1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MachineValueType.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Target/TargetOptions.h" 56 #include "llvm/Transforms/Utils/SizeOpts.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <cstring> 61 #include <iterator> 62 #include <string> 63 #include <tuple> 64 #include <utility> 65 66 using namespace llvm; 67 68 static cl::opt<bool> JumpIsExpensiveOverride( 69 "jump-is-expensive", cl::init(false), 70 cl::desc("Do not create extra branches to split comparison logic."), 71 cl::Hidden); 72 73 static cl::opt<unsigned> MinimumJumpTableEntries 74 ("min-jump-table-entries", cl::init(4), cl::Hidden, 75 cl::desc("Set minimum number of entries to use a jump table.")); 76 77 static cl::opt<unsigned> MaximumJumpTableSize 78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 79 cl::desc("Set maximum size of jump tables.")); 80 81 /// Minimum jump table density for normal functions. 82 static cl::opt<unsigned> 83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 84 cl::desc("Minimum density for building a jump table in " 85 "a normal function")); 86 87 /// Minimum jump table density for -Os or -Oz functions. 88 static cl::opt<unsigned> OptsizeJumpTableDensity( 89 "optsize-jump-table-density", cl::init(40), cl::Hidden, 90 cl::desc("Minimum density for building a jump table in " 91 "an optsize function")); 92 93 // FIXME: This option is only to test if the strict fp operation processed 94 // correctly by preventing mutating strict fp operation to normal fp operation 95 // during development. When the backend supports strict float operation, this 96 // option will be meaningless. 97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 98 cl::desc("Don't mutate strict-float node to a legalize node"), 99 cl::init(false), cl::Hidden); 100 101 static bool darwinHasSinCos(const Triple &TT) { 102 assert(TT.isOSDarwin() && "should be called with darwin triple"); 103 // Don't bother with 32 bit x86. 104 if (TT.getArch() == Triple::x86) 105 return false; 106 // Macos < 10.9 has no sincos_stret. 107 if (TT.isMacOSX()) 108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 109 // iOS < 7.0 has no sincos_stret. 110 if (TT.isiOS()) 111 return !TT.isOSVersionLT(7, 0); 112 // Any other darwin such as WatchOS/TvOS is new enough. 113 return true; 114 } 115 116 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 117 #define HANDLE_LIBCALL(code, name) \ 118 setLibcallName(RTLIB::code, name); 119 #include "llvm/IR/RuntimeLibcalls.def" 120 #undef HANDLE_LIBCALL 121 // Initialize calling conventions to their default. 122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 123 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 124 125 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 126 if (TT.isPPC()) { 127 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 128 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 129 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 130 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 131 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 138 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); 139 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 140 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 141 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); 142 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 143 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 144 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); 145 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 146 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 147 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); 148 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 149 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 150 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 151 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 152 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 153 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 154 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 155 } 156 157 // A few names are different on particular architectures or environments. 158 if (TT.isOSDarwin()) { 159 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 160 // of the gnueabi-style __gnu_*_ieee. 161 // FIXME: What about other targets? 162 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 163 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 164 165 // Some darwins have an optimized __bzero/bzero function. 166 switch (TT.getArch()) { 167 case Triple::x86: 168 case Triple::x86_64: 169 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 170 setLibcallName(RTLIB::BZERO, "__bzero"); 171 break; 172 case Triple::aarch64: 173 case Triple::aarch64_32: 174 setLibcallName(RTLIB::BZERO, "bzero"); 175 break; 176 default: 177 break; 178 } 179 180 if (darwinHasSinCos(TT)) { 181 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 182 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 183 if (TT.isWatchABI()) { 184 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 185 CallingConv::ARM_AAPCS_VFP); 186 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 187 CallingConv::ARM_AAPCS_VFP); 188 } 189 } 190 } else { 191 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 192 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 193 } 194 195 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 196 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 197 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 198 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 199 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 200 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 201 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 202 } 203 204 if (TT.isPS()) { 205 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 206 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 207 } 208 209 if (TT.isOSOpenBSD()) { 210 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 211 } 212 } 213 214 /// GetFPLibCall - Helper to return the right libcall for the given floating 215 /// point type, or UNKNOWN_LIBCALL if there is none. 216 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, 217 RTLIB::Libcall Call_F32, 218 RTLIB::Libcall Call_F64, 219 RTLIB::Libcall Call_F80, 220 RTLIB::Libcall Call_F128, 221 RTLIB::Libcall Call_PPCF128) { 222 return 223 VT == MVT::f32 ? Call_F32 : 224 VT == MVT::f64 ? Call_F64 : 225 VT == MVT::f80 ? Call_F80 : 226 VT == MVT::f128 ? Call_F128 : 227 VT == MVT::ppcf128 ? Call_PPCF128 : 228 RTLIB::UNKNOWN_LIBCALL; 229 } 230 231 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 232 /// UNKNOWN_LIBCALL if there is none. 233 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 234 if (OpVT == MVT::f16) { 235 if (RetVT == MVT::f32) 236 return FPEXT_F16_F32; 237 if (RetVT == MVT::f64) 238 return FPEXT_F16_F64; 239 if (RetVT == MVT::f80) 240 return FPEXT_F16_F80; 241 if (RetVT == MVT::f128) 242 return FPEXT_F16_F128; 243 } else if (OpVT == MVT::f32) { 244 if (RetVT == MVT::f64) 245 return FPEXT_F32_F64; 246 if (RetVT == MVT::f128) 247 return FPEXT_F32_F128; 248 if (RetVT == MVT::ppcf128) 249 return FPEXT_F32_PPCF128; 250 } else if (OpVT == MVT::f64) { 251 if (RetVT == MVT::f128) 252 return FPEXT_F64_F128; 253 else if (RetVT == MVT::ppcf128) 254 return FPEXT_F64_PPCF128; 255 } else if (OpVT == MVT::f80) { 256 if (RetVT == MVT::f128) 257 return FPEXT_F80_F128; 258 } 259 260 return UNKNOWN_LIBCALL; 261 } 262 263 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 264 /// UNKNOWN_LIBCALL if there is none. 265 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 266 if (RetVT == MVT::f16) { 267 if (OpVT == MVT::f32) 268 return FPROUND_F32_F16; 269 if (OpVT == MVT::f64) 270 return FPROUND_F64_F16; 271 if (OpVT == MVT::f80) 272 return FPROUND_F80_F16; 273 if (OpVT == MVT::f128) 274 return FPROUND_F128_F16; 275 if (OpVT == MVT::ppcf128) 276 return FPROUND_PPCF128_F16; 277 } else if (RetVT == MVT::bf16) { 278 if (OpVT == MVT::f32) 279 return FPROUND_F32_BF16; 280 if (OpVT == MVT::f64) 281 return FPROUND_F64_BF16; 282 } else if (RetVT == MVT::f32) { 283 if (OpVT == MVT::f64) 284 return FPROUND_F64_F32; 285 if (OpVT == MVT::f80) 286 return FPROUND_F80_F32; 287 if (OpVT == MVT::f128) 288 return FPROUND_F128_F32; 289 if (OpVT == MVT::ppcf128) 290 return FPROUND_PPCF128_F32; 291 } else if (RetVT == MVT::f64) { 292 if (OpVT == MVT::f80) 293 return FPROUND_F80_F64; 294 if (OpVT == MVT::f128) 295 return FPROUND_F128_F64; 296 if (OpVT == MVT::ppcf128) 297 return FPROUND_PPCF128_F64; 298 } else if (RetVT == MVT::f80) { 299 if (OpVT == MVT::f128) 300 return FPROUND_F128_F80; 301 } 302 303 return UNKNOWN_LIBCALL; 304 } 305 306 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 307 /// UNKNOWN_LIBCALL if there is none. 308 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 309 if (OpVT == MVT::f16) { 310 if (RetVT == MVT::i32) 311 return FPTOSINT_F16_I32; 312 if (RetVT == MVT::i64) 313 return FPTOSINT_F16_I64; 314 if (RetVT == MVT::i128) 315 return FPTOSINT_F16_I128; 316 } else if (OpVT == MVT::f32) { 317 if (RetVT == MVT::i32) 318 return FPTOSINT_F32_I32; 319 if (RetVT == MVT::i64) 320 return FPTOSINT_F32_I64; 321 if (RetVT == MVT::i128) 322 return FPTOSINT_F32_I128; 323 } else if (OpVT == MVT::f64) { 324 if (RetVT == MVT::i32) 325 return FPTOSINT_F64_I32; 326 if (RetVT == MVT::i64) 327 return FPTOSINT_F64_I64; 328 if (RetVT == MVT::i128) 329 return FPTOSINT_F64_I128; 330 } else if (OpVT == MVT::f80) { 331 if (RetVT == MVT::i32) 332 return FPTOSINT_F80_I32; 333 if (RetVT == MVT::i64) 334 return FPTOSINT_F80_I64; 335 if (RetVT == MVT::i128) 336 return FPTOSINT_F80_I128; 337 } else if (OpVT == MVT::f128) { 338 if (RetVT == MVT::i32) 339 return FPTOSINT_F128_I32; 340 if (RetVT == MVT::i64) 341 return FPTOSINT_F128_I64; 342 if (RetVT == MVT::i128) 343 return FPTOSINT_F128_I128; 344 } else if (OpVT == MVT::ppcf128) { 345 if (RetVT == MVT::i32) 346 return FPTOSINT_PPCF128_I32; 347 if (RetVT == MVT::i64) 348 return FPTOSINT_PPCF128_I64; 349 if (RetVT == MVT::i128) 350 return FPTOSINT_PPCF128_I128; 351 } 352 return UNKNOWN_LIBCALL; 353 } 354 355 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 356 /// UNKNOWN_LIBCALL if there is none. 357 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 358 if (OpVT == MVT::f16) { 359 if (RetVT == MVT::i32) 360 return FPTOUINT_F16_I32; 361 if (RetVT == MVT::i64) 362 return FPTOUINT_F16_I64; 363 if (RetVT == MVT::i128) 364 return