xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision aae38d10b4eebf81c0942947e8b83a9bb8651d88)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/CodeGen/Analysis.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetLowering.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstddef>
57 #include <cstdint>
58 #include <cstring>
59 #include <iterator>
60 #include <string>
61 #include <tuple>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 static cl::opt<bool> JumpIsExpensiveOverride(
67     "jump-is-expensive", cl::init(false),
68     cl::desc("Do not create extra branches to split comparison logic."),
69     cl::Hidden);
70 
71 static cl::opt<unsigned> MinimumJumpTableEntries
72   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73    cl::desc("Set minimum number of entries to use a jump table."));
74 
75 static cl::opt<unsigned> MaximumJumpTableSize
76   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77    cl::desc("Set maximum size of jump tables."));
78 
79 /// Minimum jump table density for normal functions.
80 static cl::opt<unsigned>
81     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82                      cl::desc("Minimum density for building a jump table in "
83                               "a normal function"));
84 
85 /// Minimum jump table density for -Os or -Oz functions.
86 static cl::opt<unsigned> OptsizeJumpTableDensity(
87     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88     cl::desc("Minimum density for building a jump table in "
89              "an optsize function"));
90 
91 static bool darwinHasSinCos(const Triple &TT) {
92   assert(TT.isOSDarwin() && "should be called with darwin triple");
93   // Don't bother with 32 bit x86.
94   if (TT.getArch() == Triple::x86)
95     return false;
96   // Macos < 10.9 has no sincos_stret.
97   if (TT.isMacOSX())
98     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
99   // iOS < 7.0 has no sincos_stret.
100   if (TT.isiOS())
101     return !TT.isOSVersionLT(7, 0);
102   // Any other darwin such as WatchOS/TvOS is new enough.
103   return true;
104 }
105 
106 // Although this default value is arbitrary, it is not random. It is assumed
107 // that a condition that evaluates the same way by a higher percentage than this
108 // is best represented as control flow. Therefore, the default value N should be
109 // set such that the win from N% correct executions is greater than the loss
110 // from (100 - N)% mispredicted executions for the majority of intended targets.
111 static cl::opt<int> MinPercentageForPredictableBranch(
112     "min-predictable-branch", cl::init(99),
113     cl::desc("Minimum percentage (0-100) that a condition must be either true "
114              "or false to assume that the condition is predictable"),
115     cl::Hidden);
116 
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119   setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122   // Initialize calling conventions to their default.
123   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125 
126   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
128     setLibcallName(RTLIB::ADD_F128, "__addkf3");
129     setLibcallName(RTLIB::SUB_F128, "__subkf3");
130     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
131     setLibcallName(RTLIB::DIV_F128, "__divkf3");
132     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
139     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
140     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
141     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
142     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
143     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
144     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
145     setLibcallName(RTLIB::UNE_F128, "__nekf2");
146     setLibcallName(RTLIB::OGE_F128, "__gekf2");
147     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
148     setLibcallName(RTLIB::OLE_F128, "__lekf2");
149     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
150     setLibcallName(RTLIB::UO_F128, "__unordkf2");
151     setLibcallName(RTLIB::O_F128, "__unordkf2");
152   }
153 
154   // A few names are different on particular architectures or environments.
155   if (TT.isOSDarwin()) {
156     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
157     // of the gnueabi-style __gnu_*_ieee.
158     // FIXME: What about other targets?
159     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
160     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
161 
162     // Some darwins have an optimized __bzero/bzero function.
163     switch (TT.getArch()) {
164     case Triple::x86:
165     case Triple::x86_64:
166       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
167         setLibcallName(RTLIB::BZERO, "__bzero");
168       break;
169     case Triple::aarch64:
170       setLibcallName(RTLIB::BZERO, "bzero");
171       break;
172     default:
173       break;
174     }
175 
176     if (darwinHasSinCos(TT)) {
177       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
178       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
179       if (TT.isWatchABI()) {
180         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
181                               CallingConv::ARM_AAPCS_VFP);
182         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
183                               CallingConv::ARM_AAPCS_VFP);
184       }
185     }
186   } else {
187     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
188     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
189   }
190 
191   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
192       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
193     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
194     setLibcallName(RTLIB::SINCOS_F64, "sincos");
195     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
196     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
197     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
198   }
199 
200   if (TT.isOSOpenBSD()) {
201     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
202   }
203 }
204 
205 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
206 /// UNKNOWN_LIBCALL if there is none.
207 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
208   if (OpVT == MVT::f16) {
209     if (RetVT == MVT::f32)
210       return FPEXT_F16_F32;
211   } else if (OpVT == MVT::f32) {
212     if (RetVT == MVT::f64)
213       return FPEXT_F32_F64;
214     if (RetVT == MVT::f128)
215       return FPEXT_F32_F128;
216     if (RetVT == MVT::ppcf128)
217       return FPEXT_F32_PPCF128;
218   } else if (OpVT == MVT::f64) {
219     if (RetVT == MVT::f128)
220       return FPEXT_F64_F128;
221     else if (RetVT == MVT::ppcf128)
222       return FPEXT_F64_PPCF128;
223   } else if (OpVT == MVT::f80) {
224     if (RetVT == MVT::f128)
225       return FPEXT_F80_F128;
226   }
227 
228   return UNKNOWN_LIBCALL;
229 }
230 
231 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
232 /// UNKNOWN_LIBCALL if there is none.
233 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
234   if (RetVT == MVT::f16) {
235     if (OpVT == MVT::f32)
236       return FPROUND_F32_F16;
237     if (OpVT == MVT::f64)
238       return FPROUND_F64_F16;
239     if (OpVT == MVT::f80)
240       return FPROUND_F80_F16;
241     if (OpVT == MVT::f128)
242       return FPROUND_F128_F16;
243     if (OpVT == MVT::ppcf128)
244       return FPROUND_PPCF128_F16;
245   } else if (RetVT == MVT::f32) {
246     if (OpVT == MVT::f64)
247       return FPROUND_F64_F32;
248     if (OpVT == MVT::f80)
249       return FPROUND_F80_F32;
250     if (OpVT == MVT::f128)
251       return FPROUND_F128_F32;
252     if (OpVT == MVT::ppcf128)
253       return FPROUND_PPCF128_F32;
254   } else if (RetVT == MVT::f64) {
255     if (OpVT == MVT::f80)
256       return FPROUND_F80_F64;
257     if (OpVT == MVT::f128)
258       return FPROUND_F128_F64;
259     if (OpVT == MVT::ppcf128)
260       return FPROUND_PPCF128_F64;
261   } else if (RetVT == MVT::f80) {
262     if (OpVT == MVT::f128)
263       return FPROUND_F128_F80;
264   }
265 
266   return UNKNOWN_LIBCALL;
267 }
268 
269 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
270 /// UNKNOWN_LIBCALL if there is none.
271 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
272   if (OpVT == MVT::f32) {
273     if (RetVT == MVT::i32)
274       return FPTOSINT_F32_I32;
275     if (RetVT == MVT::i64)
276       return FPTOSINT_F32_I64;
277     if (RetVT == MVT::i128)
278       return FPTOSINT_F32_I128;
279   } else if (OpVT == MVT::f64) {
280     if (RetVT == MVT::i32)
281       return FPTOSINT_F64_I32;
282     if (RetVT == MVT::i64)
283       return FPTOSINT_F64_I64;
284     if (RetVT == MVT::i128)
285       return FPTOSINT_F64_I128;
286   } else if (OpVT == MVT::f80) {
287     if (RetVT == MVT::i32)
288       return FPTOSINT_F80_I32;
289     if (RetVT == MVT::i64)
290       return FPTOSINT_F80_I64;
291     if (RetVT == MVT::i128)
292       return FPTOSINT_F80_I128;
293   } else if (OpVT == MVT::f128) {
294     if (RetVT == MVT::i32)
295       return FPTOSINT_F128_I32;
296     if (RetVT == MVT::i64)
297       return FPTOSINT_F128_I64;
298     if (RetVT == MVT::i128)
299       return FPTOSINT_F128_I128;
300   } else if (OpVT == MVT::ppcf128) {
301     if (RetVT == MVT::i32)
302       return FPTOSINT_PPCF128_I32;
303     if (RetVT == MVT::i64)
304       return FPTOSINT_PPCF128_I64;
305     if (RetVT == MVT::i128)
306       return FPTOSINT_PPCF128_I128;
307   }
308   return UNKNOWN_LIBCALL;
309 }
310 
311 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
312 /// UNKNOWN_LIBCALL if there is none.
