1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MachineValueType.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include "llvm/Transforms/Utils/SizeOpts.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstddef> 59 #include <cstdint> 60 #include <cstring> 61 #include <iterator> 62 #include <string> 63 #include <tuple> 64 #include <utility> 65 66 using namespace llvm; 67 68 static cl::opt<bool> JumpIsExpensiveOverride( 69 "jump-is-expensive", cl::init(false), 70 cl::desc("Do not create extra branches to split comparison logic."), 71 cl::Hidden); 72 73 static cl::opt<unsigned> MinimumJumpTableEntries 74 ("min-jump-table-entries", cl::init(4), cl::Hidden, 75 cl::desc("Set minimum number of entries to use a jump table.")); 76 77 static cl::opt<unsigned> MaximumJumpTableSize 78 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 79 cl::desc("Set maximum size of jump tables.")); 80 81 /// Minimum jump table density for normal functions. 82 static cl::opt<unsigned> 83 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 84 cl::desc("Minimum density for building a jump table in " 85 "a normal function")); 86 87 /// Minimum jump table density for -Os or -Oz functions. 88 static cl::opt<unsigned> OptsizeJumpTableDensity( 89 "optsize-jump-table-density", cl::init(40), cl::Hidden, 90 cl::desc("Minimum density for building a jump table in " 91 "an optsize function")); 92 93 // FIXME: This option is only to test if the strict fp operation processed 94 // correctly by preventing mutating strict fp operation to normal fp operation 95 // during development. When the backend supports strict float operation, this 96 // option will be meaningless. 97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 98 cl::desc("Don't mutate strict-float node to a legalize node"), 99 cl::init(false), cl::Hidden); 100 101 static bool darwinHasSinCos(const Triple &TT) { 102 assert(TT.isOSDarwin() && "should be called with darwin triple"); 103 // Don't bother with 32 bit x86. 104 if (TT.getArch() == Triple::x86) 105 return false; 106 // Macos < 10.9 has no sincos_stret. 107 if (TT.isMacOSX()) 108 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 109 // iOS < 7.0 has no sincos_stret. 110 if (TT.isiOS()) 111 return !TT.isOSVersionLT(7, 0); 112 // Any other darwin such as WatchOS/TvOS is new enough. 113 return true; 114 } 115 116 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 117 #define HANDLE_LIBCALL(code, name) \ 118 setLibcallName(RTLIB::code, name); 119 #include "llvm/IR/RuntimeLibcalls.def" 120 #undef HANDLE_LIBCALL 121 // Initialize calling conventions to their default. 122 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 123 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 124 125 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 126 if (TT.isPPC()) { 127 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 128 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 129 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 130 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 131 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 132 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 133 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 134 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 135 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 136 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 137 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 138 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); 139 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 140 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 141 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); 142 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 143 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 144 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); 145 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 146 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 147 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); 148 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 149 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 150 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 151 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 152 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 153 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 154 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 155 } 156 157 // A few names are different on particular architectures or environments. 158 if (TT.isOSDarwin()) { 159 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 160 // of the gnueabi-style __gnu_*_ieee. 161 // FIXME: What about other targets? 162 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 163 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 164 165 // Some darwins have an optimized __bzero/bzero function. 166 switch (TT.getArch()) { 167 case Triple::x86: 168 case Triple::x86_64: 169 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 170 setLibcallName(RTLIB::BZERO, "__bzero"); 171 break; 172 case Triple::aarch64: 173 case Triple::aarch64_32: 174 setLibcallName(RTLIB::BZERO, "bzero"); 175 break; 176 default: 177 break; 178 } 179 180 if (darwinHasSinCos(TT)) { 181 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 182 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 183 if (TT.isWatchABI()) { 184 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 185 CallingConv::ARM_AAPCS_VFP); 186 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 187 CallingConv::ARM_AAPCS_VFP); 188 } 189 } 190 } else { 191 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 192 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 193 } 194 195 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 196 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 197 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 198 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 199 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 200 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 201 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 202 } 203 204 if (TT.isPS4CPU()) { 205 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 206 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 207 } 208 209 if (TT.isOSOpenBSD()) { 210 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 211 } 212 } 213 214 /// GetFPLibCall - Helper to return the right libcall for the given floating 215 /// point type, or UNKNOWN_LIBCALL if there is none. 216 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT, 217 RTLIB::Libcall Call_F32, 218 RTLIB::Libcall Call_F64, 219 RTLIB::Libcall Call_F80, 220 RTLIB::Libcall Call_F128, 221 RTLIB::Libcall Call_PPCF128) { 222 return 223 VT == MVT::f32 ? Call_F32 : 224 VT == MVT::f64 ? Call_F64 : 225 VT == MVT::f80 ? Call_F80 : 226 VT == MVT::f128 ? Call_F128 : 227 VT == MVT::ppcf128 ? Call_PPCF128 : 228 RTLIB::UNKNOWN_LIBCALL; 229 } 230 231 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 232 /// UNKNOWN_LIBCALL if there is none. 233 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 234 if (OpVT == MVT::f16) { 235 if (RetVT == MVT::f32) 236 return FPEXT_F16_F32; 237 if (RetVT == MVT::f64) 238 return FPEXT_F16_F64; 239 if (RetVT == MVT::f128) 240 return FPEXT_F16_F128; 241 } else if (OpVT == MVT::f32) { 242 if (RetVT == MVT::f64) 243 return FPEXT_F32_F64; 244 if (RetVT == MVT::f128) 245 return FPEXT_F32_F128; 246 if (RetVT == MVT::ppcf128) 247 return FPEXT_F32_PPCF128; 248 } else if (OpVT == MVT::f64) { 249 if (RetVT == MVT::f128) 250 return FPEXT_F64_F128; 251 else if (RetVT == MVT::ppcf128) 252 return FPEXT_F64_PPCF128; 253 } else if (OpVT == MVT::f80) { 254 if (RetVT == MVT::f128) 255 return FPEXT_F80_F128; 256 } 257 258 return UNKNOWN_LIBCALL; 259 } 260 261 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 262 /// UNKNOWN_LIBCALL if there is none. 263 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 264 if (RetVT == MVT::f16) { 265 if (OpVT == MVT::f32) 266 return FPROUND_F32_F16; 267 if (OpVT == MVT::f64) 268 return FPROUND_F64_F16; 269 if (OpVT == MVT::f80) 270 return FPROUND_F80_F16; 271 if (OpVT == MVT::f128) 272 return FPROUND_F128_F16; 273 if (OpVT == MVT::ppcf128) 274 return FPROUND_PPCF128_F16; 275 } else if (RetVT == MVT::f32) { 276 if (OpVT == MVT::f64) 277 return FPROUND_F64_F32; 278 if (OpVT == MVT::f80) 279 return FPROUND_F80_F32; 280 if (OpVT == MVT::f128) 281 return FPROUND_F128_F32; 282 if (OpVT == MVT::ppcf128) 283 return FPROUND_PPCF128_F32; 284 } else if (RetVT == MVT::f64) { 285 if (OpVT == MVT::f80) 286 return FPROUND_F80_F64; 287 if (OpVT == MVT::f128) 288 return FPROUND_F128_F64; 289 if (OpVT == MVT::ppcf128) 290 return FPROUND_PPCF128_F64; 291 } else if (RetVT == MVT::f80) { 292 if (OpVT == MVT::f128) 293 return FPROUND_F128_F80; 294 } 295 296 return UNKNOWN_LIBCALL; 297 } 298 299 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 300 /// UNKNOWN_LIBCALL if there is none. 301 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 302 if (OpVT == MVT::f16) { 303 if (RetVT == MVT::i32) 304 return FPTOSINT_F16_I32; 305 if (RetVT == MVT::i64) 306 return FPTOSINT_F16_I64; 307 if (RetVT == MVT::i128) 308 return FPTOSINT_F16_I128; 309 } else if (OpVT == MVT::f32) { 310 if (RetVT == MVT::i32) 