FPTOUINT_F16_I128; 365 } else if (OpVT == MVT::f32) { 366 if (RetVT == MVT::i32) 367 return FPTOUINT_F32_I32; 368 if (RetVT == MVT::i64) 369 return FPTOUINT_F32_I64; 370 if (RetVT == MVT::i128) 371 return FPTOUINT_F32_I128; 372 } else if (OpVT == MVT::f64) { 373 if (RetVT == MVT::i32) 374 return FPTOUINT_F64_I32; 375 if (RetVT == MVT::i64) 376 return FPTOUINT_F64_I64; 377 if (RetVT == MVT::i128) 378 return FPTOUINT_F64_I128; 379 } else if (OpVT == MVT::f80) { 380 if (RetVT == MVT::i32) 381 return FPTOUINT_F80_I32; 382 if (RetVT == MVT::i64) 383 return FPTOUINT_F80_I64; 384 if (RetVT == MVT::i128) 385 return FPTOUINT_F80_I128; 386 } else if (OpVT == MVT::f128) { 387 if (RetVT == MVT::i32) 388 return FPTOUINT_F128_I32; 389 if (RetVT == MVT::i64) 390 return FPTOUINT_F128_I64; 391 if (RetVT == MVT::i128) 392 return FPTOUINT_F128_I128; 393 } else if (OpVT == MVT::ppcf128) { 394 if (RetVT == MVT::i32) 395 return FPTOUINT_PPCF128_I32; 396 if (RetVT == MVT::i64) 397 return FPTOUINT_PPCF128_I64; 398 if (RetVT == MVT::i128) 399 return FPTOUINT_PPCF128_I128; 400 } 401 return UNKNOWN_LIBCALL; 402 } 403 404 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 405 /// UNKNOWN_LIBCALL if there is none. 406 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 407 if (OpVT == MVT::i32) { 408 if (RetVT == MVT::f16) 409 return SINTTOFP_I32_F16; 410 if (RetVT == MVT::f32) 411 return SINTTOFP_I32_F32; 412 if (RetVT == MVT::f64) 413 return SINTTOFP_I32_F64; 414 if (RetVT == MVT::f80) 415 return SINTTOFP_I32_F80; 416 if (RetVT == MVT::f128) 417 return SINTTOFP_I32_F128; 418 if (RetVT == MVT::ppcf128) 419 return SINTTOFP_I32_PPCF128; 420 } else if (OpVT == MVT::i64) { 421 if (RetVT == MVT::f16) 422 return SINTTOFP_I64_F16; 423 if (RetVT == MVT::f32) 424 return SINTTOFP_I64_F32; 425 if (RetVT == MVT::f64) 426 return SINTTOFP_I64_F64; 427 if (RetVT == MVT::f80) 428 return SINTTOFP_I64_F80; 429 if (RetVT == MVT::f128) 430 return SINTTOFP_I64_F128; 431 if (RetVT == MVT::ppcf128) 432 return SINTTOFP_I64_PPCF128; 433 } else if (OpVT == MVT::i128) { 434 if (RetVT == MVT::f16) 435 return SINTTOFP_I128_F16; 436 if (RetVT == MVT::f32) 437 return SINTTOFP_I128_F32; 438 if (RetVT == MVT::f64) 439 return SINTTOFP_I128_F64; 440 if (RetVT == MVT::f80) 441 return SINTTOFP_I128_F80; 442 if (RetVT == MVT::f128) 443 return SINTTOFP_I128_F128; 444 if (RetVT == MVT::ppcf128) 445 return SINTTOFP_I128_PPCF128; 446 } 447 return UNKNOWN_LIBCALL; 448 } 449 450 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 451 /// UNKNOWN_LIBCALL if there is none. 452 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 453 if (OpVT == MVT::i32) { 454 if (RetVT == MVT::f16) 455 return UINTTOFP_I32_F16; 456 if (RetVT == MVT::f32) 457 return UINTTOFP_I32_F32; 458 if (RetVT == MVT::f64) 459 return UINTTOFP_I32_F64; 460 if (RetVT == MVT::f80) 461 return UINTTOFP_I32_F80; 462 if (RetVT == MVT::f128) 463 return UINTTOFP_I32_F128; 464 if (RetVT == MVT::ppcf128) 465 return UINTTOFP_I32_PPCF128; 466 } else if (OpVT == MVT::i64) { 467 if (RetVT == MVT::f16) 468 return UINTTOFP_I64_F16; 469 if (RetVT == MVT::f32) 470 return UINTTOFP_I64_F32; 471 if (RetVT == MVT::f64) 472 return UINTTOFP_I64_F64; 473 if (RetVT == MVT::f80) 474 return UINTTOFP_I64_F80; 475 if (RetVT == MVT::f128) 476 return UINTTOFP_I64_F128; 477 if (RetVT == MVT::ppcf128) 478 return UINTTOFP_I64_PPCF128; 479 } else if (OpVT == MVT::i128) { 480 if (RetVT == MVT::f16) 481 return UINTTOFP_I128_F16; 482 if (RetVT == MVT::f32) 483 return UINTTOFP_I128_F32; 484 if (RetVT == MVT::f64) 485 return UINTTOFP_I128_F64; 486 if (RetVT == MVT::f80) 487 return UINTTOFP_I128_F80; 488 if (RetVT == MVT::f128) 489 return UINTTOFP_I128_F128; 490 if (RetVT == MVT::ppcf128) 491 return UINTTOFP_I128_PPCF128; 492 } 493 return UNKNOWN_LIBCALL; 494 } 495 496 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { 497 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, 498 POWI_PPCF128); 499 } 500 501 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 502 MVT VT) { 503 unsigned ModeN, ModelN; 504 switch (VT.SimpleTy) { 505 case MVT::i8: 506 ModeN = 0; 507 break; 508 case MVT::i16: 509 ModeN = 1; 510 break; 511 case MVT::i32: 512 ModeN = 2; 513 break; 514 case MVT::i64: 515 ModeN = 3; 516 break; 517 case MVT::i128: 518 ModeN = 4; 519 break; 520 default: 521 return UNKNOWN_LIBCALL; 522 } 523 524 switch (Order) { 525 case AtomicOrdering::Monotonic: 526 ModelN = 0; 527 break; 528 case AtomicOrdering::Acquire: 529 ModelN = 1; 530 break; 531 case AtomicOrdering::Release: 532 ModelN = 2; 533 break; 534 case AtomicOrdering::AcquireRelease: 535 case AtomicOrdering::SequentiallyConsistent: 536 ModelN = 3; 537 break; 538 default: 539 return UNKNOWN_LIBCALL; 540 } 541 542 #define LCALLS(A, B) \ 543 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 544 #define LCALL5(A) \ 545 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 546 switch (Opc) { 547 case ISD::ATOMIC_CMP_SWAP: { 548 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 549 return LC[ModeN][ModelN]; 550 } 551 case ISD::ATOMIC_SWAP: { 552 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 553 return LC[ModeN][ModelN]; 554 } 555 case ISD::ATOMIC_LOAD_ADD: { 556 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 557 return LC[ModeN][ModelN]; 558 } 559 case ISD::ATOMIC_LOAD_OR: { 560 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 561 return LC[ModeN][ModelN]; 562 } 563 case ISD::ATOMIC_LOAD_CLR: { 564 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 565 return LC[ModeN][ModelN]; 566 } 567 case ISD::ATOMIC_LOAD_XOR: { 568 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 569 return LC[ModeN][ModelN]; 570 } 571 default: 572 return UNKNOWN_LIBCALL; 573 } 574 #undef LCALLS 575 #undef LCALL5 576 } 577 578 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 579 #define OP_TO_LIBCALL(Name, Enum) \ 580 case Name: \ 581 switch (VT.SimpleTy) { \ 582 default: \ 583 return UNKNOWN_LIBCALL; \ 584 case MVT::i8: \ 585 return Enum##_1; \ 586 case MVT::i16: \ 587 return Enum##_2; \ 588 case MVT::i32: \ 589 return Enum##_4; \ 590 case MVT::i64: \ 591 return Enum##_8; \ 592 case MVT::i128: \ 593 return Enum##_16; \ 594 } 595 596 switch (Opc) { 597 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 598 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 599 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 600 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 601 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 602 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 603 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 604 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 605 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 606 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 607 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 608 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 609 } 610 611 #undef OP_TO_LIBCALL 612 613 return UNKNOWN_LIBCALL; 614 } 615 616 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 617 switch (ElementSize) { 618 case 1: 619 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 620 case 2: 621 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 622 case 4: 623 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 624 case 8: 625 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 626 case 16: 627 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 628 default: 629 return UNKNOWN_LIBCALL; 630 } 631 } 632 633 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 634 switch (ElementSize) { 635 case 1: 636 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 637 case 2: 638 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 639 case 4: 640 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 641 case 8: 642 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 643 case 16: 644 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 645 default: 646 return UNKNOWN_LIBCALL; 647 } 648 } 649 650 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 651 switch (ElementSize) { 652 case 1: 653 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 654 case 2: 655 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 656 case 4: 657 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 658 case 8: 659 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 660 case 16: 661 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 662 default: 663 return UNKNOWN_LIBCALL; 664 } 665 } 666 667 /// InitCmpLibcallCCs - Set default comparison libcall CC. 668 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 669 std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID); 670 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 671 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 672 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 673 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 674 CCs[RTLIB::UNE_F32] = ISD::SETNE; 675 CCs[RTLIB::UNE_F64] = ISD::SETNE; 676 CCs[RTLIB::UNE_F128] = ISD::SETNE; 677 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 678 CCs[RTLIB::OGE_F32] = ISD::SETGE; 679 CCs[RTLIB::OGE_F64] = ISD::SETGE; 680 CCs[RTLIB::OGE_F128] = ISD::SETGE; 681 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 682 CCs[RTLIB::OLT_F32] = ISD::SETLT; 683 CCs[RTLIB::OLT_F64] = ISD::SETLT; 684 CCs[RTLIB::OLT_F128] = ISD::SETLT; 685 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 686 CCs[RTLIB::OLE_F32] = ISD::SETLE; 687 CCs[RTLIB::OLE_F64] = ISD::SETLE; 688 CCs[RTLIB::OLE_F128] = ISD::SETLE; 689 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 690 CCs[RTLIB::OGT_F32] = ISD::SETGT; 691 CCs[RTLIB::OGT_F64] = ISD::SETGT; 692 CCs[RTLIB::OGT_F128] = ISD::SETGT; 693 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 694 CCs[RTLIB::UO_F32] = ISD::SETNE; 695 CCs[RTLIB::UO_F64] = ISD::SETNE; 696 CCs[RTLIB::UO_F128] = ISD::SETNE; 697 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 698 } 699 700 /// NOTE: The TargetMachine owns TLOF. 701 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 702 initActions(); 703 704 // Perform these initializations only once. 705 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 706 MaxLoadsPerMemcmp = 8; 707 MaxGluedStoresPerMemcpy = 0; 708 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 709 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 710 HasMultipleConditionRegisters = false; 711 HasExtractBitsInsn = false; 712 JumpIsExpensive = JumpIsExpensiveOverride; 713 PredictableSelectIsExpensive = false; 714 EnableExtLdPromotion = false; 715 StackPointerRegisterToSaveRestore = 0; 716 BooleanContents = UndefinedBooleanContent; 717 BooleanFloatContents = UndefinedBooleanContent; 718 BooleanVectorContents = UndefinedBooleanContent; 719 SchedPreferenceInfo = Sched::ILP; 720 GatherAllAliasesMaxDepth = 18; 721 IsStrictFPEnabled = DisableStrictNodeMutation; 722 MaxBytesForAlignment = 0; 723 // TODO: the default will be switched to 0 in the next commit, along 724 // with the Target-specific changes necessary. 