313 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
314   if (OpVT == MVT::f32) {
315     if (RetVT == MVT::i32)
316       return FPTOUINT_F32_I32;
317     if (RetVT == MVT::i64)
318       return FPTOUINT_F32_I64;
319     if (RetVT == MVT::i128)
320       return FPTOUINT_F32_I128;
321   } else if (OpVT == MVT::f64) {
322     if (RetVT == MVT::i32)
323       return FPTOUINT_F64_I32;
324     if (RetVT == MVT::i64)
325       return FPTOUINT_F64_I64;
326     if (RetVT == MVT::i128)
327       return FPTOUINT_F64_I128;
328   } else if (OpVT == MVT::f80) {
329     if (RetVT == MVT::i32)
330       return FPTOUINT_F80_I32;
331     if (RetVT == MVT::i64)
332       return FPTOUINT_F80_I64;
333     if (RetVT == MVT::i128)
334       return FPTOUINT_F80_I128;
335   } else if (OpVT == MVT::f128) {
336     if (RetVT == MVT::i32)
337       return FPTOUINT_F128_I32;
338     if (RetVT == MVT::i64)
339       return FPTOUINT_F128_I64;
340     if (RetVT == MVT::i128)
341       return FPTOUINT_F128_I128;
342   } else if (OpVT == MVT::ppcf128) {
343     if (RetVT == MVT::i32)
344       return FPTOUINT_PPCF128_I32;
345     if (RetVT == MVT::i64)
346       return FPTOUINT_PPCF128_I64;
347     if (RetVT == MVT::i128)
348       return FPTOUINT_PPCF128_I128;
349   }
350   return UNKNOWN_LIBCALL;
351 }
352 
353 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
354 /// UNKNOWN_LIBCALL if there is none.
355 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
356   if (OpVT == MVT::i32) {
357     if (RetVT == MVT::f32)
358       return SINTTOFP_I32_F32;
359     if (RetVT == MVT::f64)
360       return SINTTOFP_I32_F64;
361     if (RetVT == MVT::f80)
362       return SINTTOFP_I32_F80;
363     if (RetVT == MVT::f128)
364       return SINTTOFP_I32_F128;
365     if (RetVT == MVT::ppcf128)
366       return SINTTOFP_I32_PPCF128;
367   } else if (OpVT == MVT::i64) {
368     if (RetVT == MVT::f32)
369       return SINTTOFP_I64_F32;
370     if (RetVT == MVT::f64)
371       return SINTTOFP_I64_F64;
372     if (RetVT == MVT::f80)
373       return SINTTOFP_I64_F80;
374     if (RetVT == MVT::f128)
375       return SINTTOFP_I64_F128;
376     if (RetVT == MVT::ppcf128)
377       return SINTTOFP_I64_PPCF128;
378   } else if (OpVT == MVT::i128) {
379     if (RetVT == MVT::f32)
380       return SINTTOFP_I128_F32;
381     if (RetVT == MVT::f64)
382       return SINTTOFP_I128_F64;
383     if (RetVT == MVT::f80)
384       return SINTTOFP_I128_F80;
385     if (RetVT == MVT::f128)
386       return SINTTOFP_I128_F128;
387     if (RetVT == MVT::ppcf128)
388       return SINTTOFP_I128_PPCF128;
389   }
390   return UNKNOWN_LIBCALL;
391 }
392 
393 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
394 /// UNKNOWN_LIBCALL if there is none.
395 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
396   if (OpVT == MVT::i32) {
397     if (RetVT == MVT::f32)
398       return UINTTOFP_I32_F32;
399     if (RetVT == MVT::f64)
400       return UINTTOFP_I32_F64;
401     if (RetVT == MVT::f80)
402       return UINTTOFP_I32_F80;
403     if (RetVT == MVT::f128)
404       return UINTTOFP_I32_F128;
405     if (RetVT == MVT::ppcf128)
406       return UINTTOFP_I32_PPCF128;
407   } else if (OpVT == MVT::i64) {
408     if (RetVT == MVT::f32)
409       return UINTTOFP_I64_F32;
410     if (RetVT == MVT::f64)
411       return UINTTOFP_I64_F64;
412     if (RetVT == MVT::f80)
413       return UINTTOFP_I64_F80;
414     if (RetVT == MVT::f128)
415       return UINTTOFP_I64_F128;
416     if (RetVT == MVT::ppcf128)
417       return UINTTOFP_I64_PPCF128;
418   } else if (OpVT == MVT::i128) {
419     if (RetVT == MVT::f32)
420       return UINTTOFP_I128_F32;
421     if (RetVT == MVT::f64)
422       return UINTTOFP_I128_F64;
423     if (RetVT == MVT::f80)
424       return UINTTOFP_I128_F80;
425     if (RetVT == MVT::f128)
426       return UINTTOFP_I128_F128;
427     if (RetVT == MVT::ppcf128)
428       return UINTTOFP_I128_PPCF128;
429   }
430   return UNKNOWN_LIBCALL;
431 }
432 
433 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
434 #define OP_TO_LIBCALL(Name, Enum)                                              \
435   case Name:                                                                   \
436     switch (VT.SimpleTy) {                                                     \
437     default:                                                                   \
438       return UNKNOWN_LIBCALL;                                                  \
439     case MVT::i8:                                                              \
440       return Enum##_1;                                                         \
441     case MVT::i16:                                                             \
442       return Enum##_2;                                                         \
443     case MVT::i32:                                                             \
444       return Enum##_4;                                                         \
445     case MVT::i64:                                                             \
446       return Enum##_8;                                                         \
447     case MVT::i128:                                                            \
448       return Enum##_16;                                                        \
449     }
450 
451   switch (Opc) {
452     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
453     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
454     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
455     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
456     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
457     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
458     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
459     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
460     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
461     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
462     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
463     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
464   }
465 
466 #undef OP_TO_LIBCALL
467 
468   return UNKNOWN_LIBCALL;
469 }
470 
471 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
472   switch (ElementSize) {
473   case 1:
474     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
475   case 2:
476     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
477   case 4:
478     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
479   case 8:
480     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
481   case 16:
482     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
483   default:
484     return UNKNOWN_LIBCALL;
485   }
486 }
487 
488 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
489   switch (ElementSize) {
490   case 1:
491     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
492   case 2:
493     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
494   case 4:
495     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
496   case 8:
497     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
498   case 16:
499     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
500   default:
501     return UNKNOWN_LIBCALL;
502   }
503 }
504 
505 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
506   switch (ElementSize) {
507   case 1:
508     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
509   case 2:
510     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
511   case 4:
512     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
513   case 8:
514     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
515   case 16:
516     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
517   default:
518     return UNKNOWN_LIBCALL;
519   }
520 }
521 
522 /// InitCmpLibcallCCs - Set default comparison libcall CC.
523 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
524   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
525   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
526   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
527   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
528   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
529   CCs[RTLIB::UNE_F32] = ISD::SETNE;
530   CCs[RTLIB::UNE_F64] = ISD::SETNE;
531   CCs[RTLIB::UNE_F128] = ISD::SETNE;
532   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
533   CCs[RTLIB::OGE_F32] = ISD::SETGE;
534   CCs[RTLIB::OGE_F64] = ISD::SETGE;
535   CCs[RTLIB::OGE_F128] = ISD::SETGE;
536   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
537   CCs[RTLIB::OLT_F32] = ISD::SETLT;
538   CCs[RTLIB::OLT_F64] = ISD::SETLT;
539   CCs[RTLIB::OLT_F128] = ISD::SETLT;
540   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
541   CCs[RTLIB::OLE_F32] = ISD::SETLE;
542   CCs[RTLIB::OLE_F64] = ISD::SETLE;
543   CCs[RTLIB::OLE_F128] = ISD::SETLE;
544   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
545   CCs[RTLIB::OGT_F32] = ISD::SETGT;
546   CCs[RTLIB::OGT_F64] = ISD::SETGT;
547   CCs[RTLIB::OGT_F128] = ISD::SETGT;
548   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
549   CCs[RTLIB::UO_F32] = ISD::SETNE;
550   CCs[RTLIB::UO_F64] = ISD::SETNE;
551   CCs[RTLIB::UO_F128] = ISD::SETNE;
552   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
553   CCs[RTLIB::O_F32] = ISD::SETEQ;
554   CCs[RTLIB::O_F64] = ISD::SETEQ;
555   CCs[RTLIB::O_F128] = ISD::SETEQ;
556   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
557 }
558 
559 /// NOTE: The TargetMachine owns TLOF.