311 return FPTOSINT_F32_I32; 312 if (RetVT == MVT::i64) 313 return FPTOSINT_F32_I64; 314 if (RetVT == MVT::i128) 315 return FPTOSINT_F32_I128; 316 } else if (OpVT == MVT::f64) { 317 if (RetVT == MVT::i32) 318 return FPTOSINT_F64_I32; 319 if (RetVT == MVT::i64) 320 return FPTOSINT_F64_I64; 321 if (RetVT == MVT::i128) 322 return FPTOSINT_F64_I128; 323 } else if (OpVT == MVT::f80) { 324 if (RetVT == MVT::i32) 325 return FPTOSINT_F80_I32; 326 if (RetVT == MVT::i64) 327 return FPTOSINT_F80_I64; 328 if (RetVT == MVT::i128) 329 return FPTOSINT_F80_I128; 330 } else if (OpVT == MVT::f128) { 331 if (RetVT == MVT::i32) 332 return FPTOSINT_F128_I32; 333 if (RetVT == MVT::i64) 334 return FPTOSINT_F128_I64; 335 if (RetVT == MVT::i128) 336 return FPTOSINT_F128_I128; 337 } else if (OpVT == MVT::ppcf128) { 338 if (RetVT == MVT::i32) 339 return FPTOSINT_PPCF128_I32; 340 if (RetVT == MVT::i64) 341 return FPTOSINT_PPCF128_I64; 342 if (RetVT == MVT::i128) 343 return FPTOSINT_PPCF128_I128; 344 } 345 return UNKNOWN_LIBCALL; 346 } 347 348 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 349 /// UNKNOWN_LIBCALL if there is none. 350 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 351 if (OpVT == MVT::f16) { 352 if (RetVT == MVT::i32) 353 return FPTOUINT_F16_I32; 354 if (RetVT == MVT::i64) 355 return FPTOUINT_F16_I64; 356 if (RetVT == MVT::i128) 357 return FPTOUINT_F16_I128; 358 } else if (OpVT == MVT::f32) { 359 if (RetVT == MVT::i32) 360 return FPTOUINT_F32_I32; 361 if (RetVT == MVT::i64) 362 return FPTOUINT_F32_I64; 363 if (RetVT == MVT::i128) 364 return FPTOUINT_F32_I128; 365 } else if (OpVT == MVT::f64) { 366 if (RetVT == MVT::i32) 367 return FPTOUINT_F64_I32; 368 if (RetVT == MVT::i64) 369 return FPTOUINT_F64_I64; 370 if (RetVT == MVT::i128) 371 return FPTOUINT_F64_I128; 372 } else if (OpVT == MVT::f80) { 373 if (RetVT == MVT::i32) 374 return FPTOUINT_F80_I32; 375 if (RetVT == MVT::i64) 376 return FPTOUINT_F80_I64; 377 if (RetVT == MVT::i128) 378 return FPTOUINT_F80_I128; 379 } else if (OpVT == MVT::f128) { 380 if (RetVT == MVT::i32) 381 return FPTOUINT_F128_I32; 382 if (RetVT == MVT::i64) 383 return FPTOUINT_F128_I64; 384 if (RetVT == MVT::i128) 385 return FPTOUINT_F128_I128; 386 } else if (OpVT == MVT::ppcf128) { 387 if (RetVT == MVT::i32) 388 return FPTOUINT_PPCF128_I32; 389 if (RetVT == MVT::i64) 390 return FPTOUINT_PPCF128_I64; 391 if (RetVT == MVT::i128) 392 return FPTOUINT_PPCF128_I128; 393 } 394 return UNKNOWN_LIBCALL; 395 } 396 397 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 398 /// UNKNOWN_LIBCALL if there is none. 399 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 400 if (OpVT == MVT::i32) { 401 if (RetVT == MVT::f16) 402 return SINTTOFP_I32_F16; 403 if (RetVT == MVT::f32) 404 return SINTTOFP_I32_F32; 405 if (RetVT == MVT::f64) 406 return SINTTOFP_I32_F64; 407 if (RetVT == MVT::f80) 408 return SINTTOFP_I32_F80; 409 if (RetVT == MVT::f128) 410 return SINTTOFP_I32_F128; 411 if (RetVT == MVT::ppcf128) 412 return SINTTOFP_I32_PPCF128; 413 } else if (OpVT == MVT::i64) { 414 if (RetVT == MVT::f16) 415 return SINTTOFP_I64_F16; 416 if (RetVT == MVT::f32) 417 return SINTTOFP_I64_F32; 418 if (RetVT == MVT::f64) 419 return SINTTOFP_I64_F64; 420 if (RetVT == MVT::f80) 421 return SINTTOFP_I64_F80; 422 if (RetVT == MVT::f128) 423 return SINTTOFP_I64_F128; 424 if (RetVT == MVT::ppcf128) 425 return SINTTOFP_I64_PPCF128; 426 } else if (OpVT == MVT::i128) { 427 if (RetVT == MVT::f16) 428 return SINTTOFP_I128_F16; 429 if (RetVT == MVT::f32) 430 return SINTTOFP_I128_F32; 431 if (RetVT == MVT::f64) 432 return SINTTOFP_I128_F64; 433 if (RetVT == MVT::f80) 434 return SINTTOFP_I128_F80; 435 if (RetVT == MVT::f128) 436 return SINTTOFP_I128_F128; 437 if (RetVT == MVT::ppcf128) 438 return SINTTOFP_I128_PPCF128; 439 } 440 return UNKNOWN_LIBCALL; 441 } 442 443 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 444 /// UNKNOWN_LIBCALL if there is none. 445 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 446 if (OpVT == MVT::i32) { 447 if (RetVT == MVT::f16) 448 return UINTTOFP_I32_F16; 449 if (RetVT == MVT::f32) 450 return UINTTOFP_I32_F32; 451 if (RetVT == MVT::f64) 452 return UINTTOFP_I32_F64; 453 if (RetVT == MVT::f80) 454 return UINTTOFP_I32_F80; 455 if (RetVT == MVT::f128) 456 return UINTTOFP_I32_F128; 457 if (RetVT == MVT::ppcf128) 458 return UINTTOFP_I32_PPCF128; 459 } else if (OpVT == MVT::i64) { 460 if (RetVT == MVT::f16) 461 return UINTTOFP_I64_F16; 462 if (RetVT == MVT::f32) 463 return UINTTOFP_I64_F32; 464 if (RetVT == MVT::f64) 465 return UINTTOFP_I64_F64; 466 if (RetVT == MVT::f80) 467 return UINTTOFP_I64_F80; 468 if (RetVT == MVT::f128) 469 return UINTTOFP_I64_F128; 470 if (RetVT == MVT::ppcf128) 471 return UINTTOFP_I64_PPCF128; 472 } else if (OpVT == MVT::i128) { 473 if (RetVT == MVT::f16) 474 return UINTTOFP_I128_F16; 475 if (RetVT == MVT::f32) 476 return UINTTOFP_I128_F32; 477 if (RetVT == MVT::f64) 478 return UINTTOFP_I128_F64; 479 if (RetVT == MVT::f80) 480 return UINTTOFP_I128_F80; 481 if (RetVT == MVT::f128) 482 return UINTTOFP_I128_F128; 483 if (RetVT == MVT::ppcf128) 484 return UINTTOFP_I128_PPCF128; 485 } 486 return UNKNOWN_LIBCALL; 487 } 488 489 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) { 490 return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128, 491 POWI_PPCF128); 492 } 493 494 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 495 MVT VT) { 496 unsigned ModeN, ModelN; 497 switch (VT.SimpleTy) { 498 case MVT::i8: 499 ModeN = 0; 500 break; 501 case MVT::i16: 502 ModeN = 1; 503 break; 504 case MVT::i32: 505 ModeN = 2; 506 break; 507 case MVT::i64: 508 ModeN = 3; 509 break; 510 case MVT::i128: 511 ModeN = 4; 512 break; 513 default: 514 return UNKNOWN_LIBCALL; 515 } 516 517 switch (Order) { 518 case AtomicOrdering::Monotonic: 519 ModelN = 0; 520 break; 521 case AtomicOrdering::Acquire: 522 ModelN = 1; 523 break; 524 case AtomicOrdering::Release: 525 ModelN = 2; 526 break; 527 case AtomicOrdering::AcquireRelease: 528 case AtomicOrdering::SequentiallyConsistent: 529 ModelN = 3; 530 break; 531 default: 532 return UNKNOWN_LIBCALL; 533 } 534 535 #define LCALLS(A, B) \ 536 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 537 #define LCALL5(A) \ 538 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 539 switch (Opc) { 540 case ISD::ATOMIC_CMP_SWAP: { 541 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 542 return LC[ModeN][ModelN]; 543 } 544 case ISD::ATOMIC_SWAP: { 545 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 546 return LC[ModeN][ModelN]; 547 } 548 case ISD::ATOMIC_LOAD_ADD: { 549 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 550 return LC[ModeN][ModelN]; 551 } 552 case ISD::ATOMIC_LOAD_OR: { 553 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 554 return LC[ModeN][ModelN]; 555 } 556 case ISD::ATOMIC_LOAD_CLR: { 557 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 558 return LC[ModeN][ModelN]; 559 } 560 case ISD::ATOMIC_LOAD_XOR: { 561 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 562 return LC[ModeN][ModelN]; 563 } 564 default: 565 return UNKNOWN_LIBCALL; 566 } 567 #undef LCALLS 568 #undef LCALL5 569 } 570 571 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 572 #define OP_TO_LIBCALL(Name, Enum) \ 573 case Name: \ 574 switch (VT.SimpleTy) { \ 575 default: \ 576 return UNKNOWN_LIBCALL; \ 577 case MVT::i8: \ 578 return Enum##_1; \ 579 case MVT::i16: \ 580 return Enum##_2; \ 581 case MVT::i32: \ 582 return Enum##_4; \ 583 case MVT::i64: \ 584 return Enum##_8; \ 585 case MVT::i128: \ 586 return Enum##_16; \ 587 } 588 589 switch (Opc) { 590 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 591 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 592 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 593 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 594 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 595 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 596 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 597 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 598 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 599 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 600 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 601 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 602 } 603 604 #undef OP_TO_LIBCALL 605 606 return UNKNOWN_LIBCALL; 607 } 608 609 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 610 switch (ElementSize) { 611 case 1: 612 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 613 case 2: 614 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 615 case 4: 616 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 617 case 8: 618 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 619 case 16: 620 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 621 default: 622 return UNKNOWN_LIBCALL; 623 } 624 } 625 626 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 627 switch (ElementSize) { 628 case 1: 629 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 630 case 2: 631 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 632 case 4: 633 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 634 case 8: 635 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 636 case 16: 637 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 638 default: 