725 MaxAtomicSizeInBitsSupported = 1024; 726 727 // Assume that even with libcalls, no target supports wider than 128 bit 728 // division. 729 MaxDivRemBitWidthSupported = 128; 730 731 MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS; 732 733 MinCmpXchgSizeInBits = 0; 734 SupportsUnalignedAtomics = false; 735 736 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 737 738 InitLibcalls(TM.getTargetTriple()); 739 InitCmpLibcallCCs(CmpLibcallCCs); 740 } 741 742 void TargetLoweringBase::initActions() { 743 // All operations default to being supported. 744 memset(OpActions, 0, sizeof(OpActions)); 745 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 746 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 747 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 748 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 749 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 750 std::fill(std::begin(TargetDAGCombineArray), 751 std::end(TargetDAGCombineArray), 0); 752 753 // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to 754 // remove this and targets should individually set these types if not legal. 755 for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END, 756 force_iteration_on_noniterable_enum)) { 757 for (MVT VT : {MVT::i2, MVT::i4}) 758 OpActions[(unsigned)VT.SimpleTy][NT] = Expand; 759 } 760 for (MVT AVT : MVT::all_valuetypes()) { 761 for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) { 762 setTruncStoreAction(AVT, VT, Expand); 763 setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand); 764 setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand); 765 } 766 } 767 for (unsigned IM = (unsigned)ISD::PRE_INC; 768 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 769 for (MVT VT : {MVT::i2, MVT::i4}) { 770 setIndexedLoadAction(IM, VT, Expand); 771 setIndexedStoreAction(IM, VT, Expand); 772 setIndexedMaskedLoadAction(IM, VT, Expand); 773 setIndexedMaskedStoreAction(IM, VT, Expand); 774 } 775 } 776 777 for (MVT VT : MVT::fp_valuetypes()) { 778 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 779 if (IntVT.isValid()) { 780 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 781 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 782 } 783 } 784 785 // Set default actions for various operations. 786 for (MVT VT : MVT::all_valuetypes()) { 787 // Default all indexed load / store to expand. 788 for (unsigned IM = (unsigned)ISD::PRE_INC; 789 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 790 setIndexedLoadAction(IM, VT, Expand); 791 setIndexedStoreAction(IM, VT, Expand); 792 setIndexedMaskedLoadAction(IM, VT, Expand); 793 setIndexedMaskedStoreAction(IM, VT, Expand); 794 } 795 796 // Most backends expect to see the node which just returns the value loaded. 797 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 798 799 // These operations default to expand. 800 setOperationAction({ISD::FGETSIGN, ISD::CONCAT_VECTORS, 801 ISD::FMINNUM, ISD::FMAXNUM, 802 ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, 803 ISD::FMINIMUM, ISD::FMAXIMUM, 804 ISD::FMAD, ISD::SMIN, 805 ISD::SMAX, ISD::UMIN, 806 ISD::UMAX, ISD::ABS, 807 ISD::FSHL, ISD::FSHR, 808 ISD::SADDSAT, ISD::UADDSAT, 809 ISD::SSUBSAT, ISD::USUBSAT, 810 ISD::SSHLSAT, ISD::USHLSAT, 811 ISD::SMULFIX, ISD::SMULFIXSAT, 812 ISD::UMULFIX, ISD::UMULFIXSAT, 813 ISD::SDIVFIX, ISD::SDIVFIXSAT, 814 ISD::UDIVFIX, ISD::UDIVFIXSAT, 815 ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, 816 ISD::IS_FPCLASS}, 817 VT, Expand); 818 819 // Overflow operations default to expand 820 setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO, 821 ISD::SMULO, ISD::UMULO}, 822 VT, Expand); 823 824 // ADDCARRY operations default to expand 825 setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY, 826 ISD::SADDO_CARRY, ISD::SSUBO_CARRY}, 827 VT, Expand); 828 829 // ADDC/ADDE/SUBC/SUBE default to expand. 830 setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT, 831 Expand); 832 833 // Halving adds 834 setOperationAction( 835 {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT, 836 Expand); 837 838 // Absolute difference 839 setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand); 840 841 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 842 setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT, 843 Expand); 844 845 setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand); 846 847 // These library functions default to expand. 848 setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand); 849 850 // These operations default to expand for vector types. 851 if (VT.isVector()) 852 setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, 853 ISD::ANY_EXTEND_VECTOR_INREG, 854 ISD::SIGN_EXTEND_VECTOR_INREG, 855 ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR}, 856 VT, Expand); 857 858 // Constrained floating-point operations default to expand. 859 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 860 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 861 #include "llvm/IR/ConstrainedOps.def" 862 863 // For most targets @llvm.get.dynamic.area.offset just returns 0. 864 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 865 866 // Vector reduction default to expand. 867 setOperationAction( 868 {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD, 869 ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR, 870 ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN, 871 ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX, 872 ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL}, 873 VT, Expand); 874 875 // Named vector shuffles default to expand. 876 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); 877 878 // VP_SREM/UREM default to expand. 879 // TODO: Expand all VP intrinsics. 880 setOperationAction(ISD::VP_SREM, VT, Expand); 881 setOperationAction(ISD::VP_UREM, VT, Expand); 882 } 883 884 // Most targets ignore the @llvm.prefetch intrinsic. 885 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 886 887 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 888 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 889 890 // ConstantFP nodes default to expand. Targets can either change this to 891 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 892 // to optimize expansions for certain constants. 893 setOperationAction(ISD::ConstantFP, 894 {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128}, 895 Expand); 896 897 // These library functions default to expand. 898 setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP, 899 ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, 900 ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND, 901 ISD::LRINT, ISD::LLRINT}, 902 {MVT::f32, MVT::f64, MVT::f128}, Expand); 903 904 // Default ISD::TRAP to expand (which turns it into abort). 905 setOperationAction(ISD::TRAP, MVT::Other, Expand); 906 907 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 908 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 909 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 910 911 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); 912 } 913 914 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 915 EVT) const { 916 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 917 } 918 919 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 920 bool LegalTypes) const { 921 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 922 if (LHSTy.isVector()) 923 return LHSTy; 924 MVT ShiftVT = 925 LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL); 926 // If any possible shift value won't fit in the prefered type, just use 927 // something safe. Assume it will be legalized when the shift is expanded. 928 if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits())) 929 ShiftVT = MVT::i32; 930 assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) && 931 "ShiftVT is still too small!"); 932 return ShiftVT; 933 } 934 935 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 936 assert(isTypeLegal(VT)); 937 switch (Op) { 938 default: 939 return false; 940 case ISD::SDIV: 941 case ISD::UDIV: 942 case ISD::SREM: 943 case ISD::UREM: 944 return true; 945 } 946 } 947 948 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 949 unsigned DestAS) const { 950 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 951 } 952 953 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 954 // If the command-line option was specified, ignore this request. 955 if (!JumpIsExpensiveOverride.getNumOccurrences()) 956 JumpIsExpensive = isExpensive; 957 } 958 959 TargetLoweringBase::LegalizeKind 960 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 961 // If this is a simple type, use the ComputeRegisterProp mechanism. 962 if (VT.isSimple()) { 963 MVT SVT = VT.getSimpleVT(); 964 assert((unsigned)SVT.SimpleTy < std::size(TransformToType)); 965 MVT NVT = TransformToType[SVT.SimpleTy]; 966 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 967 968 assert((LA == TypeLegal || LA == TypeSoftenFloat || 969 LA == TypeSoftPromoteHalf || 970 (NVT.isVector() || 971 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 972 "Promote may not follow Expand or Promote"); 973 974 if (LA == TypeSplitVector) 975 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 976 if (LA == TypeScalarizeVector) 977 return LegalizeKind(LA, SVT.getVectorElementType()); 978 return LegalizeKind(LA, NVT); 979 } 980 981 // Handle Extended Scalar Types. 982 if (!VT.isVector()) { 983 assert(VT.isInteger() && "Float types must be simple"); 984 unsigned BitSize = VT.getSizeInBits(); 985 // First promote to a power-of-two size, then expand if necessary. 986 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 987 EVT NVT = VT.getRoundIntegerType(Context); 988 assert(NVT != VT && "Unable to round integer VT"); 989 LegalizeKind NextStep = getTypeConversion(Context, NVT); 990 // Avoid multi-step promotion. 991 if (NextStep.first == TypePromoteInteger) 992 return NextStep; 993 // Return rounded integer type. 994 return LegalizeKind(TypePromoteInteger, NVT); 995 } 996 997 return LegalizeKind(TypeExpandInteger, 998 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 999 } 1000 1001 // Handle vector types. 