560 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
561   initActions();
562 
563   // Perform these initializations only once.
564   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
565       MaxLoadsPerMemcmp = 8;
566   MaxGluedStoresPerMemcpy = 0;
567   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
568       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
569   UseUnderscoreSetJmp = false;
570   UseUnderscoreLongJmp = false;
571   HasMultipleConditionRegisters = false;
572   HasExtractBitsInsn = false;
573   JumpIsExpensive = JumpIsExpensiveOverride;
574   PredictableSelectIsExpensive = false;
575   EnableExtLdPromotion = false;
576   StackPointerRegisterToSaveRestore = 0;
577   BooleanContents = UndefinedBooleanContent;
578   BooleanFloatContents = UndefinedBooleanContent;
579   BooleanVectorContents = UndefinedBooleanContent;
580   SchedPreferenceInfo = Sched::ILP;
581   JumpBufSize = 0;
582   JumpBufAlignment = 0;
583   MinFunctionAlignment = 0;
584   PrefFunctionAlignment = 0;
585   PrefLoopAlignment = 0;
586   GatherAllAliasesMaxDepth = 18;
587   MinStackArgumentAlignment = 1;
588   // TODO: the default will be switched to 0 in the next commit, along
589   // with the Target-specific changes necessary.
590   MaxAtomicSizeInBitsSupported = 1024;
591 
592   MinCmpXchgSizeInBits = 0;
593   SupportsUnalignedAtomics = false;
594 
595   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
596 
597   InitLibcalls(TM.getTargetTriple());
598   InitCmpLibcallCCs(CmpLibcallCCs);
599 }
600 
601 void TargetLoweringBase::initActions() {
602   // All operations default to being supported.
603   memset(OpActions, 0, sizeof(OpActions));
604   memset(LoadExtActions, 0, sizeof(LoadExtActions));
605   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
606   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
607   memset(CondCodeActions, 0, sizeof(CondCodeActions));
608   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
609   std::fill(std::begin(TargetDAGCombineArray),
610             std::end(TargetDAGCombineArray), 0);
611 
612   for (MVT VT : MVT::fp_valuetypes()) {
613     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
614     if (IntVT.isValid()) {
615       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
616       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
617     }
618   }
619 
620   // Set default actions for various operations.
621   for (MVT VT : MVT::all_valuetypes()) {
622     // Default all indexed load / store to expand.
623     for (unsigned IM = (unsigned)ISD::PRE_INC;
624          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
625       setIndexedLoadAction(IM, VT, Expand);
626       setIndexedStoreAction(IM, VT, Expand);
627     }
628 
629     // Most backends expect to see the node which just returns the value loaded.
630     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
631 
632     // These operations default to expand.
633     setOperationAction(ISD::FGETSIGN, VT, Expand);
634     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
635     setOperationAction(ISD::FMINNUM, VT, Expand);
636     setOperationAction(ISD::FMAXNUM, VT, Expand);
637     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
638     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
639     setOperationAction(ISD::FMINIMUM, VT, Expand);
640     setOperationAction(ISD::FMAXIMUM, VT, Expand);
641     setOperationAction(ISD::FMAD, VT, Expand);
642     setOperationAction(ISD::SMIN, VT, Expand);
643     setOperationAction(ISD::SMAX, VT, Expand);
644     setOperationAction(ISD::UMIN, VT, Expand);
645     setOperationAction(ISD::UMAX, VT, Expand);
646     setOperationAction(ISD::ABS, VT, Expand);
647     setOperationAction(ISD::FSHL, VT, Expand);
648     setOperationAction(ISD::FSHR, VT, Expand);
649     setOperationAction(ISD::SADDSAT, VT, Expand);
650     setOperationAction(ISD::UADDSAT, VT, Expand);
651     setOperationAction(ISD::SSUBSAT, VT, Expand);
652     setOperationAction(ISD::USUBSAT, VT, Expand);
653     setOperationAction(ISD::SMULFIX, VT, Expand);
654     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
655     setOperationAction(ISD::UMULFIX, VT, Expand);
656 
657     // Overflow operations default to expand
658     setOperationAction(ISD::SADDO, VT, Expand);
659     setOperationAction(ISD::SSUBO, VT, Expand);
660     setOperationAction(ISD::UADDO, VT, Expand);
661     setOperationAction(ISD::USUBO, VT, Expand);
662     setOperationAction(ISD::SMULO, VT, Expand);
663     setOperationAction(ISD::UMULO, VT, Expand);
664 
665     // ADDCARRY operations default to expand
666     setOperationAction(ISD::ADDCARRY, VT, Expand);
667     setOperationAction(ISD::SUBCARRY, VT, Expand);
668     setOperationAction(ISD::SETCCCARRY, VT, Expand);
669 
670     // ADDC/ADDE/SUBC/SUBE default to expand.
671     setOperationAction(ISD::ADDC, VT, Expand);
672     setOperationAction(ISD::ADDE, VT, Expand);
673     setOperationAction(ISD::SUBC, VT, Expand);
674     setOperationAction(ISD::SUBE, VT, Expand);
675 
676     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
677     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
678     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
679 
680     setOperationAction(ISD::BITREVERSE, VT, Expand);
681 
682     // These library functions default to expand.
683     setOperationAction(ISD::FROUND, VT, Expand);
684     setOperationAction(ISD::FPOWI, VT, Expand);
685 
686     // These operations default to expand for vector types.
687     if (VT.isVector()) {
688       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
689       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
690       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
691       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
692     }
693 
694     // Constrained floating-point operations default to expand.
695     setOperationAction(ISD::STRICT_FADD, VT, Expand);
696     setOperationAction(ISD::STRICT_FSUB, VT, Expand);
697     setOperationAction(ISD::STRICT_FMUL, VT, Expand);
698     setOperationAction(ISD::STRICT_FDIV, VT, Expand);
699     setOperationAction(ISD::STRICT_FREM, VT, Expand);
700     setOperationAction(ISD::STRICT_FMA, VT, Expand);
701     setOperationAction(ISD::STRICT_FSQRT, VT, Expand);
702     setOperationAction(ISD::STRICT_FPOW, VT, Expand);
703     setOperationAction(ISD::STRICT_FPOWI, VT, Expand);
704     setOperationAction(ISD::STRICT_FSIN, VT, Expand);
705     setOperationAction(ISD::STRICT_FCOS, VT, Expand);
706     setOperationAction(ISD::STRICT_FEXP, VT, Expand);
707     setOperationAction(ISD::STRICT_FEXP2, VT, Expand);
708     setOperationAction(ISD::STRICT_FLOG, VT, Expand);
709     setOperationAction(ISD::STRICT_FLOG10, VT, Expand);
710     setOperationAction(ISD::STRICT_FLOG2, VT, Expand);
711     setOperationAction(ISD::STRICT_FRINT, VT, Expand);
712     setOperationAction(ISD::STRICT_FNEARBYINT, VT, Expand);
713     setOperationAction(ISD::STRICT_FCEIL, VT, Expand);
714     setOperationAction(ISD::STRICT_FFLOOR, VT, Expand);
715     setOperationAction(ISD::STRICT_FROUND, VT, Expand);
716     setOperationAction(ISD::STRICT_FTRUNC, VT, Expand);
717     setOperationAction(ISD::STRICT_FMAXNUM, VT, Expand);
718     setOperationAction(ISD::STRICT_FMINNUM, VT, Expand);
719     setOperationAction(ISD::STRICT_FP_ROUND, VT, Expand);
720     setOperationAction(ISD::STRICT_FP_EXTEND, VT, Expand);
721 
722     // For most targets @llvm.get.dynamic.area.offset just returns 0.