639 return UNKNOWN_LIBCALL; 640 } 641 } 642 643 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 644 switch (ElementSize) { 645 case 1: 646 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 647 case 2: 648 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 649 case 4: 650 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 651 case 8: 652 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 653 case 16: 654 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 655 default: 656 return UNKNOWN_LIBCALL; 657 } 658 } 659 660 /// InitCmpLibcallCCs - Set default comparison libcall CC. 661 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 662 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 663 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 664 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 665 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 666 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 667 CCs[RTLIB::UNE_F32] = ISD::SETNE; 668 CCs[RTLIB::UNE_F64] = ISD::SETNE; 669 CCs[RTLIB::UNE_F128] = ISD::SETNE; 670 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 671 CCs[RTLIB::OGE_F32] = ISD::SETGE; 672 CCs[RTLIB::OGE_F64] = ISD::SETGE; 673 CCs[RTLIB::OGE_F128] = ISD::SETGE; 674 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 675 CCs[RTLIB::OLT_F32] = ISD::SETLT; 676 CCs[RTLIB::OLT_F64] = ISD::SETLT; 677 CCs[RTLIB::OLT_F128] = ISD::SETLT; 678 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 679 CCs[RTLIB::OLE_F32] = ISD::SETLE; 680 CCs[RTLIB::OLE_F64] = ISD::SETLE; 681 CCs[RTLIB::OLE_F128] = ISD::SETLE; 682 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 683 CCs[RTLIB::OGT_F32] = ISD::SETGT; 684 CCs[RTLIB::OGT_F64] = ISD::SETGT; 685 CCs[RTLIB::OGT_F128] = ISD::SETGT; 686 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 687 CCs[RTLIB::UO_F32] = ISD::SETNE; 688 CCs[RTLIB::UO_F64] = ISD::SETNE; 689 CCs[RTLIB::UO_F128] = ISD::SETNE; 690 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 691 } 692 693 /// NOTE: The TargetMachine owns TLOF. 694 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 695 initActions(); 696 697 // Perform these initializations only once. 698 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 699 MaxLoadsPerMemcmp = 8; 700 MaxGluedStoresPerMemcpy = 0; 701 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 702 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 703 HasMultipleConditionRegisters = false; 704 HasExtractBitsInsn = false; 705 JumpIsExpensive = JumpIsExpensiveOverride; 706 PredictableSelectIsExpensive = false; 707 EnableExtLdPromotion = false; 708 StackPointerRegisterToSaveRestore = 0; 709 BooleanContents = UndefinedBooleanContent; 710 BooleanFloatContents = UndefinedBooleanContent; 711 BooleanVectorContents = UndefinedBooleanContent; 712 SchedPreferenceInfo = Sched::ILP; 713 GatherAllAliasesMaxDepth = 18; 714 IsStrictFPEnabled = DisableStrictNodeMutation; 715 // TODO: the default will be switched to 0 in the next commit, along 716 // with the Target-specific changes necessary. 717 MaxAtomicSizeInBitsSupported = 1024; 718 719 MinCmpXchgSizeInBits = 0; 720 SupportsUnalignedAtomics = false; 721 722 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 723 724 InitLibcalls(TM.getTargetTriple()); 725 InitCmpLibcallCCs(CmpLibcallCCs); 726 } 727 728 void TargetLoweringBase::initActions() { 729 // All operations default to being supported. 730 memset(OpActions, 0, sizeof(OpActions)); 731 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 732 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 733 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 734 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 735 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 736 std::fill(std::begin(TargetDAGCombineArray), 737 std::end(TargetDAGCombineArray), 0); 738 739 for (MVT VT : MVT::fp_valuetypes()) { 740 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 741 if (IntVT.isValid()) { 742 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 743 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 744 } 745 } 746 747 // Set default actions for various operations. 748 for (MVT VT : MVT::all_valuetypes()) { 749 // Default all indexed load / store to expand. 750 for (unsigned IM = (unsigned)ISD::PRE_INC; 751 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 752 setIndexedLoadAction(IM, VT, Expand); 753 setIndexedStoreAction(IM, VT, Expand); 754 setIndexedMaskedLoadAction(IM, VT, Expand); 755 setIndexedMaskedStoreAction(IM, VT, Expand); 756 } 757 758 // Most backends expect to see the node which just returns the value loaded. 759 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 760 761 // These operations default to expand. 762 setOperationAction(ISD::FGETSIGN, VT, Expand); 763 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 764 setOperationAction(ISD::FMINNUM, VT, Expand); 765 setOperationAction(ISD::FMAXNUM, VT, Expand); 766 setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); 767 setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); 768 setOperationAction(ISD::FMINIMUM, VT, Expand); 769 setOperationAction(ISD::FMAXIMUM, VT, Expand); 770 setOperationAction(ISD::FMAD, VT, Expand); 771 setOperationAction(ISD::SMIN, VT, Expand); 772 setOperationAction(ISD::SMAX, VT, Expand); 773 setOperationAction(ISD::UMIN, VT, Expand); 774 setOperationAction(ISD::UMAX, VT, Expand); 775 setOperationAction(ISD::ABS, VT, Expand); 776 setOperationAction(ISD::FSHL, VT, Expand); 777 setOperationAction(ISD::FSHR, VT, Expand); 778 setOperationAction(ISD::SADDSAT, VT, Expand); 779 setOperationAction(ISD::UADDSAT, VT, Expand); 780 setOperationAction(ISD::SSUBSAT, VT, Expand); 781 setOperationAction(ISD::USUBSAT, VT, Expand); 782 setOperationAction(ISD::SSHLSAT, VT, Expand); 783 setOperationAction(ISD::USHLSAT, VT, Expand); 784 setOperationAction(ISD::SMULFIX, VT, Expand); 785 setOperationAction(ISD::SMULFIXSAT, VT, Expand); 786 setOperationAction(ISD::UMULFIX, VT, Expand); 787 setOperationAction(ISD::UMULFIXSAT, VT, Expand); 788 setOperationAction(ISD::SDIVFIX, VT, Expand); 789 setOperationAction(ISD::SDIVFIXSAT, VT, Expand); 790 setOperationAction(ISD::UDIVFIX, VT, Expand); 791 setOperationAction(ISD::UDIVFIXSAT, VT, Expand); 792 setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand); 793 setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand); 794 795 // Overflow operations default to expand 796 setOperationAction(ISD::SADDO, VT, Expand); 797 setOperationAction(ISD::SSUBO, VT, Expand); 798 setOperationAction(ISD::UADDO, VT, Expand); 799 setOperationAction(ISD::USUBO, VT, Expand); 800 setOperationAction(ISD::SMULO, VT, Expand); 801 setOperationAction(ISD::UMULO, VT, Expand); 802 803 // ADDCARRY operations default to expand 804 setOperationAction(ISD::ADDCARRY, VT, Expand); 805 setOperationAction(ISD::SUBCARRY, VT, Expand); 806 setOperationAction(ISD::SETCCCARRY, VT, Expand); 807 setOperationAction(ISD::SADDO_CARRY, VT, Expand); 808 setOperationAction(ISD::SSUBO_CARRY, VT, Expand); 809 810 // ADDC/ADDE/SUBC/SUBE default to expand. 811 setOperationAction(ISD::ADDC, VT, Expand); 812 setOperationAction(ISD::ADDE, VT, Expand); 813 setOperationAction(ISD::SUBC, VT, Expand); 814 setOperationAction(ISD::SUBE, VT, Expand); 815 816 // Absolute difference 817 setOperationAction(ISD::ABDS, VT, Expand); 818 setOperationAction(ISD::ABDU, VT, Expand); 819 820 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 821 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 822 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 823 824 setOperationAction(ISD::BITREVERSE, VT, Expand); 825 setOperationAction(ISD::PARITY, VT, Expand); 826 827 // These library functions default to expand. 828 setOperationAction(ISD::FROUND, VT, Expand); 829 setOperationAction(ISD::FROUNDEVEN, VT, Expand); 830 setOperationAction(ISD::FPOWI, VT, Expand); 831 832 // These operations default to expand for vector types. 833 if (VT.isVector()) { 834 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 835 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 836 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 837 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 838 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 839 setOperationAction(ISD::SPLAT_VECTOR, VT, Expand); 840 } 841 842 // Constrained floating-point operations default to expand. 843 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 844 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 845 #include "llvm/IR/ConstrainedOps.def" 846 847 // For most targets @llvm.get.dynamic.area.offset just returns 0. 848 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 849 850 // Vector reduction default to expand. 851 setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); 852 setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); 853 setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); 854 setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); 855 setOperationAction(ISD::VECREDUCE_AND, VT, Expand); 856 setOperationAction(ISD::VECREDUCE_OR, VT, Expand); 857 setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); 858 setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); 859 setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); 860 setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); 861 setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); 862 setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); 863 setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); 864 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand); 865 setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand); 866 867 // Named vector shuffles default to expand. 