1002 ElementCount NumElts = VT.getVectorElementCount(); 1003 EVT EltVT = VT.getVectorElementType(); 1004 1005 // Vectors with only one element are always scalarized. 1006 if (NumElts.isScalar()) 1007 return LegalizeKind(TypeScalarizeVector, EltVT); 1008 1009 // Try to widen vector elements until the element type is a power of two and 1010 // promote it to a legal type later on, for example: 1011 // <3 x i8> -> <4 x i8> -> <4 x i32> 1012 if (EltVT.isInteger()) { 1013 // Vectors with a number of elements that is not a power of two are always 1014 // widened, for example <3 x i8> -> <4 x i8>. 1015 if (!VT.isPow2VectorType()) { 1016 NumElts = NumElts.coefficientNextPowerOf2(); 1017 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 1018 return LegalizeKind(TypeWidenVector, NVT); 1019 } 1020 1021 // Examine the element type. 1022 LegalizeKind LK = getTypeConversion(Context, EltVT); 1023 1024 // If type is to be expanded, split the vector. 1025 // <4 x i140> -> <2 x i140> 1026 if (LK.first == TypeExpandInteger) { 1027 if (VT.getVectorElementCount().isScalable()) 1028 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1029 return LegalizeKind(TypeSplitVector, 1030 VT.getHalfNumVectorElementsVT(Context)); 1031 } 1032 1033 // Promote the integer element types until a legal vector type is found 1034 // or until the element integer type is too big. If a legal type was not 1035 // found, fallback to the usual mechanism of widening/splitting the 1036 // vector. 1037 EVT OldEltVT = EltVT; 1038 while (true) { 1039 // Increase the bitwidth of the element to the next pow-of-two 1040 // (which is greater than 8 bits). 1041 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 1042 .getRoundIntegerType(Context); 1043 1044 // Stop trying when getting a non-simple element type. 1045 // Note that vector elements may be greater than legal vector element 1046 // types. Example: X86 XMM registers hold 64bit element on 32bit 1047 // systems. 1048 if (!EltVT.isSimple()) 1049 break; 1050 1051 // Build a new vector type and check if it is legal. 1052 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1053 // Found a legal promoted vector type. 1054 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 1055 return LegalizeKind(TypePromoteInteger, 1056 EVT::getVectorVT(Context, EltVT, NumElts)); 1057 } 1058 1059 // Reset the type to the unexpanded type if we did not find a legal vector 1060 // type with a promoted vector element type. 1061 EltVT = OldEltVT; 1062 } 1063 1064 // Try to widen the vector until a legal type is found. 1065 // If there is no wider legal type, split the vector. 1066 while (true) { 1067 // Round up to the next power of 2. 1068 NumElts = NumElts.coefficientNextPowerOf2(); 1069 1070 // If there is no simple vector type with this many elements then there 1071 // cannot be a larger legal vector type. Note that this assumes that 1072 // there are no skipped intermediate vector types in the simple types. 1073 if (!EltVT.isSimple()) 1074 break; 1075 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1076 if (LargerVector == MVT()) 1077 break; 1078 1079 // If this type is legal then widen the vector. 1080 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1081 return LegalizeKind(TypeWidenVector, LargerVector); 1082 } 1083 1084 // Widen odd vectors to next power of two. 1085 if (!VT.isPow2VectorType()) { 1086 EVT NVT = VT.getPow2VectorType(Context); 1087 return LegalizeKind(TypeWidenVector, NVT); 1088 } 1089 1090 if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 1091 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1092 1093 // Vectors with illegal element types are expanded. 1094 EVT NVT = EVT::getVectorVT(Context, EltVT, 1095 VT.getVectorElementCount().divideCoefficientBy(2)); 1096 return LegalizeKind(TypeSplitVector, NVT); 1097 } 1098 1099 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1100 unsigned &NumIntermediates, 1101 MVT &RegisterVT, 1102 TargetLoweringBase *TLI) { 1103 // Figure out the right, legal destination reg to copy into. 1104 ElementCount EC = VT.getVectorElementCount(); 1105 MVT EltTy = VT.getVectorElementType(); 1106 1107 unsigned NumVectorRegs = 1; 1108 1109 // Scalable vectors cannot be scalarized, so splitting or widening is 1110 // required. 1111 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 1112 llvm_unreachable( 1113 "Splitting or widening of non-power-of-2 MVTs is not implemented."); 1114 1115 // FIXME: We don't support non-power-of-2-sized vectors for now. 1116 // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1117 if (!isPowerOf2_32(EC.getKnownMinValue())) { 1118 // Split EC to unit size (scalable property is preserved). 1119 NumVectorRegs = EC.getKnownMinValue(); 1120 EC = ElementCount::getFixed(1); 1121 } 1122 1123 // Divide the input until we get to a supported size. This will 1124 // always end up with an EC that represent a scalar or a scalable 1125 // scalar. 1126 while (EC.getKnownMinValue() > 1 && 1127 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1128 EC = EC.divideCoefficientBy(2); 1129 NumVectorRegs <<= 1; 1130 } 1131 1132 NumIntermediates = NumVectorRegs; 1133 1134 MVT NewVT = MVT::getVectorVT(EltTy, EC); 1135 if (!TLI->isTypeLegal(NewVT)) 1136 NewVT = EltTy; 1137 IntermediateVT = NewVT; 1138 1139 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 1140 1141 // Convert sizes such as i33 to i64. 1142 if (!isPowerOf2_32(LaneSizeInBits)) 1143 LaneSizeInBits = NextPowerOf2(LaneSizeInBits); 1144 1145 MVT DestVT = TLI->getRegisterType(NewVT); 1146 RegisterVT = DestVT; 1147 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1148 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 1149 1150 // Otherwise, promotion or legal types use the same number of registers as 1151 // the vector decimated to the appropriate level. 1152 return NumVectorRegs; 1153 } 1154 1155 /// isLegalRC - Return true if the value types that can be represented by the 1156 /// specified register class are all legal. 1157 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1158 const TargetRegisterClass &RC) const { 1159 for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1160 if (isTypeLegal(*I)) 1161 return true; 1162 return false; 1163 } 1164 1165 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1166 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1167 MachineBasicBlock * 1168 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1169 MachineBasicBlock *MBB) const { 1170 MachineInstr *MI = &InitialMI; 1171 MachineFunction &MF = *MI->getMF(); 1172 MachineFrameInfo &MFI = MF.getFrameInfo(); 1173 1174 // We're handling multiple types of operands here: 1175 // PATCHPOINT MetaArgs - live-in, read only, direct 1176 // STATEPOINT Deopt Spill - live-through, read only, indirect 1177 // STATEPOINT Deopt Alloca - live-through, read only, direct 1178 // (We're currently conservative and mark the deopt slots read/write in 1179 // practice.) 1180 // STATEPOINT GC Spill - live-through, read/write, indirect 1181 // STATEPOINT GC Alloca - live-through, read/write, direct 1182 // The live-in vs live-through is handled already (the live through ones are 1183 // all stack slots), but we need to handle the different type of stackmap 1184 // operands and memory effects here. 1185 1186 if (llvm::none_of(MI->operands(), 1187 [](MachineOperand &Operand) { return Operand.isFI(); })) 1188 return MBB; 1189 1190 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1191 1192 // Inherit previous memory operands. 1193 MIB.cloneMemRefs(*MI); 1194 1195 for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1196 MachineOperand &MO = MI->getOperand(i); 1197 if (!MO.isFI()) { 1198 // Index of Def operand this Use it tied to. 1199 // Since Defs are coming before Uses, if Use is tied, then 1200 // index of Def must be smaller that index of that Use. 1201 // Also, Defs preserve their position in new MI. 1202 unsigned TiedTo = i; 1203 if (MO.isReg() && MO.isTied()) 1204 TiedTo = MI->findTiedOperandIdx(i); 1205 MIB.add(MO); 1206 if (TiedTo < i) 1207 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 1208 continue; 1209 } 1210 1211 // foldMemoryOperand builds a new MI after replacing a single FI operand 1212 // with the canonical set of five x86 addressing-mode operands. 1213 int FI = MO.getIndex(); 1214 1215 // Add frame index operands recognized by stackmaps.cpp 1216 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1217 // indirect-mem-ref tag, size, #FI, offset. 1218 // Used for spills inserted by StatepointLowering. This codepath is not 1219 // used for patchpoints/stackmaps at all, for these spilling is done via 1220 // foldMemoryOperand callback only. 1221 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1222 MIB.addImm(StackMaps::IndirectMemRefOp); 1223 MIB.addImm(MFI.getObjectSize(FI)); 1224 MIB.add(MO); 1225 MIB.addImm(0); 1226 } else { 1227 // direct-mem-ref tag, #FI, offset. 1228 // Used by patchpoint, and direct alloca arguments to statepoints 1229 MIB.addImm(StackMaps::DirectMemRefOp); 1230 MIB.add(MO); 1231 MIB.addImm(0); 1232 } 1233 1234 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1235 1236 // Add a new memory operand for this FI. 1237 assert(MFI.getObjectOffset(FI) != -1); 1238 1239 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1240 // PATCHPOINT should be updated to do the same. (TODO) 1241 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1242 auto Flags = MachineMemOperand::MOLoad; 1243 MachineMemOperand *MMO = MF.getMachineMemOperand( 1244 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1245 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 1246 MIB->addMemOperand(MF, MMO); 1247 } 1248 } 1249 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1250 MI->eraseFromParent(); 1251 return MBB; 1252 } 1253 1254 /// findRepresentativeClass - Return the largest legal super-reg register class 1255 /// of the register class for the specified type and its associated "cost". 1256 // This function is in TargetLowering because it uses RegClassForVT which would 1257 // need to be moved to TargetRegisterInfo and would necessitate moving 1258 // isTypeLegal over as well - a massive change that would just require 1259 // TargetLowering having a TargetRegisterInfo class member that it would use. 1260 std::pair<const TargetRegisterClass *, uint8_t> 1261 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1262 MVT VT) const { 1263 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1264 if (!RC) 1265 return std::make_pair(RC, 0); 1266 1267 // Compute the set of all super-register classes. 