723     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
724 
725     // Vector reduction default to expand.
726     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
727     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
728     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
729     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
730     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
731     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
732     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
733     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
734     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
735     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
736     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
737     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
738     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
739   }
740 
741   // Most targets ignore the @llvm.prefetch intrinsic.
742   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
743 
744   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
745   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
746 
747   // ConstantFP nodes default to expand.  Targets can either change this to
748   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
749   // to optimize expansions for certain constants.
750   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
751   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
752   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
753   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
754   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
755 
756   // These library functions default to expand.
757   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
758     setOperationAction(ISD::FCBRT,      VT, Expand);
759     setOperationAction(ISD::FLOG ,      VT, Expand);
760     setOperationAction(ISD::FLOG2,      VT, Expand);
761     setOperationAction(ISD::FLOG10,     VT, Expand);
762     setOperationAction(ISD::FEXP ,      VT, Expand);
763     setOperationAction(ISD::FEXP2,      VT, Expand);
764     setOperationAction(ISD::FFLOOR,     VT, Expand);
765     setOperationAction(ISD::FNEARBYINT, VT, Expand);
766     setOperationAction(ISD::FCEIL,      VT, Expand);
767     setOperationAction(ISD::FRINT,      VT, Expand);
768     setOperationAction(ISD::FTRUNC,     VT, Expand);
769     setOperationAction(ISD::FROUND,     VT, Expand);
770     setOperationAction(ISD::LROUND,     VT, Expand);
771     setOperationAction(ISD::LLROUND,    VT, Expand);
772     setOperationAction(ISD::LRINT,      VT, Expand);
773     setOperationAction(ISD::LLRINT,     VT, Expand);
774   }
775 
776   // Default ISD::TRAP to expand (which turns it into abort).
777   setOperationAction(ISD::TRAP, MVT::Other, Expand);
778 
779   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
780   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
781   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
782 }
783 
784 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
785                                                EVT) const {
786   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
787 }
788 
789 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
790                                          bool LegalTypes) const {
791   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
792   if (LHSTy.isVector())
793     return LHSTy;
794   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
795                     : getPointerTy(DL);
796 }
797 
798 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
799   assert(isTypeLegal(VT));
800   switch (Op) {
801   default:
802     return false;
803   case ISD::SDIV:
804   case ISD::UDIV:
805   case ISD::SREM:
806   case ISD::UREM:
807     return true;
808   }
809 }
810 
811 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
812   // If the command-line option was specified, ignore this request.
813   if (!JumpIsExpensiveOverride.getNumOccurrences())
814     JumpIsExpensive = isExpensive;
815 }
816 
817 TargetLoweringBase::LegalizeKind
818 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
819   // If this is a simple type, use the ComputeRegisterProp mechanism.
820   if (VT.isSimple()) {
821     MVT SVT = VT.getSimpleVT();
822     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
823     MVT NVT = TransformToType[SVT.SimpleTy];
824     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
825 
826     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
827             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
828            "Promote may not follow Expand or Promote");
829 
830     if (LA == TypeSplitVector)
831       return LegalizeKind(LA,
832                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
833                                            SVT.getVectorNumElements() / 2));
834     if (LA == TypeScalarizeVector)
835       return LegalizeKind(LA, SVT.getVectorElementType());
836     return LegalizeKind(LA, NVT);
837   }
838 
839   // Handle Extended Scalar Types.
840   if (!VT.isVector()) {
841     assert(VT.isInteger() && "Float types must be simple");
842     unsigned BitSize = VT.getSizeInBits();
843     // First promote to a power-of-two size, then expand if necessary.
844     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
845       EVT NVT = VT.getRoundIntegerType(Context);
846       assert(NVT != VT && "Unable to round integer VT");
847       LegalizeKind NextStep = getTypeConversion(Context, NVT);
848       // Avoid multi-step promotion.
849       if (NextStep.first == TypePromoteInteger)
850         return NextStep;
851       // Return rounded integer type.
852       return LegalizeKind(TypePromoteInteger, NVT);
853     }
854 
855     return LegalizeKind(TypeExpandInteger,
856                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
857   }
858 
859   // Handle vector types.
860   unsigned NumElts = VT.getVectorNumElements();
861   EVT EltVT = VT.getVectorElementType();
862 
863   // Vectors with only one element are always scalarized.
864   if (NumElts == 1)
865     return LegalizeKind(TypeScalarizeVector, EltVT);
866 
867   // Try to widen vector elements until the element type is a power of two and
868   // promote it to a legal type later on, for example:
869   // <3 x i8> -> <4 x i8> -> <4 x i32>
870   if (EltVT.isInteger()) {
871     // Vectors with a number of elements that is not a power of two are always
872     // widened, for example <3 x i8> -> <4 x i8>.
873     if (!VT.isPow2VectorType()) {
874       NumElts = (unsigned)NextPowerOf2(NumElts);
875       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
876       return LegalizeKind(TypeWidenVector, NVT);
877     }
878 
879     // Examine the element type.
880     LegalizeKind LK = getTypeConversion(Context, EltVT);
881 
882     // If type is to be expanded, split the vector.
883     //  <4 x i140> -> <2 x i140>
884     if (LK.first == TypeExpandInteger)
885       return LegalizeKind(TypeSplitVector,
886                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
887 
888     // Promote the integer element types until a legal vector type is found
889     // or until the element integer type is too big. If a legal type was not
890     // found, fallback to the usual mechanism of widening/splitting the
891     // vector.
892     EVT OldEltVT = EltVT;
893     while (true) {
894       // Increase the bitwidth of the element to the next pow-of-two
895       // (which is greater than 8 bits).
896       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
897                   .getRoundIntegerType(Context);
898 
899       // Stop trying when getting a non-simple element type.
900       // Note that vector elements may be greater than legal vector element
901       // types. Example: X86 XMM registers hold 64bit element on 32bit
902       // systems.
903       if (!EltVT.isSimple())
904         break;
905 
906       // Build a new vector type and check if it is legal.
907       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
908       // Found a legal promoted vector type.
909       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
910         return LegalizeKind(TypePromoteInteger,
911                             EVT::getVectorVT(Context, EltVT, NumElts));
912     }
913 
914     // Reset the type to the unexpanded type if we did not find a legal vector
915     // type with a promoted vector element type.
916     EltVT = OldEltVT;
917   }
918 
919   // Try to widen the vector until a legal type is found.
920   // If there is no wider legal type, split the vector.
921   while (true) {
922     // Round up to the next power of 2.
923     NumElts = (unsigned)NextPowerOf2(NumElts);
924 
925     // If there is no simple vector type with this many elements then there
926     // cannot be a larger legal vector type.  Note that this assumes that
927     // there are no skipped intermediate vector types in the simple types.
928     if (!EltVT.isSimple())
929       break;
930     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
931     if (LargerVector == MVT())
932       break;
933 
934     // If this type is legal then widen the vector.
935     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
936       return LegalizeKind(TypeWidenVector, LargerVector);
937   }
938 
939   // Widen odd vectors to next power of two.
940   if (!VT.isPow2VectorType()) {
941     EVT NVT = VT.getPow2VectorType(Context);
942     return LegalizeKind(TypeWidenVector, NVT);
943   }
944 
945   // Vectors with illegal element types are expanded.
946   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
947   return LegalizeKind(TypeSplitVector, NVT);
948 }
949 
950 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
951                                           unsigned &NumIntermediates,
952                                           MVT &RegisterVT,
953                                           TargetLoweringBase *TLI) {
954   // Figure out the right, legal destination reg to copy into.
955   unsigned NumElts = VT.getVectorNumElements();
956   MVT EltTy = VT.getVectorElementType();
957 
958   unsigned NumVectorRegs = 1;
959 
960   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
961   // could break down into LHS/RHS like LegalizeDAG does.
962   if (!isPowerOf2_32(NumElts)) {
963     NumVectorRegs = NumElts;
964     NumElts = 1;
965   }
966 
967   // Divide the input until we get to a supported size.  This will always
968   // end with a scalar if the target doesn't support vectors.
