINT_TO_FP;
1812    case SIToFP:         return ISD::SINT_TO_FP;
1813    case FPTrunc:        return ISD::FP_ROUND;
1814    case FPExt:          return ISD::FP_EXTEND;
1815    case PtrToInt:       return ISD::BITCAST;
1816    case IntToPtr:       return ISD::BITCAST;
1817    case BitCast:        return ISD::BITCAST;
1818    case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1819    case ICmp:           return ISD::SETCC;
1820    case FCmp:           return ISD::SETCC;
1821    case PHI:            return 0;
1822    case Call:           return 0;
1823    case Select:         return ISD::SELECT;
1824    case UserOp1:        return 0;
1825    case UserOp2:        return 0;
1826    case VAArg:          return 0;
1827    case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1828    case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1829    case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1830    case ExtractValue:   return ISD::MERGE_VALUES;
1831    case InsertValue:    return ISD::MERGE_VALUES;
1832    case LandingPad:     return 0;
1833    case Freeze:         return ISD::FREEZE;
1834    }
1835  
1836    llvm_unreachable("Unknown instruction type encountered!");
1837  }
1838  
1839  std::pair<InstructionCost, MVT>
1840  TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1841                                              Type *Ty) const {
1842    LLVMContext &C = Ty->getContext();
1843    EVT MTy = getValueType(DL, Ty);
1844  
1845    InstructionCost Cost = 1;
1846    // We keep legalizing the type until we find a legal kind. We assume that
1847    // the only operation that costs anything is the split. After splitting
1848    // we need to handle two types.
1849    while (true) {
1850      LegalizeKind LK = getTypeConversion(C, MTy);
1851  
1852      if (LK.first == TypeScalarizeScalableVector)
1853        return std::make_pair(InstructionCost::getInvalid(), MVT::getVT(Ty));
1854  
1855      if (LK.first == TypeLegal)
1856        return std::make_pair(Cost, MTy.getSimpleVT());
1857  
1858      if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1859        Cost *= 2;
1860  
1861      // Do not loop with f128 type.
1862      if (MTy == LK.second)
1863        return std::make_pair(Cost, MTy.getSimpleVT());
1864  
1865      // Keep legalizing the type.
1866      MTy = LK.second;
1867    }
1868  }
1869  
1870  Value *
1871  TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1872                                                         bool UseTLS) const {
1873    // compiler-rt provides a variable with a magic name.  Targets that do not
1874    // link with compiler-rt may also provide such a variable.
1875    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1876    const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1877    auto UnsafeStackPtr =
1878        dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1879  
1880    Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1881  
1882    if (!UnsafeStackPtr) {
1883      auto TLSModel = UseTLS ?
1884          GlobalValue::InitialExecTLSModel :
1885          GlobalValue::NotThreadLocal;
1886      // The global variable is not defined yet, define it ourselves.
1887      // We use the initial-exec TLS model because we do not support the
1888      // variable living anywhere other than in the main executable.
1889      UnsafeStackPtr = new GlobalVariable(
1890          *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1891          UnsafeStackPtrVar, nullptr, TLSModel);
1892    } else {
1893      // The variable exists, check its type and attributes.
1894      if (UnsafeStackPtr->getValueType() != StackPtrTy)
1895        report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1896      if (UseTLS != UnsafeStackPtr->isThreadLocal())
1897        report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1898                           (UseTLS ? "" : "not ") + "be thread-local");
1899    }
1900    return UnsafeStackPtr;
1901  }
1902  
1903  Value *
1904  TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1905    if (!TM.getTargetTriple().isAndroid())
1906      return getDefaultSafeStackPointerLocation(IRB, true);
1907  
1908    // Android provides a libc function to retrieve the address of the current
1909    // thread's unsafe stack pointer.
1910    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1911    Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1912    FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1913                                               StackPtrTy->getPointerTo(0));
1914    return IRB.CreateCall(Fn);
1915  }
1916  
1917  //===----------------------------------------------------------------------===//
1918  //  Loop Strength Reduction hooks
1919  //===----------------------------------------------------------------------===//
1920  
1921  /// isLegalAddressingMode - Return true if the addressing mode represented
1922  /// by AM is legal for this target, for a load/store of the specified type.
1923  bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1924                                                 const AddrMode &AM, Type *Ty,
1925                                                 unsigned AS, Instruction *I) const {
1926    // The default implementation of this implements a conservative RISCy, r+r and
1927    // r+i addr mode.
1928  
1929    // Allows a sign-extended 16-bit immediate field.