868 setOperationAction(ISD::VECTOR_SPLICE, VT, Expand); 869 } 870 871 // Most targets ignore the @llvm.prefetch intrinsic. 872 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 873 874 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 875 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 876 877 // ConstantFP nodes default to expand. Targets can either change this to 878 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 879 // to optimize expansions for certain constants. 880 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 881 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 882 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 883 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 884 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 885 886 // These library functions default to expand. 887 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 888 setOperationAction(ISD::FCBRT, VT, Expand); 889 setOperationAction(ISD::FLOG , VT, Expand); 890 setOperationAction(ISD::FLOG2, VT, Expand); 891 setOperationAction(ISD::FLOG10, VT, Expand); 892 setOperationAction(ISD::FEXP , VT, Expand); 893 setOperationAction(ISD::FEXP2, VT, Expand); 894 setOperationAction(ISD::FFLOOR, VT, Expand); 895 setOperationAction(ISD::FNEARBYINT, VT, Expand); 896 setOperationAction(ISD::FCEIL, VT, Expand); 897 setOperationAction(ISD::FRINT, VT, Expand); 898 setOperationAction(ISD::FTRUNC, VT, Expand); 899 setOperationAction(ISD::FROUND, VT, Expand); 900 setOperationAction(ISD::FROUNDEVEN, VT, Expand); 901 setOperationAction(ISD::LROUND, VT, Expand); 902 setOperationAction(ISD::LLROUND, VT, Expand); 903 setOperationAction(ISD::LRINT, VT, Expand); 904 setOperationAction(ISD::LLRINT, VT, Expand); 905 } 906 907 // Default ISD::TRAP to expand (which turns it into abort). 908 setOperationAction(ISD::TRAP, MVT::Other, Expand); 909 910 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 911 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 912 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 913 914 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); 915 } 916 917 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 918 EVT) const { 919 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 920 } 921 922 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 923 bool LegalTypes) const { 924 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 925 if (LHSTy.isVector()) 926 return LHSTy; 927 return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) 928 : getPointerTy(DL); 929 } 930 931 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 932 assert(isTypeLegal(VT)); 933 switch (Op) { 934 default: 935 return false; 936 case ISD::SDIV: 937 case ISD::UDIV: 938 case ISD::SREM: 939 case ISD::UREM: 940 return true; 941 } 942 } 943 944 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 945 unsigned DestAS) const { 946 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 947 } 948 949 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 950 // If the command-line option was specified, ignore this request. 951 if (!JumpIsExpensiveOverride.getNumOccurrences()) 952 JumpIsExpensive = isExpensive; 953 } 954 955 TargetLoweringBase::LegalizeKind 956 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 957 // If this is a simple type, use the ComputeRegisterProp mechanism. 958 if (VT.isSimple()) { 959 MVT SVT = VT.getSimpleVT(); 960 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 961 MVT NVT = TransformToType[SVT.SimpleTy]; 962 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 963 964 assert((LA == TypeLegal || LA == TypeSoftenFloat || 965 LA == TypeSoftPromoteHalf || 966 (NVT.isVector() || 967 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 968 "Promote may not follow Expand or Promote"); 969 970 if (LA == TypeSplitVector) 971 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 972 if (LA == TypeScalarizeVector) 973 return LegalizeKind(LA, SVT.getVectorElementType()); 974 return LegalizeKind(LA, NVT); 975 } 976 977 // Handle Extended Scalar Types. 978 if (!VT.isVector()) { 979 assert(VT.isInteger() && "Float types must be simple"); 980 unsigned BitSize = VT.getSizeInBits(); 981 // First promote to a power-of-two size, then expand if necessary. 982 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 983 EVT NVT = VT.getRoundIntegerType(Context); 984 assert(NVT != VT && "Unable to round integer VT"); 985 LegalizeKind NextStep = getTypeConversion(Context, NVT); 986 // Avoid multi-step promotion. 987 if (NextStep.first == TypePromoteInteger) 988 return NextStep; 989 // Return rounded integer type. 990 return LegalizeKind(TypePromoteInteger, NVT); 991 } 992 993 return LegalizeKind(TypeExpandInteger, 994 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 995 } 996 997 // Handle vector types. 998 ElementCount NumElts = VT.getVectorElementCount(); 999 EVT EltVT = VT.getVectorElementType(); 1000 1001 // Vectors with only one element are always scalarized. 1002 if (NumElts.isScalar()) 1003 return LegalizeKind(TypeScalarizeVector, EltVT); 1004 1005 // Try to widen vector elements until the element type is a power of two and 1006 // promote it to a legal type later on, for example: 1007 // <3 x i8> -> <4 x i8> -> <4 x i32> 1008 if (EltVT.isInteger()) { 1009 // Vectors with a number of elements that is not a power of two are always 1010 // widened, for example <3 x i8> -> <4 x i8>. 1011 if (!VT.isPow2VectorType()) { 1012 NumElts = NumElts.coefficientNextPowerOf2(); 1013 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 1014 return LegalizeKind(TypeWidenVector, NVT); 1015 } 1016 1017 // Examine the element type. 1018 LegalizeKind LK = getTypeConversion(Context, EltVT); 1019 1020 // If type is to be expanded, split the vector. 1021 // <4 x i140> -> <2 x i140> 1022 if (LK.first == TypeExpandInteger) { 1023 if (VT.getVectorElementCount().isScalable()) 1024 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1025 return LegalizeKind(TypeSplitVector, 1026 VT.getHalfNumVectorElementsVT(Context)); 1027 } 1028 1029 // Promote the integer element types until a legal vector type is found 1030 // or until the element integer type is too big. If a legal type was not 1031 // found, fallback to the usual mechanism of widening/splitting the 1032 // vector. 1033 EVT OldEltVT = EltVT; 1034 while (true) { 1035 // Increase the bitwidth of the element to the next pow-of-two 1036 // (which is greater than 8 bits). 1037 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 1038 .getRoundIntegerType(Context); 1039 1040 // Stop trying when getting a non-simple element type. 1041 // Note that vector elements may be greater than legal vector element 1042 // types. Example: X86 XMM registers hold 64bit element on 32bit 1043 // systems. 1044 if (!EltVT.isSimple()) 1045 break; 1046 1047 // Build a new vector type and check if it is legal. 1048 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1049 // Found a legal promoted vector type. 1050 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 1051 return LegalizeKind(TypePromoteInteger, 1052 EVT::getVectorVT(Context, EltVT, NumElts)); 1053 } 1054 1055 // Reset the type to the unexpanded type if we did not find a legal vector 1056 // type with a promoted vector element type. 1057 EltVT = OldEltVT; 1058 } 1059 1060 // Try to widen the vector until a legal type is found. 1061 // If there is no wider legal type, split the vector. 1062 while (true) { 1063 // Round up to the next power of 2. 1064 NumElts = NumElts.coefficientNextPowerOf2(); 1065 1066 // If there is no simple vector type with this many elements then there 1067 // cannot be a larger legal vector type. Note that this assumes that 1068 // there are no skipped intermediate vector types in the simple types. 1069 if (!EltVT.isSimple()) 1070 break; 1071 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1072 if (LargerVector == MVT()) 1073 break; 1074 1075 // If this type is legal then widen the vector. 1076 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1077 return LegalizeKind(TypeWidenVector, LargerVector); 1078 } 1079 1080 // Widen odd vectors to next power of two. 1081 if (!VT.isPow2VectorType()) { 1082 EVT NVT = VT.getPow2VectorType(Context); 1083 return LegalizeKind(TypeWidenVector, NVT); 1084 } 1085 1086 if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 1087 return LegalizeKind(TypeScalarizeScalableVector, EltVT); 1088 1089 // Vectors with illegal element types are expanded. 1090 EVT NVT = EVT::getVectorVT(Context, EltVT, 1091 VT.getVectorElementCount().divideCoefficientBy(2)); 1092 return LegalizeKind(TypeSplitVector, NVT); 1093 } 1094 1095 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1096 unsigned &NumIntermediates, 1097 MVT &RegisterVT, 1098 TargetLoweringBase *TLI) { 1099 // Figure out the right, legal destination reg to copy into. 1100 ElementCount EC = VT.getVectorElementCount(); 1101 MVT EltTy = VT.getVectorElementType(); 1102 1103 unsigned NumVectorRegs = 1; 1104 1105 // Scalable vectors cannot be scalarized, so splitting or widening is 1106 // required. 