969   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
970     NumElts >>= 1;
971     NumVectorRegs <<= 1;
972   }
973 
974   NumIntermediates = NumVectorRegs;
975 
976   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
977   if (!TLI->isTypeLegal(NewVT))
978     NewVT = EltTy;
979   IntermediateVT = NewVT;
980 
981   unsigned NewVTSize = NewVT.getSizeInBits();
982 
983   // Convert sizes such as i33 to i64.
984   if (!isPowerOf2_32(NewVTSize))
985     NewVTSize = NextPowerOf2(NewVTSize);
986 
987   MVT DestVT = TLI->getRegisterType(NewVT);
988   RegisterVT = DestVT;
989   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
990     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
991 
992   // Otherwise, promotion or legal types use the same number of registers as
993   // the vector decimated to the appropriate level.
994   return NumVectorRegs;
995 }
996 
997 /// isLegalRC - Return true if the value types that can be represented by the
998 /// specified register class are all legal.
999 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1000                                    const TargetRegisterClass &RC) const {
1001   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1002     if (isTypeLegal(*I))
1003       return true;
1004   return false;
1005 }
1006 
1007 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1008 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1009 MachineBasicBlock *
1010 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1011                                    MachineBasicBlock *MBB) const {
1012   MachineInstr *MI = &InitialMI;
1013   MachineFunction &MF = *MI->getMF();
1014   MachineFrameInfo &MFI = MF.getFrameInfo();
1015 
1016   // We're handling multiple types of operands here:
1017   // PATCHPOINT MetaArgs - live-in, read only, direct
1018   // STATEPOINT Deopt Spill - live-through, read only, indirect
1019   // STATEPOINT Deopt Alloca - live-through, read only, direct
1020   // (We're currently conservative and mark the deopt slots read/write in
1021   // practice.)
1022   // STATEPOINT GC Spill - live-through, read/write, indirect
1023   // STATEPOINT GC Alloca - live-through, read/write, direct
1024   // The live-in vs live-through is handled already (the live through ones are
1025   // all stack slots), but we need to handle the different type of stackmap
1026   // operands and memory effects here.
1027 
1028   // MI changes inside this loop as we grow operands.
1029   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1030     MachineOperand &MO = MI->getOperand(OperIdx);
1031     if (!MO.isFI())
1032       continue;
1033 
1034     // foldMemoryOperand builds a new MI after replacing a single FI operand
1035     // with the canonical set of five x86 addressing-mode operands.
1036     int FI = MO.getIndex();
1037     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1038 
1039     // Copy operands before the frame-index.
1040     for (unsigned i = 0; i < OperIdx; ++i)
1041       MIB.add(MI->getOperand(i));
1042     // Add frame index operands recognized by stackmaps.cpp
1043     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1044       // indirect-mem-ref tag, size, #FI, offset.
1045       // Used for spills inserted by StatepointLowering.  This codepath is not
1046       // used for patchpoints/stackmaps at all, for these spilling is done via
1047       // foldMemoryOperand callback only.
1048       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1049       MIB.addImm(StackMaps::IndirectMemRefOp);
1050       MIB.addImm(MFI.getObjectSize(FI));
1051       MIB.add(MI->getOperand(OperIdx));
1052       MIB.addImm(0);
1053     } else {
1054       // direct-mem-ref tag, #FI, offset.
1055       // Used by patchpoint, and direct alloca arguments to statepoints
1056       MIB.addImm(StackMaps::DirectMemRefOp);
1057       MIB.add(MI->getOperand(OperIdx));
1058       MIB.addImm(0);
1059     }
1060     // Copy the operands after the frame index.
1061     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1062       MIB.add(MI->getOperand(i));
1063 
1064     // Inherit previous memory operands.
1065     MIB.cloneMemRefs(*MI);
1066     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1067 
1068     // Add a new memory operand for this FI.
1069     assert(MFI.getObjectOffset(FI) != -1);
1070 
1071     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1072     // PATCHPOINT should be updated to do the same. (TODO)
1073     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1074       auto Flags = MachineMemOperand::MOLoad;
1075       MachineMemOperand *MMO = MF.getMachineMemOperand(
1076           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1077           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1078       MIB->addMemOperand(MF, MMO);
1079     }
1080 
1081     // Replace the instruction and update the operand index.
1082     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1083     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1084     MI->eraseFromParent();
1085     MI = MIB;
1086   }
1087   return MBB;
1088 }
1089 
1090 MachineBasicBlock *
1091 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1092                                         MachineBasicBlock *MBB) const {
1093   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1094          "Called emitXRayCustomEvent on the wrong MI!");
1095   auto &MF = *MI.getMF();
1096   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1097   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1098     MIB.add(MI.getOperand(OpIdx));
1099 
1100   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1101   MI.eraseFromParent();
1102   return MBB;
1103 }
1104 
1105 MachineBasicBlock *
1106 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1107                                        MachineBasicBlock *MBB) const {
1108   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1109          "Called emitXRayTypedEvent on the wrong MI!");
1110   auto &MF = *MI.getMF();
1111   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1112   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1113     MIB.add(MI.getOperand(OpIdx));
1114 
1115   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1116   MI.eraseFromParent();
1117   return MBB;
1118 }
1119 
1120 /// findRepresentativeClass - Return the largest legal super-reg register class
1121 /// of the register class for the specified type and its associated "cost".
1122 // This function is in TargetLowering because it uses RegClassForVT which would
1123 // need to be moved to TargetRegisterInfo and would necessitate moving
1124 // isTypeLegal over as well - a massive change that would just require
1125 // TargetLowering having a TargetRegisterInfo class member that it would use.
1126 std::pair<const TargetRegisterClass *, uint8_t>
1127 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1128                                             MVT VT) const {
1129   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1130   if (!RC)
1131     return std::make_pair(RC, 0);
1132 
1133   // Compute the set of all super-register classes.
1134   BitVector SuperRegRC(TRI->getNumRegClasses());
1135   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1136     SuperRegRC.setBitsInMask(RCI.getMask());
1137 
1138   // Find the first legal register class with the largest spill size.
1139   const TargetRegisterClass *BestRC = RC;
1140   for (unsigned i : SuperRegRC.set_bits()) {
1141     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1142     // We want the largest possible spill size.
1143     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1144       continue;
1145     if (!isLegalRC(*TRI, *SuperRC))
1146       continue;
1147     BestRC = SuperRC;
1148   }
1149   return std::make_pair(BestRC, 1);
1150 }
1151 
1152 /// computeRegisterProperties - Once all of the register classes are added,
1153 /// this allows us to compute derived properties we expose.
1154 void TargetLoweringBase::computeRegisterProperties(
1155     const TargetRegisterInfo *TRI) {
1156   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1157                 "Too many value types for ValueTypeActions to hold!");
1158 
1159   // Everything defaults to needing one register.
1160   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1161     NumRegistersForVT[i] = 1;
1162     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1163   }
1164   // ...except isVoid, which doesn't need any registers.
1165   NumRegistersForVT[MVT::isVoid] = 0;
1166 
1167   // Find the largest integer register class.
1168   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1169   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1170     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1171 
1172   // Every integer value type larger than this largest register takes twice as
1173   // many registers to represent as the previous ValueType.
1174   for (unsigned ExpandedReg = LargestIntReg + 1;
1175        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1176     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1177     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1178     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1179     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1180                                    TypeExpandInteger);
1181   }
1182 
1183   // Inspect all of the ValueType's smaller than the largest integer
1184   // register to see which ones need promotion.
1185   unsigned LegalIntReg = LargestIntReg;
1186   for (unsigned IntReg = LargestIntReg - 1;
1187        IntReg >= (unsigned)MVT::i1; --IntReg) {
1188     MVT IVT = (MVT::SimpleValueType)IntReg;
1189     if (isTypeLegal(IVT)) {
1190       LegalIntReg = IntReg;
1191     } else {
1192       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1193         (MVT::SimpleValueType)LegalIntReg;
1194       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1195     }
1196   }
1197 
1198   // ppcf128 type is really two f64's.
1199   if (!isTypeLegal(MVT::ppcf128)) {
1200     if (isTypeLegal(MVT::f64)) {
1201       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1202       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1203       TransformToType[MVT::ppcf128] = MVT::f64;
1204       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1205     } else {
1206       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1207       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1208       TransformToType[MVT::ppcf128] = MVT::i128;
1209       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1210     }
1211   }
1212 
1213   // Decide how to handle f128. If the target does not have native f128 support,
1214   // expand it to i128 and we will be generating soft float library calls.