1930    if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1931      return false;
1932  
1933    // No global is ever allowed as a base.
1934    if (AM.BaseGV)
1935      return false;
1936  
1937    // Only support r+r,
1938    switch (AM.Scale) {
1939    case 0:  // "r+i" or just "i", depending on HasBaseReg.
1940      break;
1941    case 1:
1942      if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1943        return false;
1944      // Otherwise we have r+r or r+i.
1945      break;
1946    case 2:
1947      if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1948        return false;
1949      // Allow 2*r as r+r.
1950      break;
1951    default: // Don't allow n * r
1952      return false;
1953    }
1954  
1955    return true;
1956  }
1957  
1958  //===----------------------------------------------------------------------===//
1959  //  Stack Protector
1960  //===----------------------------------------------------------------------===//
1961  
1962  // For OpenBSD return its special guard variable. Otherwise return nullptr,
1963  // so that SelectionDAG handle SSP.
1964  Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1965    if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1966      Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1967      PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1968      Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1969      if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1970        G->setVisibility(GlobalValue::HiddenVisibility);
1971      return C;
1972    }
1973    return nullptr;
1974  }
1975  
1976  // Currently only support "standard" __stack_chk_guard.
1977  // TODO: add LOAD_STACK_GUARD support.
1978  void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1979    if (!M.getNamedValue("__stack_chk_guard")) {
1980      auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1981                                    GlobalVariable::ExternalLinkage, nullptr,
1982                                    "__stack_chk_guard");
1983      if (TM.getRelocationModel() == Reloc::Static &&
1984          !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1985  	!(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD()))
1986        GV->setDSOLocal(true);
1987    }
1988  }
1989  
1990  // Currently only support "standard" __stack_chk_guard.
1991  // TODO: add LOAD_STACK_GUARD support.
1992  Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1993    return M.getNamedValue("__stack_chk_guard");
1994  }
1995  
1996  Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1997    return nullptr;
1998  }
1999  
2000  unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2001    return MinimumJumpTableEntries;
2002  }
2003  
2004  void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2005    MinimumJumpTableEntries = Val;
2006  }
2007  
2008  unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2009    return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2010  }
2011  
2012  unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2013    return MaximumJumpTableSize;
2014  }
2015  
2016  void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2017    MaximumJumpTableSize = Val;
2018  }
2019  
2020  bool TargetLoweringBase::isJumpTableRelative() const {
2021    return getTargetMachine().isPositionIndependent();
2022  }
2023  
2024  //===----------------------------------------------------------------------===//
2025  //  Reciprocal Estimates
2026  //===----------------------------------------------------------------------===//
2027  
2028  /// Get the reciprocal estimate attribute string for a function that will
2029  /// override the target defaults.
2030  static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2031    const Function &F = MF.getFunction();
2032    return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2033  }
2034  
2035  /// Construct a string for the given reciprocal operation of the given type.
2036  /// This string should match the corresponding option to the front-end's
2037  /// "-mrecip" flag assuming those strings have been passed through in an
2038  /// attribute string. For example, "vec-divf" for a division of a vXf32.
2039  static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2040    std::string Name = VT.isVector() ? "vec-" : "";
2041  
2042    Name += IsSqrt ? "sqrt" : "div";
2043  
2044    // TODO: Handle "half" or other float types?
2045    if (VT.getScalarType() == MVT::f64) {
2046      Name += "d";
2047    } else {
2048      assert(VT.getScalarType() == MVT::f32 &&
2049             "Unexpected FP type for reciprocal estimate");
2050      Name += "f";
2051    }
2052  
2053    return Name;
2054  }
2055  
2056  /// Return the character position and value (a single numeric character) of a
2057  /// customized refinement operation in the input string if it exists. Return
2058  /// false if there is no customized refinement step count.
2059  static bool parseRefinementStep(StringRef In, size_t &Position,
2060                                  uint8_t &Value) {
2061    const char RefStepToken = ':';
2062    Position = In.find(RefStepToken);
2063    if (Position == StringRef::npos)
2064      return false;
2065  
2066    StringRef RefStepString = In.substr(Position + 1);
2067    // Allow exactly one numeric character for the additional refinement
2068    // step parameter.
2069    if (RefStepString.size() == 1) {
2070      char RefStepChar = RefStepString[0];
2071      if (isDigit(RefStepChar)) {
2072        Value = RefStepChar - '0';
2073        return true;
2074      }
2075    }
2076    report_fatal_error("Invalid refinement step for -recip.");
2077  }
2078  
2079  /// For the input attribute string, return one of the ReciprocalEstimate enum
2080  /// status values (enabled, disabled, or not specified) for this operation on
2081  /// the specified data type.