1268 BitVector SuperRegRC(TRI->getNumRegClasses()); 1269 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1270 SuperRegRC.setBitsInMask(RCI.getMask()); 1271 1272 // Find the first legal register class with the largest spill size. 1273 const TargetRegisterClass *BestRC = RC; 1274 for (unsigned i : SuperRegRC.set_bits()) { 1275 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1276 // We want the largest possible spill size. 1277 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1278 continue; 1279 if (!isLegalRC(*TRI, *SuperRC)) 1280 continue; 1281 BestRC = SuperRC; 1282 } 1283 return std::make_pair(BestRC, 1); 1284 } 1285 1286 /// computeRegisterProperties - Once all of the register classes are added, 1287 /// this allows us to compute derived properties we expose. 1288 void TargetLoweringBase::computeRegisterProperties( 1289 const TargetRegisterInfo *TRI) { 1290 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, 1291 "Too many value types for ValueTypeActions to hold!"); 1292 1293 // Everything defaults to needing one register. 1294 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1295 NumRegistersForVT[i] = 1; 1296 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1297 } 1298 // ...except isVoid, which doesn't need any registers. 1299 NumRegistersForVT[MVT::isVoid] = 0; 1300 1301 // Find the largest integer register class. 1302 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1303 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1304 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1305 1306 // Every integer value type larger than this largest register takes twice as 1307 // many registers to represent as the previous ValueType. 1308 for (unsigned ExpandedReg = LargestIntReg + 1; 1309 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1310 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1311 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1312 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1313 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1314 TypeExpandInteger); 1315 } 1316 1317 // Inspect all of the ValueType's smaller than the largest integer 1318 // register to see which ones need promotion. 1319 unsigned LegalIntReg = LargestIntReg; 1320 for (unsigned IntReg = LargestIntReg - 1; 1321 IntReg >= (unsigned)MVT::i1; --IntReg) { 1322 MVT IVT = (MVT::SimpleValueType)IntReg; 1323 if (isTypeLegal(IVT)) { 1324 LegalIntReg = IntReg; 1325 } else { 1326 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1327 (MVT::SimpleValueType)LegalIntReg; 1328 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1329 } 1330 } 1331 1332 // ppcf128 type is really two f64's. 1333 if (!isTypeLegal(MVT::ppcf128)) { 1334 if (isTypeLegal(MVT::f64)) { 1335 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1336 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1337 TransformToType[MVT::ppcf128] = MVT::f64; 1338 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1339 } else { 1340 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1341 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1342 TransformToType[MVT::ppcf128] = MVT::i128; 1343 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1344 } 1345 } 1346 1347 // Decide how to handle f128. If the target does not have native f128 support, 1348 // expand it to i128 and we will be generating soft float library calls. 1349 if (!isTypeLegal(MVT::f128)) { 1350 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1351 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1352 TransformToType[MVT::f128] = MVT::i128; 1353 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1354 } 1355 1356 // Decide how to handle f80. If the target does not have native f80 support, 1357 // expand it to i96 and we will be generating soft float library calls. 1358 if (!isTypeLegal(MVT::f80)) { 1359 NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32]; 1360 RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32]; 1361 TransformToType[MVT::f80] = MVT::i32; 1362 ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat); 1363 } 1364 1365 // Decide how to handle f64. If the target does not have native f64 support, 1366 // expand it to i64 and we will be generating soft float library calls. 1367 if (!isTypeLegal(MVT::f64)) { 1368 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1369 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1370 TransformToType[MVT::f64] = MVT::i64; 1371 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1372 } 1373 1374 // Decide how to handle f32. If the target does not have native f32 support, 1375 // expand it to i32 and we will be generating soft float library calls. 1376 if (!isTypeLegal(MVT::f32)) { 1377 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1378 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1379 TransformToType[MVT::f32] = MVT::i32; 1380 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1381 } 1382 1383 // Decide how to handle f16. If the target does not have native f16 support, 1384 // promote it to f32, because there are no f16 library calls (except for 1385 // conversions). 1386 if (!isTypeLegal(MVT::f16)) { 1387 // Allow targets to control how we legalize half. 1388 if (softPromoteHalfType()) { 1389 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 1390 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 1391 TransformToType[MVT::f16] = MVT::f32; 1392 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1393 } else { 1394 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1395 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1396 TransformToType[MVT::f16] = MVT::f32; 1397 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1398 } 1399 } 1400 1401 // Decide how to handle bf16. If the target does not have native bf16 support, 1402 // promote it to f32, because there are no bf16 library calls (except for 1403 // converting from f32 to bf16). 1404 if (!isTypeLegal(MVT::bf16)) { 1405 NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32]; 1406 RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32]; 1407 TransformToType[MVT::bf16] = MVT::f32; 1408 ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf); 1409 } 1410 1411 // Loop over all of the vector value types to see which need transformations. 1412 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1413 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1414 MVT VT = (MVT::SimpleValueType) i; 1415 if (isTypeLegal(VT)) 1416 continue; 1417 1418 MVT EltVT = VT.getVectorElementType(); 1419 ElementCount EC = VT.getVectorElementCount(); 1420 bool IsLegalWiderType = false; 1421 bool IsScalable = VT.isScalableVector(); 1422 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1423 switch (PreferredAction) { 1424 case TypePromoteInteger: { 1425 MVT::SimpleValueType EndVT = IsScalable ? 1426 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1427 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1428 // Try to promote the elements of integer vectors. If no legal 1429 // promotion was found, fall through to the widen-vector method. 1430 for (unsigned nVT = i + 1; 1431 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1432 MVT SVT = (MVT::SimpleValueType) nVT; 1433 // Promote vectors of integers to vectors with the same number 1434 // of elements, with a wider element type. 1435 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 1436 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 1437 TransformToType[i] = SVT; 1438 RegisterTypeForVT[i] = SVT; 1439 NumRegistersForVT[i] = 1; 1440 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1441 IsLegalWiderType = true; 1442 break; 1443 } 1444 } 1445 if (IsLegalWiderType) 1446 break; 1447 [[fallthrough]]; 1448 } 1449 1450 case TypeWidenVector: 1451 if (isPowerOf2_32(EC.getKnownMinValue())) { 1452 // Try to widen the vector. 1453 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1454 MVT SVT = (MVT::SimpleValueType) nVT; 1455 if (SVT.getVectorElementType() == EltVT && 1456 SVT.isScalableVector() == IsScalable && 1457 SVT.getVectorElementCount().getKnownMinValue() > 1458 EC.getKnownMinValue() && 1459 isTypeLegal(SVT)) { 1460 TransformToType[i] = SVT; 1461 RegisterTypeForVT[i] = SVT; 1462 NumRegistersForVT[i] = 1; 1463 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1464 IsLegalWiderType = true; 1465 break; 1466 } 1467 } 1468 if (IsLegalWiderType) 1469 break; 1470 } else { 1471 // Only widen to the next power of 2 to keep consistency with EVT. 1472 MVT NVT = VT.getPow2VectorType(); 1473 if (isTypeLegal(NVT)) { 1474 TransformToType[i] = NVT; 1475 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1476 RegisterTypeForVT[i] = NVT; 1477 NumRegistersForVT[i] = 1; 1478 break; 1479 } 1480 } 1481 [[fallthrough]]; 1482 1483 case TypeSplitVector: 1484 case TypeScalarizeVector: { 1485 MVT IntermediateVT; 1486 MVT RegisterVT; 1487 unsigned NumIntermediates; 1488 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1489 NumIntermediates, RegisterVT, this); 1490 NumRegistersForVT[i] = NumRegisters; 1491 assert(NumRegistersForVT[i] == NumRegisters && 1492 "NumRegistersForVT size cannot represent NumRegisters!"); 1493 RegisterTypeForVT[i] = RegisterVT; 1494 1495 MVT NVT = VT.getPow2VectorType(); 1496 if (NVT == VT) { 1497 // Type is already a power of 2. The default action is to split. 1498 TransformToType[i] = MVT::Other; 1499 if (PreferredAction == TypeScalarizeVector) 1500 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1501 else if (PreferredAction == TypeSplitVector) 1502 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1503 else if (EC.getKnownMinValue() > 1) 1504 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1505 else 1506 ValueTypeActions.setTypeAction(VT, EC.isScalable() 1507 ? TypeScalarizeScalableVector 1508 : TypeScalarizeVector); 1509 } else { 1510 TransformToType[i] = NVT; 1511 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1512 } 1513 break; 1514 } 1515 default: 1516 llvm_unreachable("Unknown vector legalization action!"); 1517 } 1518 } 1519 1520 // Determine the 'representative' register class for each value type. 1521 // An representative register class is the largest (meaning one which is 1522 // not a sub-register class / subreg register class) legal register class for 1523 // a group of value types. For example, on i386, i8, i16, and i32 1524 // representative would be GR32; while on x86_64 it's GR64. 