1215   if (!isTypeLegal(MVT::f128)) {
1216     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1217     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1218     TransformToType[MVT::f128] = MVT::i128;
1219     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1220   }
1221 
1222   // Decide how to handle f64. If the target does not have native f64 support,
1223   // expand it to i64 and we will be generating soft float library calls.
1224   if (!isTypeLegal(MVT::f64)) {
1225     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1226     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1227     TransformToType[MVT::f64] = MVT::i64;
1228     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1229   }
1230 
1231   // Decide how to handle f32. If the target does not have native f32 support,
1232   // expand it to i32 and we will be generating soft float library calls.
1233   if (!isTypeLegal(MVT::f32)) {
1234     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1235     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1236     TransformToType[MVT::f32] = MVT::i32;
1237     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1238   }
1239 
1240   // Decide how to handle f16. If the target does not have native f16 support,
1241   // promote it to f32, because there are no f16 library calls (except for
1242   // conversions).
1243   if (!isTypeLegal(MVT::f16)) {
1244     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1245     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1246     TransformToType[MVT::f16] = MVT::f32;
1247     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1248   }
1249 
1250   // Loop over all of the vector value types to see which need transformations.
1251   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1252        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1253     MVT VT = (MVT::SimpleValueType) i;
1254     if (isTypeLegal(VT))
1255       continue;
1256 
1257     MVT EltVT = VT.getVectorElementType();
1258     unsigned NElts = VT.getVectorNumElements();
1259     bool IsLegalWiderType = false;
1260     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1261     switch (PreferredAction) {
1262     case TypePromoteInteger:
1263       // Try to promote the elements of integer vectors. If no legal
1264       // promotion was found, fall through to the widen-vector method.
1265       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1266         MVT SVT = (MVT::SimpleValueType) nVT;
1267         // Promote vectors of integers to vectors with the same number
1268         // of elements, with a wider element type.
1269         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1270             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1271           TransformToType[i] = SVT;
1272           RegisterTypeForVT[i] = SVT;
1273           NumRegistersForVT[i] = 1;
1274           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1275           IsLegalWiderType = true;
1276           break;
1277         }
1278       }
1279       if (IsLegalWiderType)
1280         break;
1281       LLVM_FALLTHROUGH;
1282 
1283     case TypeWidenVector:
1284       // Try to widen the vector.
1285       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1286         MVT SVT = (MVT::SimpleValueType) nVT;
1287         if (SVT.getVectorElementType() == EltVT
1288             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1289           TransformToType[i] = SVT;
1290           RegisterTypeForVT[i] = SVT;
1291           NumRegistersForVT[i] = 1;
1292           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1293           IsLegalWiderType = true;
1294           break;
1295         }
1296       }
1297       if (IsLegalWiderType)
1298         break;
1299       LLVM_FALLTHROUGH;
1300 
1301     case TypeSplitVector:
1302     case TypeScalarizeVector: {
1303       MVT IntermediateVT;
1304       MVT RegisterVT;
1305       unsigned NumIntermediates;
1306       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1307           NumIntermediates, RegisterVT, this);
1308       RegisterTypeForVT[i] = RegisterVT;
1309 
1310       MVT NVT = VT.getPow2VectorType();
1311       if (NVT == VT) {
1312         // Type is already a power of 2.  The default action is to split.
1313         TransformToType[i] = MVT::Other;
1314         if (PreferredAction == TypeScalarizeVector)
1315           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1316         else if (PreferredAction == TypeSplitVector)
1317           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1318         else
1319           // Set type action according to the number of elements.
1320           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1321                                                         : TypeSplitVector);
1322       } else {
1323         TransformToType[i] = NVT;
1324         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1325       }
1326       break;
1327     }
1328     default:
1329       llvm_unreachable("Unknown vector legalization action!");
1330     }
1331   }
1332 
1333   // Determine the 'representative' register class for each value type.
1334   // An representative register class is the largest (meaning one which is
1335   // not a sub-register class / subreg register class) legal register class for
1336   // a group of value types. For example, on i386, i8, i16, and i32
1337   // representative would be GR32; while on x86_64 it's GR64.
1338   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1339     const TargetRegisterClass* RRC;
1340     uint8_t Cost;
1341     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1342     RepRegClassForVT[i] = RRC;
1343     RepRegClassCostForVT[i] = Cost;
1344   }
1345 }
1346 
1347 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1348                                            EVT VT) const {
1349   assert(!VT.isVector() && "No default SetCC type for vectors!");
1350   return getPointerTy(DL).SimpleTy;
1351 }
1352 
1353 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1354   return MVT::i32; // return the default value
1355 }
1356 
1357 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1358 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1359 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1360 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1361 ///
1362 /// This method returns the number of registers needed, and the VT for each
1363 /// register.  It also returns the VT and quantity of the intermediate values
1364 /// before they are promoted/expanded.
1365 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1366                                                 EVT &IntermediateVT,
1367                                                 unsigned &NumIntermediates,
1368                                                 MVT &RegisterVT) const {
1369   unsigned NumElts = VT.getVectorNumElements();
1370 
1371   // If there is a wider vector type with the same element type as this one,
1372   // or a promoted vector type that has the same number of elements which
1373   // are wider, then we should convert to that legal vector type.
1374   // This handles things like <2 x float> -> <4 x float> and
1375   // <4 x i1> -> <4 x i32>.
1376   LegalizeTypeAction TA = getTypeAction(Context, VT);
1377   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1378     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1379     if (isTypeLegal(RegisterEVT)) {
1380       IntermediateVT = RegisterEVT;
1381       RegisterVT = RegisterEVT.getSimpleVT();
1382       NumIntermediates = 1;
1383       return 1;
1384     }
1385   }
1386 
1387   // Figure out the right, legal destination reg to copy into.
1388   EVT EltTy = VT.getVectorElementType();
1389 
1390   unsigned NumVectorRegs = 1;
1391 
1392   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1393   // could break down into LHS/RHS like LegalizeDAG does.
1394   if (!isPowerOf2_32(NumElts)) {
1395     NumVectorRegs = NumElts;
1396     NumElts = 1;
1397   }
1398 
1399   // Divide the input until we get to a supported size.  This will always
1400   // end with a scalar if the target doesn't support vectors.
1401   while (NumElts > 1 && !isTypeLegal(
1402                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1403     NumElts >>= 1;
1404     NumVectorRegs <<= 1;
1405   }
1406 
1407   NumIntermediates = NumVectorRegs;
1408 
1409   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1410   if (!isTypeLegal(NewVT))
1411     NewVT = EltTy;
1412   IntermediateVT = NewVT;
1413 
1414   MVT DestVT = getRegisterType(Context, NewVT);
1415   RegisterVT = DestVT;
1416   unsigned NewVTSize = NewVT.getSizeInBits();
1417 
1418   // Convert sizes such as i33 to i64.
1419   if (!isPowerOf2_32(NewVTSize))
1420     NewVTSize = NextPowerOf2(NewVTSize);
1421 
1422   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1423     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1424 
1425   // Otherwise, promotion or legal types use the same number of registers as
1426   // the vector decimated to the appropriate level.
1427   return NumVectorRegs;
1428 }
1429 
1430 /// Get the EVTs and ArgFlags collections that represent the legalized return
1431 /// type of the given function.  This does not require a DAG or a return value,
1432 /// and is suitable for use before any DAGs for the function are constructed.
1433 /// TODO: Move this out of TargetLowering.cpp.
1434 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1435                          AttributeList attr,
1436                          SmallVectorImpl<ISD::OutputArg> &Outs,
1437                          const TargetLowering &TLI, const DataLayout &DL) {
1438   SmallVector<EVT, 4> ValueVTs;
1439   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1440   unsigned NumValues = ValueVTs.size();
1441   if (NumValues == 0) return;
1442 
1443   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1444     EVT VT = ValueVTs[j];
1445     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1446 
1447     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1448       ExtendKind = ISD::SIGN_EXTEND;
1449     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1450       ExtendKind = ISD::ZERO_EXTEND;
1451 
1452     // FIXME: C calling convention requires the return type to be promoted to
1453     // at least 32-bit. But this is not necessary for non-C calling
1454     // conventions. The frontend should mark functions whose return values
1455     // require promoting with signext or zeroext attributes.