1107 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 1108 llvm_unreachable( 1109 "Splitting or widening of non-power-of-2 MVTs is not implemented."); 1110 1111 // FIXME: We don't support non-power-of-2-sized vectors for now. 1112 // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1113 if (!isPowerOf2_32(EC.getKnownMinValue())) { 1114 // Split EC to unit size (scalable property is preserved). 1115 NumVectorRegs = EC.getKnownMinValue(); 1116 EC = ElementCount::getFixed(1); 1117 } 1118 1119 // Divide the input until we get to a supported size. This will 1120 // always end up with an EC that represent a scalar or a scalable 1121 // scalar. 1122 while (EC.getKnownMinValue() > 1 && 1123 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1124 EC = EC.divideCoefficientBy(2); 1125 NumVectorRegs <<= 1; 1126 } 1127 1128 NumIntermediates = NumVectorRegs; 1129 1130 MVT NewVT = MVT::getVectorVT(EltTy, EC); 1131 if (!TLI->isTypeLegal(NewVT)) 1132 NewVT = EltTy; 1133 IntermediateVT = NewVT; 1134 1135 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 1136 1137 // Convert sizes such as i33 to i64. 1138 if (!isPowerOf2_32(LaneSizeInBits)) 1139 LaneSizeInBits = NextPowerOf2(LaneSizeInBits); 1140 1141 MVT DestVT = TLI->getRegisterType(NewVT); 1142 RegisterVT = DestVT; 1143 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1144 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 1145 1146 // Otherwise, promotion or legal types use the same number of registers as 1147 // the vector decimated to the appropriate level. 1148 return NumVectorRegs; 1149 } 1150 1151 /// isLegalRC - Return true if the value types that can be represented by the 1152 /// specified register class are all legal. 1153 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1154 const TargetRegisterClass &RC) const { 1155 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1156 if (isTypeLegal(*I)) 1157 return true; 1158 return false; 1159 } 1160 1161 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1162 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1163 MachineBasicBlock * 1164 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1165 MachineBasicBlock *MBB) const { 1166 MachineInstr *MI = &InitialMI; 1167 MachineFunction &MF = *MI->getMF(); 1168 MachineFrameInfo &MFI = MF.getFrameInfo(); 1169 1170 // We're handling multiple types of operands here: 1171 // PATCHPOINT MetaArgs - live-in, read only, direct 1172 // STATEPOINT Deopt Spill - live-through, read only, indirect 1173 // STATEPOINT Deopt Alloca - live-through, read only, direct 1174 // (We're currently conservative and mark the deopt slots read/write in 1175 // practice.) 1176 // STATEPOINT GC Spill - live-through, read/write, indirect 1177 // STATEPOINT GC Alloca - live-through, read/write, direct 1178 // The live-in vs live-through is handled already (the live through ones are 1179 // all stack slots), but we need to handle the different type of stackmap 1180 // operands and memory effects here. 1181 1182 if (!llvm::any_of(MI->operands(), 1183 [](MachineOperand &Operand) { return Operand.isFI(); })) 1184 return MBB; 1185 1186 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1187 1188 // Inherit previous memory operands. 1189 MIB.cloneMemRefs(*MI); 1190 1191 for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1192 MachineOperand &MO = MI->getOperand(i); 1193 if (!MO.isFI()) { 1194 // Index of Def operand this Use it tied to. 1195 // Since Defs are coming before Uses, if Use is tied, then 1196 // index of Def must be smaller that index of that Use. 1197 // Also, Defs preserve their position in new MI. 1198 unsigned TiedTo = i; 1199 if (MO.isReg() && MO.isTied()) 1200 TiedTo = MI->findTiedOperandIdx(i); 1201 MIB.add(MO); 1202 if (TiedTo < i) 1203 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 1204 continue; 1205 } 1206 1207 // foldMemoryOperand builds a new MI after replacing a single FI operand 1208 // with the canonical set of five x86 addressing-mode operands. 1209 int FI = MO.getIndex(); 1210 1211 // Add frame index operands recognized by stackmaps.cpp 1212 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1213 // indirect-mem-ref tag, size, #FI, offset. 1214 // Used for spills inserted by StatepointLowering. This codepath is not 1215 // used for patchpoints/stackmaps at all, for these spilling is done via 1216 // foldMemoryOperand callback only. 1217 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1218 MIB.addImm(StackMaps::IndirectMemRefOp); 1219 MIB.addImm(MFI.getObjectSize(FI)); 1220 MIB.add(MO); 1221 MIB.addImm(0); 1222 } else { 1223 // direct-mem-ref tag, #FI, offset. 1224 // Used by patchpoint, and direct alloca arguments to statepoints 1225 MIB.addImm(StackMaps::DirectMemRefOp); 1226 MIB.add(MO); 1227 MIB.addImm(0); 1228 } 1229 1230 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1231 1232 // Add a new memory operand for this FI. 1233 assert(MFI.getObjectOffset(FI) != -1); 1234 1235 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1236 // PATCHPOINT should be updated to do the same. (TODO) 1237 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1238 auto Flags = MachineMemOperand::MOLoad; 1239 MachineMemOperand *MMO = MF.getMachineMemOperand( 1240 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1241 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 1242 MIB->addMemOperand(MF, MMO); 1243 } 1244 } 1245 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1246 MI->eraseFromParent(); 1247 return MBB; 1248 } 1249 1250 /// findRepresentativeClass - Return the largest legal super-reg register class 1251 /// of the register class for the specified type and its associated "cost". 1252 // This function is in TargetLowering because it uses RegClassForVT which would 1253 // need to be moved to TargetRegisterInfo and would necessitate moving 1254 // isTypeLegal over as well - a massive change that would just require 1255 // TargetLowering having a TargetRegisterInfo class member that it would use. 1256 std::pair<const TargetRegisterClass *, uint8_t> 1257 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1258 MVT VT) const { 1259 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1260 if (!RC) 1261 return std::make_pair(RC, 0); 1262 1263 // Compute the set of all super-register classes. 1264 BitVector SuperRegRC(TRI->getNumRegClasses()); 1265 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1266 SuperRegRC.setBitsInMask(RCI.getMask()); 1267 1268 // Find the first legal register class with the largest spill size. 1269 const TargetRegisterClass *BestRC = RC; 1270 for (unsigned i : SuperRegRC.set_bits()) { 1271 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1272 // We want the largest possible spill size. 1273 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1274 continue; 1275 if (!isLegalRC(*TRI, *SuperRC)) 1276 continue; 1277 BestRC = SuperRC; 1278 } 1279 return std::make_pair(BestRC, 1); 1280 } 1281 1282 /// computeRegisterProperties - Once all of the register classes are added, 1283 /// this allows us to compute derived properties we expose. 1284 void TargetLoweringBase::computeRegisterProperties( 1285 const TargetRegisterInfo *TRI) { 1286 static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE, 1287 "Too many value types for ValueTypeActions to hold!"); 1288 1289 // Everything defaults to needing one register. 1290 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1291 NumRegistersForVT[i] = 1; 1292 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1293 } 1294 // ...except isVoid, which doesn't need any registers. 1295 NumRegistersForVT[MVT::isVoid] = 0; 1296 1297 // Find the largest integer register class. 1298 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1299 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1300 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1301 1302 // Every integer value type larger than this largest register takes twice as 1303 // many registers to represent as the previous ValueType. 1304 for (unsigned ExpandedReg = LargestIntReg + 1; 1305 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1306 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1307 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1308 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1309 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1310 TypeExpandInteger); 1311 } 1312 1313 // Inspect all of the ValueType's smaller than the largest integer 1314 // register to see which ones need promotion. 1315 unsigned LegalIntReg = LargestIntReg; 1316 for (unsigned IntReg = LargestIntReg - 1; 1317 IntReg >= (unsigned)MVT::i1; --IntReg) { 1318 MVT IVT = (MVT::SimpleValueType)IntReg; 1319 if (isTypeLegal(IVT)) { 1320 LegalIntReg = IntReg; 1321 } else { 1322 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1323 (MVT::SimpleValueType)LegalIntReg; 1324 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1325 } 1326 } 1327 1328 // ppcf128 type is really two f64's. 1329 if (!isTypeLegal(MVT::ppcf128)) { 1330 if (isTypeLegal(MVT::f64)) { 1331 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1332 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1333 TransformToType[MVT::ppcf128] = MVT::f64; 1334 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1335 } else { 1336 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1337 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1338 TransformToType[MVT::ppcf128] = MVT::i128; 1339 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1340 } 1341 } 1342 1343 // Decide how to handle f128. If the target does not have native f128 support, 1344 // expand it to i128 and we will be generating soft float library calls. 