1525 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1526 const TargetRegisterClass* RRC; 1527 uint8_t Cost; 1528 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1529 RepRegClassForVT[i] = RRC; 1530 RepRegClassCostForVT[i] = Cost; 1531 } 1532 } 1533 1534 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1535 EVT VT) const { 1536 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1537 return getPointerTy(DL).SimpleTy; 1538 } 1539 1540 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1541 return MVT::i32; // return the default value 1542 } 1543 1544 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1545 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1546 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1547 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1548 /// 1549 /// This method returns the number of registers needed, and the VT for each 1550 /// register. It also returns the VT and quantity of the intermediate values 1551 /// before they are promoted/expanded. 1552 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, 1553 EVT VT, EVT &IntermediateVT, 1554 unsigned &NumIntermediates, 1555 MVT &RegisterVT) const { 1556 ElementCount EltCnt = VT.getVectorElementCount(); 1557 1558 // If there is a wider vector type with the same element type as this one, 1559 // or a promoted vector type that has the same number of elements which 1560 // are wider, then we should convert to that legal vector type. 1561 // This handles things like <2 x float> -> <4 x float> and 1562 // <4 x i1> -> <4 x i32>. 1563 LegalizeTypeAction TA = getTypeAction(Context, VT); 1564 if (!EltCnt.isScalar() && 1565 (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1566 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1567 if (isTypeLegal(RegisterEVT)) { 1568 IntermediateVT = RegisterEVT; 1569 RegisterVT = RegisterEVT.getSimpleVT(); 1570 NumIntermediates = 1; 1571 return 1; 1572 } 1573 } 1574 1575 // Figure out the right, legal destination reg to copy into. 1576 EVT EltTy = VT.getVectorElementType(); 1577 1578 unsigned NumVectorRegs = 1; 1579 1580 // Scalable vectors cannot be scalarized, so handle the legalisation of the 1581 // types like done elsewhere in SelectionDAG. 1582 if (EltCnt.isScalable()) { 1583 LegalizeKind LK; 1584 EVT PartVT = VT; 1585 do { 1586 // Iterate until we've found a legal (part) type to hold VT. 1587 LK = getTypeConversion(Context, PartVT); 1588 PartVT = LK.second; 1589 } while (LK.first != TypeLegal); 1590 1591 if (!PartVT.isVector()) { 1592 report_fatal_error( 1593 "Don't know how to legalize this scalable vector type"); 1594 } 1595 1596 NumIntermediates = 1597 divideCeil(VT.getVectorElementCount().getKnownMinValue(), 1598 PartVT.getVectorElementCount().getKnownMinValue()); 1599 IntermediateVT = PartVT; 1600 RegisterVT = getRegisterType(Context, IntermediateVT); 1601 return NumIntermediates; 1602 } 1603 1604 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 1605 // we could break down into LHS/RHS like LegalizeDAG does. 1606 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1607 NumVectorRegs = EltCnt.getKnownMinValue(); 1608 EltCnt = ElementCount::getFixed(1); 1609 } 1610 1611 // Divide the input until we get to a supported size. This will always 1612 // end with a scalar if the target doesn't support vectors. 1613 while (EltCnt.getKnownMinValue() > 1 && 1614 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1615 EltCnt = EltCnt.divideCoefficientBy(2); 1616 NumVectorRegs <<= 1; 1617 } 1618 1619 NumIntermediates = NumVectorRegs; 1620 1621 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 1622 if (!isTypeLegal(NewVT)) 1623 NewVT = EltTy; 1624 IntermediateVT = NewVT; 1625 1626 MVT DestVT = getRegisterType(Context, NewVT); 1627 RegisterVT = DestVT; 1628 1629 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 1630 TypeSize NewVTSize = NewVT.getSizeInBits(); 1631 // Convert sizes such as i33 to i64. 1632 if (!isPowerOf2_32(NewVTSize.getKnownMinValue())) 1633 NewVTSize = NewVTSize.coefficientNextPowerOf2(); 1634 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1635 } 1636 1637 // Otherwise, promotion or legal types use the same number of registers as 1638 // the vector decimated to the appropriate level. 1639 return NumVectorRegs; 1640 } 1641 1642 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1643 uint64_t NumCases, 1644 uint64_t Range, 1645 ProfileSummaryInfo *PSI, 1646 BlockFrequencyInfo *BFI) const { 1647 // FIXME: This function check the maximum table size and density, but the 1648 // minimum size is not checked. It would be nice if the minimum size is 1649 // also combined within this function. Currently, the minimum size check is 1650 // performed in findJumpTable() in SelectionDAGBuiler and 1651 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1652 const bool OptForSize = 1653 SI->getParent()->getParent()->hasOptSize() || 1654 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1655 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1656 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1657 1658 // Check whether the number of cases is small enough and 1659 // the range is dense enough for a jump table. 1660 return (OptForSize || Range <= MaxJumpTableSize) && 1661 (NumCases * 100 >= Range * MinDensity); 1662 } 1663 1664 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context, 1665 EVT ConditionVT) const { 1666 return getRegisterType(Context, ConditionVT); 1667 } 1668 1669 /// Get the EVTs and ArgFlags collections that represent the legalized return 1670 /// type of the given function. This does not require a DAG or a return value, 1671 /// and is suitable for use before any DAGs for the function are constructed. 1672 /// TODO: Move this out of TargetLowering.cpp. 1673 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1674 AttributeList attr, 1675 SmallVectorImpl<ISD::OutputArg> &Outs, 1676 const TargetLowering &TLI, const DataLayout &DL) { 1677 SmallVector<EVT, 4> ValueVTs; 1678 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1679 unsigned NumValues = ValueVTs.size(); 1680 if (NumValues == 0) return; 1681 1682 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1683 EVT VT = ValueVTs[j]; 1684 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1685 1686 if (attr.hasRetAttr(Attribute::SExt)) 1687 ExtendKind = ISD::SIGN_EXTEND; 1688 else if (attr.hasRetAttr(Attribute::ZExt)) 1689 ExtendKind = ISD::ZERO_EXTEND; 1690 1691 // FIXME: C calling convention requires the return type to be promoted to 1692 // at least 32-bit. But this is not necessary for non-C calling 1693 // conventions. The frontend should mark functions whose return values 1694 // require promoting with signext or zeroext attributes. 1695 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1696 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1697 if (VT.bitsLT(MinVT)) 1698 VT = MinVT; 1699 } 1700 1701 unsigned NumParts = 1702 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1703 MVT PartVT = 1704 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1705 1706 // 'inreg' on function refers to return value 1707 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1708 if (attr.hasRetAttr(Attribute::InReg)) 1709 Flags.setInReg(); 1710 1711 // Propagate extension type if any 1712 if (attr.hasRetAttr(Attribute::SExt)) 1713 Flags.setSExt(); 1714 else if (attr.hasRetAttr(Attribute::ZExt)) 1715 Flags.setZExt(); 1716 1717 for (unsigned i = 0; i < NumParts; ++i) 1718 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1719 } 1720 } 1721 1722 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1723 /// function arguments in the caller parameter area. This is the actual 1724 /// alignment, not its logarithm. 1725 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1726 const DataLayout &DL) const { 1727 return DL.getABITypeAlign(Ty).value(); 1728 } 1729 1730 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1731 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1732 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const { 1733 // Check if the specified alignment is sufficient based on the data layout. 1734 // TODO: While using the data layout works in practice, a better solution 1735 // would be to implement this check directly (make this a virtual function). 1736 // For example, the ABI alignment may change based on software platform while 1737 // this function should only be affected by hardware implementation. 1738 Type *Ty = VT.getTypeForEVT(Context); 1739 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { 1740 // Assume that an access that meets the ABI-specified alignment is fast. 1741 if (Fast != nullptr) 1742 *Fast = 1; 1743 return true; 1744 } 1745 1746 // This is a misaligned access. 1747 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 1748 } 1749 1750 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1751 LLVMContext &Context, const DataLayout &DL, EVT VT, 1752 const MachineMemOperand &MMO, unsigned *Fast) const { 1753 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1754 MMO.getAlign(), MMO.getFlags(), Fast); 1755 } 1756 1757 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1758 const DataLayout &DL, EVT VT, 1759 unsigned AddrSpace, Align Alignment, 1760 MachineMemOperand::Flags Flags, 1761 unsigned *Fast) const { 1762 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1763 Flags, Fast); 1764 } 1765 1766 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1767 const DataLayout &DL, EVT VT, 1768 const MachineMemOperand &MMO, 1769 unsigned *Fast) const { 1770 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1771 MMO.getFlags(), Fast); 1772 } 1773 1774 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1775 const DataLayout &DL, LLT Ty, 1776 const MachineMemOperand &MMO, 1777 unsigned *Fast) const { 1778 EVT VT = getApproximateEVTForLLT(Ty, DL, Context); 1779 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1780 MMO.getFlags(), Fast); 1781 } 1782 1783 //===----------------------------------------------------------------------===// 1784 // TargetTransformInfo Helpers 1785 //===----------------------------------------------------------------------===// 1786 1787 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1788 enum InstructionOpcodes { 1789 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1790 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1791 #include "llvm/IR/Instruction.def" 