1456     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1457       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1458       if (VT.bitsLT(MinVT))
1459         VT = MinVT;
1460     }
1461 
1462     unsigned NumParts =
1463         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1464     MVT PartVT =
1465         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1466 
1467     // 'inreg' on function refers to return value
1468     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1469     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1470       Flags.setInReg();
1471 
1472     // Propagate extension type if any
1473     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1474       Flags.setSExt();
1475     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1476       Flags.setZExt();
1477 
1478     for (unsigned i = 0; i < NumParts; ++i)
1479       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1480   }
1481 }
1482 
1483 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1484 /// function arguments in the caller parameter area.  This is the actual
1485 /// alignment, not its logarithm.
1486 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1487                                                    const DataLayout &DL) const {
1488   return DL.getABITypeAlignment(Ty);
1489 }
1490 
1491 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1492                                             const DataLayout &DL, EVT VT,
1493                                             unsigned AddrSpace,
1494                                             unsigned Alignment,
1495                                             MachineMemOperand::Flags Flags,
1496                                             bool *Fast) const {
1497   // Check if the specified alignment is sufficient based on the data layout.
1498   // TODO: While using the data layout works in practice, a better solution
1499   // would be to implement this check directly (make this a virtual function).
1500   // For example, the ABI alignment may change based on software platform while
1501   // this function should only be affected by hardware implementation.
1502   Type *Ty = VT.getTypeForEVT(Context);
1503   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1504     // Assume that an access that meets the ABI-specified alignment is fast.
1505     if (Fast != nullptr)
1506       *Fast = true;
1507     return true;
1508   }
1509 
1510   // This is a misaligned access.
1511   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1512 }
1513 
1514 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1515                                             const DataLayout &DL, EVT VT,
1516                                             const MachineMemOperand &MMO,
1517                                             bool *Fast) const {
1518   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1519                             MMO.getAlignment(), MMO.getFlags(), Fast);
1520 }
1521 
1522 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1523   return BranchProbability(MinPercentageForPredictableBranch, 100);
1524 }
1525 
1526 //===----------------------------------------------------------------------===//
1527 //  TargetTransformInfo Helpers
1528 //===----------------------------------------------------------------------===//
1529 
1530 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1531   enum InstructionOpcodes {
1532 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1533 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1534 #include "llvm/IR/Instruction.def"
1535   };
1536   switch (static_cast<InstructionOpcodes>(Opcode)) {
1537   case Ret:            return 0;
1538   case Br:             return 0;
1539   case Switch:         return 0;
1540   case IndirectBr:     return 0;
1541   case Invoke:         return 0;
1542   case CallBr:         return 0;
1543   case Resume:         return 0;
1544   case Unreachable:    return 0;
1545   case CleanupRet:     return 0;
1546   case CatchRet:       return 0;
1547   case CatchPad:       return 0;
1548   case CatchSwitch:    return 0;
1549   case CleanupPad:     return 0;
1550   case FNeg:           return ISD::FNEG;
1551   case Add:            return ISD::ADD;
1552   case FAdd:           return ISD::FADD;
1553   case Sub:            return ISD::SUB;
1554   case FSub:           return ISD::FSUB;
1555   case Mul:            return ISD::MUL;
1556   case FMul:           return ISD::FMUL;
1557   case UDiv:           return ISD::UDIV;
1558   case SDiv:           return ISD::SDIV;
1559   case FDiv:           return ISD::FDIV;
1560   case URem:           return ISD::UREM;
1561   case SRem:           return ISD::SREM;
1562   case FRem:           return ISD::FREM;
1563   case Shl:            return ISD::SHL;
1564   case LShr:           return ISD::SRL;
1565   case AShr:           return ISD::SRA;
1566   case And:            return ISD::AND;
1567   case Or:             return ISD::OR;
1568   case Xor:            return ISD::XOR;
1569   case Alloca:         return 0;
1570   case Load:           return ISD::LOAD;
1571   case Store:          return ISD::STORE;
1572   case GetElementPtr:  return 0;
1573   case Fence:          return 0;
1574   case AtomicCmpXchg:  return 0;
1575   case AtomicRMW:      return 0;
1576   case Trunc:          return ISD::TRUNCATE;
1577   case ZExt:           return ISD::ZERO_EXTEND;
1578   case SExt:           return ISD::SIGN_EXTEND;
1579   case FPToUI:         return ISD::FP_TO_UINT;
1580   case FPToSI:         return ISD::FP_TO_SINT;
1581   case UIToFP:         return ISD::UINT_TO_FP;
1582   case SIToFP:         return ISD::SINT_TO_FP;
1583   case FPTrunc:        return ISD::FP_ROUND;
1584   case FPExt:          return ISD::FP_EXTEND;
1585   case PtrToInt:       return ISD::BITCAST;
1586   case IntToPtr:       return ISD::BITCAST;
1587   case BitCast:        return ISD::BITCAST;
1588   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1589   case ICmp:           return ISD::SETCC;
1590   case FCmp:           return ISD::SETCC;
1591   case PHI:            return 0;
1592   case Call:           return 0;
1593   case Select:         return ISD::SELECT;
1594   case UserOp1:        return 0;
1595   case UserOp2:        return 0;
1596   case VAArg:          return 0;
1597   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1598   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1599   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1600   case ExtractValue:   return ISD::MERGE_VALUES;
1601   case InsertValue:    return ISD::MERGE_VALUES;
1602   case LandingPad:     return 0;
1603   }
1604 
1605   llvm_unreachable("Unknown instruction type encountered!");
1606 }
1607 
1608 std::pair<int, MVT>
1609 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1610                                             Type *Ty) const {
1611   LLVMContext &C = Ty->getContext();
1612   EVT MTy = getValueType(DL, Ty);
1613 
1614   int Cost = 1;
1615   // We keep legalizing the type until we find a legal kind. We assume that
1616   // the only operation that costs anything is the split. After splitting
1617   // we need to handle two types.
1618   while (true) {
1619     LegalizeKind LK = getTypeConversion(C, MTy);
1620 
1621     if (LK.first == TypeLegal)
1622       return std::make_pair(Cost, MTy.getSimpleVT());
1623 
1624     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1625       Cost *= 2;
1626 
1627     // Do not loop with f128 type.
1628     if (MTy == LK.second)
1629       return std::make_pair(Cost, MTy.getSimpleVT());
1630 
1631     // Keep legalizing the type.
1632     MTy = LK.second;
1633   }
1634 }
1635 
1636 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1637                                                               bool UseTLS) const {
1638   // compiler-rt provides a variable with a magic name.  Targets that do not
1639   // link with compiler-rt may also provide such a variable.
1640   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1641   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1642   auto UnsafeStackPtr =
1643       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1644 
1645   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1646 
1647   if (!UnsafeStackPtr) {
1648     auto TLSModel = UseTLS ?
1649         GlobalValue::InitialExecTLSModel :
1650         GlobalValue::NotThreadLocal;
1651     // The global variable is not defined yet, define it ourselves.
1652     // We use the initial-exec TLS model because we do not support the
1653     // variable living anywhere other than in the main executable.
1654     UnsafeStackPtr = new GlobalVariable(
1655         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1656         UnsafeStackPtrVar, nullptr, TLSModel);
1657   } else {
1658     // The variable exists, check its type and attributes.
1659     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1660       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1661     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1662       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1663                          (UseTLS ? "" : "not ") + "be thread-local");
1664   }
1665   return UnsafeStackPtr;
1666 }
1667 
1668 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1669   if (!TM.getTargetTriple().isAndroid())
1670     return getDefaultSafeStackPointerLocation(IRB, true);
1671 
1672   // Android provides a libc function to retrieve the address of the current
1673   // thread's unsafe stack pointer.
1674   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1675   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1676   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1677                                              StackPtrTy->getPointerTo(0));
1678   return IRB.CreateCall(Fn);
1679 }
1680 
1681 //===----------------------------------------------------------------------===//
1682 //  Loop Strength Reduction hooks
1683 //===----------------------------------------------------------------------===//
1684 
1685 /// isLegalAddressingMode - Return true if the addressing mode represented
1686 /// by AM is legal for this target, for a load/store of the specified type.