1345 if (!isTypeLegal(MVT::f128)) { 1346 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1347 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1348 TransformToType[MVT::f128] = MVT::i128; 1349 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1350 } 1351 1352 // Decide how to handle f64. If the target does not have native f64 support, 1353 // expand it to i64 and we will be generating soft float library calls. 1354 if (!isTypeLegal(MVT::f64)) { 1355 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1356 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1357 TransformToType[MVT::f64] = MVT::i64; 1358 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1359 } 1360 1361 // Decide how to handle f32. If the target does not have native f32 support, 1362 // expand it to i32 and we will be generating soft float library calls. 1363 if (!isTypeLegal(MVT::f32)) { 1364 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1365 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1366 TransformToType[MVT::f32] = MVT::i32; 1367 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1368 } 1369 1370 // Decide how to handle f16. If the target does not have native f16 support, 1371 // promote it to f32, because there are no f16 library calls (except for 1372 // conversions). 1373 if (!isTypeLegal(MVT::f16)) { 1374 // Allow targets to control how we legalize half. 1375 if (softPromoteHalfType()) { 1376 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 1377 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 1378 TransformToType[MVT::f16] = MVT::f32; 1379 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1380 } else { 1381 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1382 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1383 TransformToType[MVT::f16] = MVT::f32; 1384 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1385 } 1386 } 1387 1388 // Loop over all of the vector value types to see which need transformations. 1389 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1390 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1391 MVT VT = (MVT::SimpleValueType) i; 1392 if (isTypeLegal(VT)) 1393 continue; 1394 1395 MVT EltVT = VT.getVectorElementType(); 1396 ElementCount EC = VT.getVectorElementCount(); 1397 bool IsLegalWiderType = false; 1398 bool IsScalable = VT.isScalableVector(); 1399 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1400 switch (PreferredAction) { 1401 case TypePromoteInteger: { 1402 MVT::SimpleValueType EndVT = IsScalable ? 1403 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1404 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1405 // Try to promote the elements of integer vectors. If no legal 1406 // promotion was found, fall through to the widen-vector method. 1407 for (unsigned nVT = i + 1; 1408 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1409 MVT SVT = (MVT::SimpleValueType) nVT; 1410 // Promote vectors of integers to vectors with the same number 1411 // of elements, with a wider element type. 1412 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 1413 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 1414 TransformToType[i] = SVT; 1415 RegisterTypeForVT[i] = SVT; 1416 NumRegistersForVT[i] = 1; 1417 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1418 IsLegalWiderType = true; 1419 break; 1420 } 1421 } 1422 if (IsLegalWiderType) 1423 break; 1424 LLVM_FALLTHROUGH; 1425 } 1426 1427 case TypeWidenVector: 1428 if (isPowerOf2_32(EC.getKnownMinValue())) { 1429 // Try to widen the vector. 1430 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1431 MVT SVT = (MVT::SimpleValueType) nVT; 1432 if (SVT.getVectorElementType() == EltVT && 1433 SVT.isScalableVector() == IsScalable && 1434 SVT.getVectorElementCount().getKnownMinValue() > 1435 EC.getKnownMinValue() && 1436 isTypeLegal(SVT)) { 1437 TransformToType[i] = SVT; 1438 RegisterTypeForVT[i] = SVT; 1439 NumRegistersForVT[i] = 1; 1440 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1441 IsLegalWiderType = true; 1442 break; 1443 } 1444 } 1445 if (IsLegalWiderType) 1446 break; 1447 } else { 1448 // Only widen to the next power of 2 to keep consistency with EVT. 1449 MVT NVT = VT.getPow2VectorType(); 1450 if (isTypeLegal(NVT)) { 1451 TransformToType[i] = NVT; 1452 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1453 RegisterTypeForVT[i] = NVT; 1454 NumRegistersForVT[i] = 1; 1455 break; 1456 } 1457 } 1458 LLVM_FALLTHROUGH; 1459 1460 case TypeSplitVector: 1461 case TypeScalarizeVector: { 1462 MVT IntermediateVT; 1463 MVT RegisterVT; 1464 unsigned NumIntermediates; 1465 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1466 NumIntermediates, RegisterVT, this); 1467 NumRegistersForVT[i] = NumRegisters; 1468 assert(NumRegistersForVT[i] == NumRegisters && 1469 "NumRegistersForVT size cannot represent NumRegisters!"); 1470 RegisterTypeForVT[i] = RegisterVT; 1471 1472 MVT NVT = VT.getPow2VectorType(); 1473 if (NVT == VT) { 1474 // Type is already a power of 2. The default action is to split. 1475 TransformToType[i] = MVT::Other; 1476 if (PreferredAction == TypeScalarizeVector) 1477 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1478 else if (PreferredAction == TypeSplitVector) 1479 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1480 else if (EC.getKnownMinValue() > 1) 1481 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1482 else 1483 ValueTypeActions.setTypeAction(VT, EC.isScalable() 1484 ? TypeScalarizeScalableVector 1485 : TypeScalarizeVector); 1486 } else { 1487 TransformToType[i] = NVT; 1488 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1489 } 1490 break; 1491 } 1492 default: 1493 llvm_unreachable("Unknown vector legalization action!"); 1494 } 1495 } 1496 1497 // Determine the 'representative' register class for each value type. 1498 // An representative register class is the largest (meaning one which is 1499 // not a sub-register class / subreg register class) legal register class for 1500 // a group of value types. For example, on i386, i8, i16, and i32 1501 // representative would be GR32; while on x86_64 it's GR64. 1502 for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) { 1503 const TargetRegisterClass* RRC; 1504 uint8_t Cost; 1505 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1506 RepRegClassForVT[i] = RRC; 1507 RepRegClassCostForVT[i] = Cost; 1508 } 1509 } 1510 1511 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1512 EVT VT) const { 1513 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1514 return getPointerTy(DL).SimpleTy; 1515 } 1516 1517 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1518 return MVT::i32; // return the default value 1519 } 1520 1521 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1522 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1523 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1524 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1525 /// 1526 /// This method returns the number of registers needed, and the VT for each 1527 /// register. It also returns the VT and quantity of the intermediate values 1528 /// before they are promoted/expanded. 1529 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, 1530 EVT VT, EVT &IntermediateVT, 1531 unsigned &NumIntermediates, 1532 MVT &RegisterVT) const { 1533 ElementCount EltCnt = VT.getVectorElementCount(); 1534 1535 // If there is a wider vector type with the same element type as this one, 1536 // or a promoted vector type that has the same number of elements which 1537 // are wider, then we should convert to that legal vector type. 1538 // This handles things like <2 x float> -> <4 x float> and 1539 // <4 x i1> -> <4 x i32>. 1540 LegalizeTypeAction TA = getTypeAction(Context, VT); 1541 if (!EltCnt.isScalar() && 1542 (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1543 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1544 if (isTypeLegal(RegisterEVT)) { 1545 IntermediateVT = RegisterEVT; 1546 RegisterVT = RegisterEVT.getSimpleVT(); 1547 NumIntermediates = 1; 1548 return 1; 1549 } 1550 } 1551 1552 // Figure out the right, legal destination reg to copy into. 1553 EVT EltTy = VT.getVectorElementType(); 1554 1555 unsigned NumVectorRegs = 1; 1556 1557 // Scalable vectors cannot be scalarized, so handle the legalisation of the 1558 // types like done elsewhere in SelectionDAG. 1559 if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) { 1560 LegalizeKind LK; 1561 EVT PartVT = VT; 1562 do { 1563 // Iterate until we've found a legal (part) type to hold VT. 1564 LK = getTypeConversion(Context, PartVT); 1565 PartVT = LK.second; 1566 } while (LK.first != TypeLegal); 1567 1568 NumIntermediates = VT.getVectorElementCount().getKnownMinValue() / 1569 PartVT.getVectorElementCount().getKnownMinValue(); 1570 1571 // FIXME: This code needs to be extended to handle more complex vector 1572 // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only 1573 // supported cases are vectors that are broken down into equal parts 1574 // such as nxv6i64 -> 3 x nxv2i64. 