1792 }; 1793 switch (static_cast<InstructionOpcodes>(Opcode)) { 1794 case Ret: return 0; 1795 case Br: return 0; 1796 case Switch: return 0; 1797 case IndirectBr: return 0; 1798 case Invoke: return 0; 1799 case CallBr: return 0; 1800 case Resume: return 0; 1801 case Unreachable: return 0; 1802 case CleanupRet: return 0; 1803 case CatchRet: return 0; 1804 case CatchPad: return 0; 1805 case CatchSwitch: return 0; 1806 case CleanupPad: return 0; 1807 case FNeg: return ISD::FNEG; 1808 case Add: return ISD::ADD; 1809 case FAdd: return ISD::FADD; 1810 case Sub: return ISD::SUB; 1811 case FSub: return ISD::FSUB; 1812 case Mul: return ISD::MUL; 1813 case FMul: return ISD::FMUL; 1814 case UDiv: return ISD::UDIV; 1815 case SDiv: return ISD::SDIV; 1816 case FDiv: return ISD::FDIV; 1817 case URem: return ISD::UREM; 1818 case SRem: return ISD::SREM; 1819 case FRem: return ISD::FREM; 1820 case Shl: return ISD::SHL; 1821 case LShr: return ISD::SRL; 1822 case AShr: return ISD::SRA; 1823 case And: return ISD::AND; 1824 case Or: return ISD::OR; 1825 case Xor: return ISD::XOR; 1826 case Alloca: return 0; 1827 case Load: return ISD::LOAD; 1828 case Store: return ISD::STORE; 1829 case GetElementPtr: return 0; 1830 case Fence: return 0; 1831 case AtomicCmpXchg: return 0; 1832 case AtomicRMW: return 0; 1833 case Trunc: return ISD::TRUNCATE; 1834 case ZExt: return ISD::ZERO_EXTEND; 1835 case SExt: return ISD::SIGN_EXTEND; 1836 case FPToUI: return ISD::FP_TO_UINT; 1837 case FPToSI: return ISD::FP_TO_SINT; 1838 case UIToFP: return ISD::UINT_TO_FP; 1839 case SIToFP: return ISD::SINT_TO_FP; 1840 case FPTrunc: return ISD::FP_ROUND; 1841 case FPExt: return ISD::FP_EXTEND; 1842 case PtrToInt: return ISD::BITCAST; 1843 case IntToPtr: return ISD::BITCAST; 1844 case BitCast: return ISD::BITCAST; 1845 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1846 case ICmp: return ISD::SETCC; 1847 case FCmp: return ISD::SETCC; 1848 case PHI: return 0; 1849 case Call: return 0; 1850 case Select: return ISD::SELECT; 1851 case UserOp1: return 0; 1852 case UserOp2: return 0; 1853 case VAArg: return 0; 1854 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1855 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1856 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1857 case ExtractValue: return ISD::MERGE_VALUES; 1858 case InsertValue: return ISD::MERGE_VALUES; 1859 case LandingPad: return 0; 1860 case Freeze: return ISD::FREEZE; 1861 } 1862 1863 llvm_unreachable("Unknown instruction type encountered!"); 1864 } 1865 1866 Value * 1867 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, 1868 bool UseTLS) const { 1869 // compiler-rt provides a variable with a magic name. Targets that do not 1870 // link with compiler-rt may also provide such a variable. 1871 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1872 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1873 auto UnsafeStackPtr = 1874 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1875 1876 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1877 1878 if (!UnsafeStackPtr) { 1879 auto TLSModel = UseTLS ? 1880 GlobalValue::InitialExecTLSModel : 1881 GlobalValue::NotThreadLocal; 1882 // The global variable is not defined yet, define it ourselves. 1883 // We use the initial-exec TLS model because we do not support the 1884 // variable living anywhere other than in the main executable. 1885 UnsafeStackPtr = new GlobalVariable( 1886 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1887 UnsafeStackPtrVar, nullptr, TLSModel); 1888 } else { 1889 // The variable exists, check its type and attributes. 1890 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1891 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1892 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1893 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1894 (UseTLS ? "" : "not ") + "be thread-local"); 1895 } 1896 return UnsafeStackPtr; 1897 } 1898 1899 Value * 1900 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { 1901 if (!TM.getTargetTriple().isAndroid()) 1902 return getDefaultSafeStackPointerLocation(IRB, true); 1903 1904 // Android provides a libc function to retrieve the address of the current 1905 // thread's unsafe stack pointer. 1906 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1907 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1908 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1909 StackPtrTy->getPointerTo(0)); 1910 return IRB.CreateCall(Fn); 1911 } 1912 1913 //===----------------------------------------------------------------------===// 1914 // Loop Strength Reduction hooks 1915 //===----------------------------------------------------------------------===// 1916 1917 /// isLegalAddressingMode - Return true if the addressing mode represented 1918 /// by AM is legal for this target, for a load/store of the specified type. 1919 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1920 const AddrMode &AM, Type *Ty, 1921 unsigned AS, Instruction *I) const { 1922 // The default implementation of this implements a conservative RISCy, r+r and 1923 // r+i addr mode. 1924 1925 // Allows a sign-extended 16-bit immediate field. 1926 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1927 return false; 1928 1929 // No global is ever allowed as a base. 1930 if (AM.BaseGV) 1931 return false; 1932 1933 // Only support r+r, 1934 switch (AM.Scale) { 1935 case 0: // "r+i" or just "i", depending on HasBaseReg. 1936 break; 1937 case 1: 1938 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1939 return false; 1940 // Otherwise we have r+r or r+i. 1941 break; 1942 case 2: 1943 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1944 return false; 1945 // Allow 2*r as r+r. 1946 break; 1947 default: // Don't allow n * r 1948 return false; 1949 } 1950 1951 return true; 1952 } 1953 1954 //===----------------------------------------------------------------------===// 1955 // Stack Protector 1956 //===----------------------------------------------------------------------===// 1957 1958 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1959 // so that SelectionDAG handle SSP. 1960 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { 1961 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1962 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1963 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1964 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 1965 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 1966 G->setVisibility(GlobalValue::HiddenVisibility); 1967 return C; 1968 } 1969 return nullptr; 1970 } 1971 1972 // Currently only support "standard" __stack_chk_guard. 1973 // TODO: add LOAD_STACK_GUARD support. 1974 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1975 if (!M.getNamedValue("__stack_chk_guard")) { 1976 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1977 GlobalVariable::ExternalLinkage, nullptr, 1978 "__stack_chk_guard"); 1979 1980 // FreeBSD has "__stack_chk_guard" defined externally on libc.so 1981 if (TM.getRelocationModel() == Reloc::Static && 1982 !TM.getTargetTriple().isWindowsGNUEnvironment() && 1983 !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD())) 1984 GV->setDSOLocal(true); 1985 } 1986 } 1987 1988 // Currently only support "standard" __stack_chk_guard. 1989 // TODO: add LOAD_STACK_GUARD support. 1990 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1991 return M.getNamedValue("__stack_chk_guard"); 1992 } 1993 1994 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1995 return nullptr; 1996 } 1997 1998 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1999 return MinimumJumpTableEntries; 2000 } 2001 2002 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 2003 MinimumJumpTableEntries = Val; 2004 } 2005 2006 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 2007 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 2008 } 2009 2010 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 2011 return MaximumJumpTableSize; 2012 } 2013 2014 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 2015 MaximumJumpTableSize = Val; 2016 } 2017 2018 bool TargetLoweringBase::isJumpTableRelative() const { 2019 return getTargetMachine().isPositionIndependent(); 2020 } 2021 2022 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const { 2023 if (TM.Options.LoopAlignment) 2024 return Align(TM.Options.LoopAlignment); 2025 return PrefLoopAlignment; 2026 } 2027 2028 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment( 2029 MachineBasicBlock *MBB) const { 2030 return MaxBytesForAlignment; 2031 } 2032 2033 //===----------------------------------------------------------------------===// 2034 // Reciprocal Estimates 2035 //===----------------------------------------------------------------------===// 2036 2037 /// Get the reciprocal estimate attribute string for a function that will 2038 /// override the target defaults. 2039 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 2040 const Function &F = MF.getFunction(); 2041 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 2042 } 2043 2044 /// Construct a string for the given reciprocal operation of the given type. 2045 /// This string should match the corresponding option to the front-end's 2046 /// "-mrecip" flag assuming those strings have been passed through in an 2047 /// attribute string. For example, "vec-divf" for a division of a vXf32. 2048 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 2049 std::string Name = VT.isVector() ? "vec-" : ""; 2050 2051 Name += IsSqrt ? "sqrt" : "div"; 2052 2053 // TODO: Handle other float types? 2054 if (VT.getScalarType() == MVT::f64) { 2055 Name += "d"; 2056 } else if (VT.getScalarType() == MVT::f16) { 2057 Name += "h"; 2058 } else { 2059 assert(VT.getScalarType() == MVT::f32 && 2060 "Unexpected FP type for reciprocal estimate"); 2061 Name += "f"; 2062 } 2063 2064 return Name; 2065 } 2066 2067 /// Return the character position and value (a single numeric character) of a 2068 /// customized refinement operation in the input string if it exists. Return 2069 /// false if there is no customized refinement step count. 2070 static bool parseRefinementStep(StringRef In, size_t &Position, 2071 uint8_t &Value) { 2072 const char RefStepToken = ':'; 2073 Position = In.find(RefStepToken); 2074 if (Position == StringRef::npos) 2075 return false; 2076 2077 StringRef RefStepString = In.substr(Position + 1); 2078 // Allow exactly one numeric character for the additional refinement 2079 // step parameter. 