1687 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1688                                                const AddrMode &AM, Type *Ty,
1689                                                unsigned AS, Instruction *I) const {
1690   // The default implementation of this implements a conservative RISCy, r+r and
1691   // r+i addr mode.
1692 
1693   // Allows a sign-extended 16-bit immediate field.
1694   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1695     return false;
1696 
1697   // No global is ever allowed as a base.
1698   if (AM.BaseGV)
1699     return false;
1700 
1701   // Only support r+r,
1702   switch (AM.Scale) {
1703   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1704     break;
1705   case 1:
1706     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1707       return false;
1708     // Otherwise we have r+r or r+i.
1709     break;
1710   case 2:
1711     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1712       return false;
1713     // Allow 2*r as r+r.
1714     break;
1715   default: // Don't allow n * r
1716     return false;
1717   }
1718 
1719   return true;
1720 }
1721 
1722 //===----------------------------------------------------------------------===//
1723 //  Stack Protector
1724 //===----------------------------------------------------------------------===//
1725 
1726 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1727 // so that SelectionDAG handle SSP.
1728 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1729   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1730     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1731     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1732     return M.getOrInsertGlobal("__guard_local", PtrTy);
1733   }
1734   return nullptr;
1735 }
1736 
1737 // Currently only support "standard" __stack_chk_guard.
1738 // TODO: add LOAD_STACK_GUARD support.
1739 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1740   if (!M.getNamedValue("__stack_chk_guard"))
1741     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1742                        GlobalVariable::ExternalLinkage,
1743                        nullptr, "__stack_chk_guard");
1744 }
1745 
1746 // Currently only support "standard" __stack_chk_guard.
1747 // TODO: add LOAD_STACK_GUARD support.
1748 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1749   return M.getNamedValue("__stack_chk_guard");
1750 }
1751 
1752 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1753   return nullptr;
1754 }
1755 
1756 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1757   return MinimumJumpTableEntries;
1758 }
1759 
1760 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1761   MinimumJumpTableEntries = Val;
1762 }
1763 
1764 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1765   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1766 }
1767 
1768 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1769   return MaximumJumpTableSize;
1770 }
1771 
1772 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1773   MaximumJumpTableSize = Val;
1774 }
1775 
1776 //===----------------------------------------------------------------------===//
1777 //  Reciprocal Estimates
1778 //===----------------------------------------------------------------------===//
1779 
1780 /// Get the reciprocal estimate attribute string for a function that will
1781 /// override the target defaults.
1782 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1783   const Function &F = MF.getFunction();
1784   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1785 }
1786 
1787 /// Construct a string for the given reciprocal operation of the given type.
1788 /// This string should match the corresponding option to the front-end's
1789 /// "-mrecip" flag assuming those strings have been passed through in an
1790 /// attribute string. For example, "vec-divf" for a division of a vXf32.
1791 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1792   std::string Name = VT.isVector() ? "vec-" : "";
1793 
1794   Name += IsSqrt ? "sqrt" : "div";
1795 
1796   // TODO: Handle "half" or other float types?
1797   if (VT.getScalarType() == MVT::f64) {
1798     Name += "d";
1799   } else {
1800     assert(VT.getScalarType() == MVT::f32 &&
1801            "Unexpected FP type for reciprocal estimate");
1802     Name += "f";
1803   }
1804 
1805   return Name;
1806 }
1807 
1808 /// Return the character position and value (a single numeric character) of a
1809 /// customized refinement operation in the input string if it exists. Return
1810 /// false if there is no customized refinement step count.
1811 static bool parseRefinementStep(StringRef In, size_t &Position,
1812                                 uint8_t &Value) {
1813   const char RefStepToken = ':';
1814   Position = In.find(RefStepToken);
1815   if (Position == StringRef::npos)
1816     return false;
1817 
1818   StringRef RefStepString = In.substr(Position + 1);
1819   // Allow exactly one numeric character for the additional refinement
1820   // step parameter.
1821   if (RefStepString.size() == 1) {
1822     char RefStepChar = RefStepString[0];
1823     if (RefStepChar >= '0' && RefStepChar <= '9') {
1824       Value = RefStepChar - '0';
1825       return true;
1826     }
1827   }
1828   report_fatal_error("Invalid refinement step for -recip.");
1829 }
1830 
1831 /// For the input attribute string, return one of the ReciprocalEstimate enum
1832 /// status values (enabled, disabled, or not specified) for this operation on
1833 /// the specified data type.
1834 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1835   if (Override.empty())
1836     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1837 
1838   SmallVector<StringRef, 4> OverrideVector;
1839   Override.split(OverrideVector, ',');
1840   unsigned NumArgs = OverrideVector.size();
1841 
1842   // Check if "all", "none", or "default" was specified.
1843   if (NumArgs == 1) {
1844     // Look for an optional setting of the number of refinement steps needed
1845     // for this type of reciprocal operation.
1846     size_t RefPos;
1847     uint8_t RefSteps;
1848     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1849       // Split the string for further processing.
1850       Override = Override.substr(0, RefPos);
1851     }
1852 
1853     // All reciprocal types are enabled.
1854     if (Override == "all")
1855       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1856 
1857     // All reciprocal types are disabled.
1858     if (Override == "none")
1859       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1860 
1861     // Target defaults for enablement are used.
1862     if (Override == "default")
1863       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1864   }
1865 
1866   // The attribute string may omit the size suffix ('f'/'d').
1867   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1868   std::string VTNameNoSize = VTName;
1869   VTNameNoSize.pop_back();
1870   static const char DisabledPrefix = '!';
1871 
1872   for (StringRef RecipType : OverrideVector) {
1873     size_t RefPos;
1874     uint8_t RefSteps;
1875     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1876       RecipType = RecipType.substr(0, RefPos);
1877 
1878     // Ignore the disablement token for string matching.
1879     bool IsDisabled = RecipType[0] == DisabledPrefix;
1880     if (IsDisabled)
1881       RecipType = RecipType.substr(1);
1882 
1883     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1884       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1885                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1886   }
1887 
1888   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1889 }
1890 
1891 /// For the input attribute string, return the customized refinement step count
1892 /// for this operation on the specified data type. If the step count does not
1893 /// exist, return the ReciprocalEstimate enum value for unspecified.
1894 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1895   if (Override.empty())
1896     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1897 
1898   SmallVector<StringRef, 4> OverrideVector;
1899   Override.split(OverrideVector, ',');
1900   unsigned NumArgs = OverrideVector.size();
1901 
1902   // Check if "all", "default", or "none" was specified.
1903   if (NumArgs == 1) {
1904     // Look for an optional setting of the number of refinement steps needed
1905     // for this type of reciprocal operation.
1906     size_t RefPos;
1907     uint8_t RefSteps;
1908     if (!parseRefinementStep(Override, RefPos, RefSteps))
1909       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1910 
1911     // Split the string for further processing.
1912     Override = Override.substr(0, RefPos);
1913     assert(Override != "none" &&
1914            "Disabled reciprocals, but specifed refinement steps?");
1915 
1916     // If this is a general override, return the specified number of steps.
1917     if (Override == "all" || Override == "default")
1918       return RefSteps;
1919   }
1920 
1921   // The attribute string may omit the size suffix ('f'/'d').
1922   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1923   std::string VTNameNoSize = VTName;
1924   VTNameNoSize.pop_back();
1925 
1926   for (StringRef RecipType : OverrideVector) {
1927     size_t RefPos;
1928     uint8_t RefSteps;
1929     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1930       continue;
1931 
1932     RecipType = RecipType.substr(0, RefPos);
1933     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1934       return RefSteps;
1935   }
1936 
1937   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1938 }
1939 
1940 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1941                                                     MachineFunction &MF) const {
1942   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1943 }
1944 
1945 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1946                                                    MachineFunction &MF) const {
1947   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1948 }
1949 
1950 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1951                                                MachineFunction &MF) const {
1952   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1953 }
1954 
1955 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1956                                               MachineFunction &MF) const {
1957   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1958 }
1959 
1960 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1961   MF.getRegInfo().freezeReservedRegs(MF);
1962 }
1963