1575 assert((PartVT.getVectorElementCount() * NumIntermediates) == 1576 VT.getVectorElementCount() && 1577 "Expected an integer multiple of PartVT"); 1578 IntermediateVT = PartVT; 1579 RegisterVT = getRegisterType(Context, IntermediateVT); 1580 return NumIntermediates; 1581 } 1582 1583 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 1584 // we could break down into LHS/RHS like LegalizeDAG does. 1585 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1586 NumVectorRegs = EltCnt.getKnownMinValue(); 1587 EltCnt = ElementCount::getFixed(1); 1588 } 1589 1590 // Divide the input until we get to a supported size. This will always 1591 // end with a scalar if the target doesn't support vectors. 1592 while (EltCnt.getKnownMinValue() > 1 && 1593 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1594 EltCnt = EltCnt.divideCoefficientBy(2); 1595 NumVectorRegs <<= 1; 1596 } 1597 1598 NumIntermediates = NumVectorRegs; 1599 1600 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 1601 if (!isTypeLegal(NewVT)) 1602 NewVT = EltTy; 1603 IntermediateVT = NewVT; 1604 1605 MVT DestVT = getRegisterType(Context, NewVT); 1606 RegisterVT = DestVT; 1607 1608 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 1609 TypeSize NewVTSize = NewVT.getSizeInBits(); 1610 // Convert sizes such as i33 to i64. 1611 if (!isPowerOf2_32(NewVTSize.getKnownMinSize())) 1612 NewVTSize = NewVTSize.coefficientNextPowerOf2(); 1613 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1614 } 1615 1616 // Otherwise, promotion or legal types use the same number of registers as 1617 // the vector decimated to the appropriate level. 1618 return NumVectorRegs; 1619 } 1620 1621 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1622 uint64_t NumCases, 1623 uint64_t Range, 1624 ProfileSummaryInfo *PSI, 1625 BlockFrequencyInfo *BFI) const { 1626 // FIXME: This function check the maximum table size and density, but the 1627 // minimum size is not checked. It would be nice if the minimum size is 1628 // also combined within this function. Currently, the minimum size check is 1629 // performed in findJumpTable() in SelectionDAGBuiler and 1630 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1631 const bool OptForSize = 1632 SI->getParent()->getParent()->hasOptSize() || 1633 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1634 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1635 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1636 1637 // Check whether the number of cases is small enough and 1638 // the range is dense enough for a jump table. 1639 return (OptForSize || Range <= MaxJumpTableSize) && 1640 (NumCases * 100 >= Range * MinDensity); 1641 } 1642 1643 /// Get the EVTs and ArgFlags collections that represent the legalized return 1644 /// type of the given function. This does not require a DAG or a return value, 1645 /// and is suitable for use before any DAGs for the function are constructed. 1646 /// TODO: Move this out of TargetLowering.cpp. 1647 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1648 AttributeList attr, 1649 SmallVectorImpl<ISD::OutputArg> &Outs, 1650 const TargetLowering &TLI, const DataLayout &DL) { 1651 SmallVector<EVT, 4> ValueVTs; 1652 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1653 unsigned NumValues = ValueVTs.size(); 1654 if (NumValues == 0) return; 1655 1656 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1657 EVT VT = ValueVTs[j]; 1658 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1659 1660 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1661 ExtendKind = ISD::SIGN_EXTEND; 1662 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1663 ExtendKind = ISD::ZERO_EXTEND; 1664 1665 // FIXME: C calling convention requires the return type to be promoted to 1666 // at least 32-bit. But this is not necessary for non-C calling 1667 // conventions. The frontend should mark functions whose return values 1668 // require promoting with signext or zeroext attributes. 1669 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1670 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1671 if (VT.bitsLT(MinVT)) 1672 VT = MinVT; 1673 } 1674 1675 unsigned NumParts = 1676 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1677 MVT PartVT = 1678 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1679 1680 // 'inreg' on function refers to return value 1681 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1682 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) 1683 Flags.setInReg(); 1684 1685 // Propagate extension type if any 1686 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1687 Flags.setSExt(); 1688 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1689 Flags.setZExt(); 1690 1691 for (unsigned i = 0; i < NumParts; ++i) 1692 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1693 } 1694 } 1695 1696 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1697 /// function arguments in the caller parameter area. This is the actual 1698 /// alignment, not its logarithm. 1699 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1700 const DataLayout &DL) const { 1701 return DL.getABITypeAlign(Ty).value(); 1702 } 1703 1704 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1705 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1706 Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { 1707 // Check if the specified alignment is sufficient based on the data layout. 1708 // TODO: While using the data layout works in practice, a better solution 1709 // would be to implement this check directly (make this a virtual function). 1710 // For example, the ABI alignment may change based on software platform while 1711 // this function should only be affected by hardware implementation. 1712 Type *Ty = VT.getTypeForEVT(Context); 1713 if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) { 1714 // Assume that an access that meets the ABI-specified alignment is fast. 1715 if (Fast != nullptr) 1716 *Fast = true; 1717 return true; 1718 } 1719 1720 // This is a misaligned access. 1721 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 1722 } 1723 1724 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1725 LLVMContext &Context, const DataLayout &DL, EVT VT, 1726 const MachineMemOperand &MMO, bool *Fast) const { 1727 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1728 MMO.getAlign(), MMO.getFlags(), Fast); 1729 } 1730 1731 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1732 const DataLayout &DL, EVT VT, 1733 unsigned AddrSpace, Align Alignment, 1734 MachineMemOperand::Flags Flags, 1735 bool *Fast) const { 1736 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1737 Flags, Fast); 1738 } 1739 1740 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1741 const DataLayout &DL, EVT VT, 1742 const MachineMemOperand &MMO, 1743 bool *Fast) const { 1744 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1745 MMO.getFlags(), Fast); 1746 } 1747 1748 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1749 const DataLayout &DL, LLT Ty, 1750 const MachineMemOperand &MMO, 1751 bool *Fast) const { 1752 return allowsMemoryAccess(Context, DL, getMVTForLLT(Ty), MMO.getAddrSpace(), 1753 MMO.getAlign(), MMO.getFlags(), Fast); 1754 } 1755 1756 //===----------------------------------------------------------------------===// 1757 // TargetTransformInfo Helpers 1758 //===----------------------------------------------------------------------===// 1759 1760 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1761 enum InstructionOpcodes { 1762 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1763 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1764 #include "llvm/IR/Instruction.def" 1765 }; 1766 switch (static_cast<InstructionOpcodes>(Opcode)) { 1767 case Ret: return 0; 1768 case Br: return 0; 1769 case Switch: return 0; 1770 case IndirectBr: return 0; 1771 case Invoke: return 0; 1772 case CallBr: return 0; 1773 case Resume: return 0; 1774 case Unreachable: return 0; 1775 case CleanupRet: return 0; 1776 case CatchRet: return 0; 1777 case CatchPad: return 0; 1778 case CatchSwitch: return 0; 1779 case CleanupPad: return 0; 1780 case FNeg: return ISD::FNEG; 1781 case Add: return ISD::ADD; 1782 case FAdd: return ISD::FADD; 1783 case Sub: return ISD::SUB; 1784 case FSub: return ISD::FSUB; 1785 case Mul: return ISD::MUL; 1786 case FMul: return ISD::FMUL; 1787 case UDiv: return ISD::UDIV; 1788 case SDiv: return ISD::SDIV; 1789 case FDiv: return ISD::FDIV; 1790 case URem: return ISD::UREM; 1791 case SRem: return ISD::SREM; 1792 case FRem: return ISD::FREM; 1793 case Shl: return ISD::SHL; 1794 case LShr: return ISD::SRL; 1795 case AShr: return ISD::SRA; 1796 case And: return ISD::AND; 1797 case Or: return ISD::OR; 1798 case Xor: return ISD::XOR; 1799 case Alloca: return 0; 1800 case Load: return ISD::LOAD; 1801 case Store: return ISD::STORE; 1802 case GetElementPtr: return 0; 1803 case Fence: return 0; 1804 case AtomicCmpXchg: return 0; 1805 case AtomicRMW: return 0; 1806 case Trunc: return ISD::TRUNCATE; 1807 case ZExt: return