2080 if (RefStepString.size() == 1) { 2081 char RefStepChar = RefStepString[0]; 2082 if (isDigit(RefStepChar)) { 2083 Value = RefStepChar - '0'; 2084 return true; 2085 } 2086 } 2087 report_fatal_error("Invalid refinement step for -recip."); 2088 } 2089 2090 /// For the input attribute string, return one of the ReciprocalEstimate enum 2091 /// status values (enabled, disabled, or not specified) for this operation on 2092 /// the specified data type. 2093 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 2094 if (Override.empty()) 2095 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2096 2097 SmallVector<StringRef, 4> OverrideVector; 2098 Override.split(OverrideVector, ','); 2099 unsigned NumArgs = OverrideVector.size(); 2100 2101 // Check if "all", "none", or "default" was specified. 2102 if (NumArgs == 1) { 2103 // Look for an optional setting of the number of refinement steps needed 2104 // for this type of reciprocal operation. 2105 size_t RefPos; 2106 uint8_t RefSteps; 2107 if (parseRefinementStep(Override, RefPos, RefSteps)) { 2108 // Split the string for further processing. 2109 Override = Override.substr(0, RefPos); 2110 } 2111 2112 // All reciprocal types are enabled. 2113 if (Override == "all") 2114 return TargetLoweringBase::ReciprocalEstimate::Enabled; 2115 2116 // All reciprocal types are disabled. 2117 if (Override == "none") 2118 return TargetLoweringBase::ReciprocalEstimate::Disabled; 2119 2120 // Target defaults for enablement are used. 2121 if (Override == "default") 2122 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2123 } 2124 2125 // The attribute string may omit the size suffix ('f'/'d'). 2126 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2127 std::string VTNameNoSize = VTName; 2128 VTNameNoSize.pop_back(); 2129 static const char DisabledPrefix = '!'; 2130 2131 for (StringRef RecipType : OverrideVector) { 2132 size_t RefPos; 2133 uint8_t RefSteps; 2134 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 2135 RecipType = RecipType.substr(0, RefPos); 2136 2137 // Ignore the disablement token for string matching. 2138 bool IsDisabled = RecipType[0] == DisabledPrefix; 2139 if (IsDisabled) 2140 RecipType = RecipType.substr(1); 2141 2142 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2143 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 2144 : TargetLoweringBase::ReciprocalEstimate::Enabled; 2145 } 2146 2147 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2148 } 2149 2150 /// For the input attribute string, return the customized refinement step count 2151 /// for this operation on the specified data type. If the step count does not 2152 /// exist, return the ReciprocalEstimate enum value for unspecified. 2153 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 2154 if (Override.empty()) 2155 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2156 2157 SmallVector<StringRef, 4> OverrideVector; 2158 Override.split(OverrideVector, ','); 2159 unsigned NumArgs = OverrideVector.size(); 2160 2161 // Check if "all", "default", or "none" was specified. 2162 if (NumArgs == 1) { 2163 // Look for an optional setting of the number of refinement steps needed 2164 // for this type of reciprocal operation. 2165 size_t RefPos; 2166 uint8_t RefSteps; 2167 if (!parseRefinementStep(Override, RefPos, RefSteps)) 2168 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2169 2170 // Split the string for further processing. 2171 Override = Override.substr(0, RefPos); 2172 assert(Override != "none" && 2173 "Disabled reciprocals, but specifed refinement steps?"); 2174 2175 // If this is a general override, return the specified number of steps. 2176 if (Override == "all" || Override == "default") 2177 return RefSteps; 2178 } 2179 2180 // The attribute string may omit the size suffix ('f'/'d'). 2181 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2182 std::string VTNameNoSize = VTName; 2183 VTNameNoSize.pop_back(); 2184 2185 for (StringRef RecipType : OverrideVector) { 2186 size_t RefPos; 2187 uint8_t RefSteps; 2188 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 2189 continue; 2190 2191 RecipType = RecipType.substr(0, RefPos); 2192 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2193 return RefSteps; 2194 } 2195 2196 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2197 } 2198 2199 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 2200 MachineFunction &MF) const { 2201 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 2202 } 2203 2204 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 2205 MachineFunction &MF) const { 2206 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 2207 } 2208 2209 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 2210 MachineFunction &MF) const { 2211 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 2212 } 2213 2214 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2215 MachineFunction &MF) const { 2216 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2217 } 2218 2219 bool TargetLoweringBase::isLoadBitCastBeneficial( 2220 EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, 2221 const MachineMemOperand &MMO) const { 2222 // Single-element vectors are scalarized, so we should generally avoid having 2223 // any memory operations on such types, as they would get scalarized too. 2224 if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() && 2225 BitcastVT.getVectorNumElements() == 1) 2226 return false; 2227 2228 // Don't do if we could do an indexed load on the original type, but not on 2229 // the new one. 2230 if (!LoadVT.isSimple() || !BitcastVT.isSimple()) 2231 return true; 2232 2233 MVT LoadMVT = LoadVT.getSimpleVT(); 2234 2235 // Don't bother doing this if it's just going to be promoted again later, as 2236 // doing so might interfere with other combines. 2237 if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && 2238 getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) 2239 return false; 2240 2241 unsigned Fast = 0; 2242 return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT, 2243 MMO, &Fast) && 2244 Fast; 2245 } 2246 2247 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2248 MF.getRegInfo().freezeReservedRegs(MF); 2249 } 2250 2251 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags( 2252 const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC, 2253 const TargetLibraryInfo *LibInfo) const { 2254 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 2255 if (LI.isVolatile()) 2256 Flags |= MachineMemOperand::MOVolatile; 2257 2258 if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 2259 Flags |= MachineMemOperand::MONonTemporal; 2260 2261 if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 2262 Flags |= MachineMemOperand::MOInvariant; 2263 2264 if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(), 2265 LI.getAlign(), DL, &LI, AC, 2266 /*DT=*/nullptr, LibInfo)) 2267 Flags |= MachineMemOperand::MODereferenceable; 2268 2269 Flags |= getTargetMMOFlags(LI); 2270 return Flags; 2271 } 2272 2273 MachineMemOperand::Flags 2274 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 2275 const DataLayout &DL) const { 2276 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 2277 2278 if (SI.isVolatile()) 2279 Flags |= MachineMemOperand::MOVolatile; 2280 2281 if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 2282 Flags |= MachineMemOperand::MONonTemporal; 2283 2284 // FIXME: Not preserving dereferenceable 2285 Flags |= getTargetMMOFlags(SI); 2286 return Flags; 2287 } 2288 2289 MachineMemOperand::Flags 2290 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 2291 const DataLayout &DL) const { 2292 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2293 2294 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 2295 if (RMW->isVolatile()) 2296 Flags |= MachineMemOperand::MOVolatile; 2297 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 2298 if (CmpX->isVolatile()) 2299 Flags |= MachineMemOperand::MOVolatile; 2300 } else 2301 llvm_unreachable("not an atomic instruction"); 2302 2303 // FIXME: Not preserving dereferenceable 2304 Flags |= getTargetMMOFlags(AI); 2305 return Flags; 2306 } 2307 2308 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, 2309 Instruction *Inst, 2310 AtomicOrdering Ord) const { 2311 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) 2312 return Builder.CreateFence(Ord); 2313 else 2314 return nullptr; 2315 } 2316 2317 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, 2318 Instruction *Inst, 2319 AtomicOrdering Ord) const { 2320 if (isAcquireOrStronger(Ord)) 2321 return Builder.CreateFence(Ord); 2322 else 2323 return nullptr; 2324 } 2325 2326 //===----------------------------------------------------------------------===// 2327 // GlobalISel Hooks 2328 //===----------------------------------------------------------------------===// 2329 2330 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 2331 const TargetTransformInfo *TTI) const { 2332 auto &MF = *MI.getMF(); 2333 auto &MRI = MF.getRegInfo(); 2334 // Assuming a spill and reload of a value has a cost of 1 instruction each, 2335 // this helper function computes the maximum number of uses we should consider 2336 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 2337 // break even in terms of code size when the original MI has 2 users vs 2338 // choosing to potentially spill. Any more than 2 users we we have a net code 2339 // size increase. This doesn't take into account register pressure though. 2340 auto maxUses = [](unsigned RematCost) { 2341 // A cost of 1 means remats are basically free. 2342 if (RematCost == 1) 2343 return std::numeric_limits<unsigned>::max(); 2344 if (RematCost == 2) 2345 return 2U; 2346 2347 // Remat is too expensive, only sink if there's one user. 2348 if (RematCost > 2) 2349 return 1U; 2350 llvm_unreachable("Unexpected remat cost"); 2351 }; 2352 2353 switch (MI.getOpcode()) { 2354 default: 2355 return false; 2356 // Constants-like instructions should be close to their users. 2357 // We don't want long live-ranges for them. 2358 case TargetOpcode::G_CONSTANT: 2359 case TargetOpcode::G_FCONSTANT: 2360 case TargetOpcode::G_FRAME_INDEX: 2361 case TargetOpcode::G_INTTOPTR: 2362 return true; 2363 case TargetOpcode::G_GLOBAL_VALUE: { 2364 unsigned RematCost = TTI->getGISelRematGlobalCost(); 2365 Register Reg = MI.getOperand(0).getReg(); 2366 unsigned MaxUses = maxUses(RematCost); 2367 if (MaxUses == UINT_MAX) 2368 return true; // Remats are "free" so always localize. 2369 return MRI.hasAtMostUserInstrs(Reg, MaxUses); 2370 } 2371 } 2372 } 2373