2082  static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2083    if (Override.empty())
2084      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2085  
2086    SmallVector<StringRef, 4> OverrideVector;
2087    Override.split(OverrideVector, ',');
2088    unsigned NumArgs = OverrideVector.size();
2089  
2090    // Check if "all", "none", or "default" was specified.
2091    if (NumArgs == 1) {
2092      // Look for an optional setting of the number of refinement steps needed
2093      // for this type of reciprocal operation.
2094      size_t RefPos;
2095      uint8_t RefSteps;
2096      if (parseRefinementStep(Override, RefPos, RefSteps)) {
2097        // Split the string for further processing.
2098        Override = Override.substr(0, RefPos);
2099      }
2100  
2101      // All reciprocal types are enabled.
2102      if (Override == "all")
2103        return TargetLoweringBase::ReciprocalEstimate::Enabled;
2104  
2105      // All reciprocal types are disabled.
2106      if (Override == "none")
2107        return TargetLoweringBase::ReciprocalEstimate::Disabled;
2108  
2109      // Target defaults for enablement are used.
2110      if (Override == "default")
2111        return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2112    }
2113  
2114    // The attribute string may omit the size suffix ('f'/'d').
2115    std::string VTName = getReciprocalOpName(IsSqrt, VT);
2116    std::string VTNameNoSize = VTName;
2117    VTNameNoSize.pop_back();
2118    static const char DisabledPrefix = '!';
2119  
2120    for (StringRef RecipType : OverrideVector) {
2121      size_t RefPos;
2122      uint8_t RefSteps;
2123      if (parseRefinementStep(RecipType, RefPos, RefSteps))
2124        RecipType = RecipType.substr(0, RefPos);
2125  
2126      // Ignore the disablement token for string matching.
2127      bool IsDisabled = RecipType[0] == DisabledPrefix;
2128      if (IsDisabled)
2129        RecipType = RecipType.substr(1);
2130  
2131      if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2132        return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2133                          : TargetLoweringBase::ReciprocalEstimate::Enabled;
2134    }
2135  
2136    return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2137  }
2138  
2139  /// For the input attribute string, return the customized refinement step count
2140  /// for this operation on the specified data type. If the step count does not
2141  /// exist, return the ReciprocalEstimate enum value for unspecified.
2142  static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2143    if (Override.empty())
2144      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2145  
2146    SmallVector<StringRef, 4> OverrideVector;
2147    Override.split(OverrideVector, ',');
2148    unsigned NumArgs = OverrideVector.size();
2149  
2150    // Check if "all", "default", or "none" was specified.
2151    if (NumArgs == 1) {
2152      // Look for an optional setting of the number of refinement steps needed
2153      // for this type of reciprocal operation.
2154      size_t RefPos;
2155      uint8_t RefSteps;
2156      if (!parseRefinementStep(Override, RefPos, RefSteps))
2157        return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2158  
2159      // Split the string for further processing.
2160      Override = Override.substr(0, RefPos);
2161      assert(Override != "none" &&
2162             "Disabled reciprocals, but specifed refinement steps?");
2163  
2164      // If this is a general override, return the specified number of steps.
2165      if (Override == "all" || Override == "default")
2166        return RefSteps;
2167    }
2168  
2169    // The attribute string may omit the size suffix ('f'/'d').
2170    std::string VTName = getReciprocalOpName(IsSqrt, VT);
2171    std::string VTNameNoSize = VTName;
2172    VTNameNoSize.pop_back();
2173  
2174    for (StringRef RecipType : OverrideVector) {
2175      size_t RefPos;
2176      uint8_t RefSteps;
2177      if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2178        continue;
2179  
2180      RecipType = RecipType.substr(0, RefPos);
2181      if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2182        return RefSteps;
2183    }
2184  
2185    return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2186  }
2187  
2188  int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2189                                                      MachineFunction &MF) const {
2190    return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2191  }
2192  
2193  int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2194                                                     MachineFunction &MF) const {
2195    return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2196  }
2197  
2198  int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2199                                                 MachineFunction &MF) const {
2200    return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2201  }
2202  
2203  int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2204                                                MachineFunction &MF) const {
2205    return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2206  }
2207  
2208  void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2209    MF.getRegInfo().freezeReservedRegs(MF);
2210  }
2211  
2212  MachineMemOperand::Flags
2213  TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2214                                             const DataLayout &DL) const {
2215    MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2216    if (LI.isVolatile())
2217      Flags |= MachineMemOperand::MOVolatile;
2218  
2219    if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2220      Flags |= MachineMemOperand::MONonTemporal;
2221  
2222    if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2223      Flags |= MachineMemOperand::MOInvariant;
2224  
2225    if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2226      Flags |= MachineMemOperand::MODereferenceable;
2227  
2228    Flags |= getTargetMMOFlags(LI);
2229    return Flags;
2230  }
2231  
2232  MachineMemOperand::Flags
2233  TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2234                                              const DataLayout &DL) const {
2235    MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2236  
2237    if (SI.isVolatile())
2238      Flags |= MachineMemOperand::MOVolatile;
2239  
2240    if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2241      Flags |= MachineMemOperand::MONonTemporal;
2242  
2243    // FIXME: Not preserving dereferenceable
2244    Flags |= getTargetMMOFlags(SI);
2245    return Flags;
2246  }
2247  
2248  MachineMemOperand::Flags
2249  TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2250                                               const DataLayout &DL) const {
2251    auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2252  
2253    if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2254      if (RMW->isVolatile())
2255        Flags |= MachineMemOperand::MOVolatile;
2256    } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2257      if (CmpX->isVolatile())
2258        Flags |= MachineMemOperand::MOVolatile;
2259    } else
2260      llvm_unreachable("not an atomic instruction");
2261  
2262    // FIXME: Not preserving dereferenceable
2263    Flags |= getTargetMMOFlags(AI);
2264    return Flags;
2265  }
2266  
2267  Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2268                                                    Instruction *Inst,
2269                                                    AtomicOrdering Ord) const {
2270    if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2271      return Builder.CreateFence(Ord);
2272    else
2273      return nullptr;
2274  }
2275  
2276  Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2277                                                     Instruction *Inst,
2278                                                     AtomicOrdering Ord) const {
2279    if (isAcquireOrStronger(Ord))
2280      return Builder.CreateFence(Ord);
2281    else
2282      return nullptr;
2283  }
2284  
2285  //===----------------------------------------------------------------------===//
2286  //  GlobalISel Hooks
2287  //===----------------------------------------------------------------------===//
2288  
2289  bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2290                                          const TargetTransformInfo *TTI) const {
2291    auto &MF = *MI.getMF();
2292    auto &MRI = MF.getRegInfo();
2293    // Assuming a spill and reload of a value has a cost of 1 instruction each,
2294    // this helper function computes the maximum number of uses we should consider
2295    // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2296    // break even in terms of code size when the original MI has 2 users vs
2297    // choosing to potentially spill. Any more than 2 users we we have a net code
2298    // size increase. This doesn't take into account register pressure though.
2299    auto maxUses = [](unsigned RematCost) {
2300      // A cost of 1 means remats are basically free.
2301      if (RematCost == 1)
2302        return UINT_MAX;
2303      if (RematCost == 2)
2304        return 2U;
2305  
2306      // Remat is too expensive, only sink if there's one user.
2307      if (RematCost > 2)
2308        return 1U;
2309      llvm_unreachable("Unexpected remat cost");
2310    };
2311  
2312    // Helper to walk through uses and terminate if we've reached a limit. Saves
2313    // us spending time traversing uses if all we want to know is if it's >= min.
2314    auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2315      unsigned NumUses = 0;
2316      auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2317      for (; UI != UE && NumUses < MaxUses; ++UI) {
2318        NumUses++;
2319      }
2320      // If we haven't reached the end yet then there are more than MaxUses users.
2321      return UI == UE;
2322    };
2323  
2324    switch (MI.getOpcode()) {
2325    default:
2326      return false;
2327    // Constants-like instructions should be close to their users.
2328    // We don't want long live-ranges for them.
2329    case TargetOpcode::G_CONSTANT:
2330    case TargetOpcode::G_FCONSTANT:
2331    case TargetOpcode::G_FRAME_INDEX:
2332    case TargetOpcode::G_INTTOPTR:
2333      return true;
2334    case TargetOpcode::G_GLOBAL_VALUE: {
2335      unsigned RematCost = TTI->getGISelRematGlobalCost();
2336      Register Reg = MI.getOperand(0).getReg();
2337      unsigned MaxUses = maxUses(RematCost);
2338      if (MaxUses == UINT_MAX)
2339        return true; // Remats are "free" so always localize.
2340      bool B = isUsesAtMost(Reg, MaxUses);
2341      return B;
2342    }
2343    }
2344  }
2345