ISD::ZERO_EXTEND; 1808 case SExt: return ISD::SIGN_EXTEND; 1809 case FPToUI: return ISD::FP_TO_UINT; 1810 case FPToSI: return ISD::FP_TO_SINT; 1811 case UIToFP: return ISD::UINT_TO_FP; 1812 case SIToFP: return ISD::SINT_TO_FP; 1813 case FPTrunc: return ISD::FP_ROUND; 1814 case FPExt: return ISD::FP_EXTEND; 1815 case PtrToInt: return ISD::BITCAST; 1816 case IntToPtr: return ISD::BITCAST; 1817 case BitCast: return ISD::BITCAST; 1818 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1819 case ICmp: return ISD::SETCC; 1820 case FCmp: return ISD::SETCC; 1821 case PHI: return 0; 1822 case Call: return 0; 1823 case Select: return ISD::SELECT; 1824 case UserOp1: return 0; 1825 case UserOp2: return 0; 1826 case VAArg: return 0; 1827 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1828 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1829 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1830 case ExtractValue: return ISD::MERGE_VALUES; 1831 case InsertValue: return ISD::MERGE_VALUES; 1832 case LandingPad: return 0; 1833 case Freeze: return ISD::FREEZE; 1834 } 1835 1836 llvm_unreachable("Unknown instruction type encountered!"); 1837 } 1838 1839 std::pair<InstructionCost, MVT> 1840 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1841 Type *Ty) const { 1842 LLVMContext &C = Ty->getContext(); 1843 EVT MTy = getValueType(DL, Ty); 1844 1845 InstructionCost Cost = 1; 1846 // We keep legalizing the type until we find a legal kind. We assume that 1847 // the only operation that costs anything is the split. After splitting 1848 // we need to handle two types. 1849 while (true) { 1850 LegalizeKind LK = getTypeConversion(C, MTy); 1851 1852 if (LK.first == TypeScalarizeScalableVector) 1853 return std::make_pair(InstructionCost::getInvalid(), MVT::getVT(Ty)); 1854 1855 if (LK.first == TypeLegal) 1856 return std::make_pair(Cost, MTy.getSimpleVT()); 1857 1858 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1859 Cost *= 2; 1860 1861 // Do not loop with f128 type. 1862 if (MTy == LK.second) 1863 return std::make_pair(Cost, MTy.getSimpleVT()); 1864 1865 // Keep legalizing the type. 1866 MTy = LK.second; 1867 } 1868 } 1869 1870 Value * 1871 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, 1872 bool UseTLS) const { 1873 // compiler-rt provides a variable with a magic name. Targets that do not 1874 // link with compiler-rt may also provide such a variable. 1875 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1876 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1877 auto UnsafeStackPtr = 1878 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1879 1880 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1881 1882 if (!UnsafeStackPtr) { 1883 auto TLSModel = UseTLS ? 1884 GlobalValue::InitialExecTLSModel : 1885 GlobalValue::NotThreadLocal; 1886 // The global variable is not defined yet, define it ourselves. 1887 // We use the initial-exec TLS model because we do not support the 1888 // variable living anywhere other than in the main executable. 1889 UnsafeStackPtr = new GlobalVariable( 1890 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1891 UnsafeStackPtrVar, nullptr, TLSModel); 1892 } else { 1893 // The variable exists, check its type and attributes. 1894 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1895 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1896 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1897 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1898 (UseTLS ? "" : "not ") + "be thread-local"); 1899 } 1900 return UnsafeStackPtr; 1901 } 1902 1903 Value * 1904 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const { 1905 if (!TM.getTargetTriple().isAndroid()) 1906 return getDefaultSafeStackPointerLocation(IRB, true); 1907 1908 // Android provides a libc function to retrieve the address of the current 1909 // thread's unsafe stack pointer. 1910 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1911 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1912 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1913 StackPtrTy->getPointerTo(0)); 1914 return IRB.CreateCall(Fn); 1915 } 1916 1917 //===----------------------------------------------------------------------===// 1918 // Loop Strength Reduction hooks 1919 //===----------------------------------------------------------------------===// 1920 1921 /// isLegalAddressingMode - Return true if the addressing mode represented 1922 /// by AM is legal for this target, for a load/store of the specified type. 1923 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1924 const AddrMode &AM, Type *Ty, 1925 unsigned AS, Instruction *I) const { 1926 // The default implementation of this implements a conservative RISCy, r+r and 1927 // r+i addr mode. 1928 1929 // Allows a sign-extended 16-bit immediate field. 1930 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1931 return false; 1932 1933 // No global is ever allowed as a base. 1934 if (AM.BaseGV) 1935 return false; 1936 1937 // Only support r+r, 1938 switch (AM.Scale) { 1939 case 0: // "r+i" or just "i", depending on HasBaseReg. 1940 break; 1941 case 1: 1942 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1943 return false; 1944 // Otherwise we have r+r or r+i. 1945 break; 1946 case 2: 1947 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1948 return false; 1949 // Allow 2*r as r+r. 1950 break; 1951 default: // Don't allow n * r 1952 return false; 1953 } 1954 1955 return true; 1956 } 1957 1958 //===----------------------------------------------------------------------===// 1959 // Stack Protector 1960 //===----------------------------------------------------------------------===// 1961 1962 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1963 // so that SelectionDAG handle SSP. 1964 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const { 1965 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1966 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1967 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1968 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 1969 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 1970 G->setVisibility(GlobalValue::HiddenVisibility); 1971 return C; 1972 } 1973 return nullptr; 1974 } 1975 1976 // Currently only support "standard" __stack_chk_guard. 1977 // TODO: add LOAD_STACK_GUARD support. 1978 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1979 if (!M.getNamedValue("__stack_chk_guard")) { 1980 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1981 GlobalVariable::ExternalLinkage, nullptr, 1982 "__stack_chk_guard"); 1983 if (TM.getRelocationModel() == Reloc::Static && 1984 !TM.getTargetTriple().isWindowsGNUEnvironment() && 1985 !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD())) 1986 GV->setDSOLocal(true); 1987 } 1988 } 1989 1990 // Currently only support "standard" __stack_chk_guard. 1991 // TODO: add LOAD_STACK_GUARD support. 1992 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1993 return M.getNamedValue("__stack_chk_guard"); 1994 } 1995 1996 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1997 return nullptr; 1998 } 1999 2000 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 2001 return MinimumJumpTableEntries; 2002 } 2003 2004 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 2005 MinimumJumpTableEntries = Val; 2006 } 2007 2008 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 2009 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 2010 } 2011 2012 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 2013 return MaximumJumpTableSize; 2014 } 2015 2016 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 2017 MaximumJumpTableSize = Val; 2018 } 2019 2020 bool TargetLoweringBase::isJumpTableRelative() const { 2021 return getTargetMachine().isPositionIndependent(); 2022 } 2023 2024 //===----------------------------------------------------------------------===// 2025 // Reciprocal Estimates 2026 //===----------------------------------------------------------------------===// 2027 2028 /// Get the reciprocal estimate attribute string for a function that will 2029 /// override the target defaults. 2030 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 2031 const Function &F = MF.getFunction(); 2032 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 2033 } 2034 2035 /// Construct a string for the given reciprocal operation of the given type. 2036 /// This string should match the corresponding option to the front-end's 2037 /// "-mrecip" flag assuming those strings have been passed through in an 2038 /// attribute string. For example, "vec-divf" for a division of a vXf32. 2039 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 2040 std::string Name = VT.isVector() ? "vec-" : ""; 2041 2042 Name += IsSqrt ? "sqrt" : "div"; 2043 2044 // TODO: Handle "half" or other float types? 2045 if (VT.getScalarType() == MVT::f64) { 2046 Name += "d"; 2047 } else { 2048 assert(VT.getScalarType() == MVT::f32 && 2049 "Unexpected FP type for reciprocal estimate"); 2050 Name += "f"; 2051 } 2052 2053 return Name; 2054 } 2055 2056 /// Return the character position and value (a single numeric character) of a 2057 /// customized refinement operation in the input string if it exists. Return 2058 /// false if there is no customized refinement step count. 2059 static bool parseRefinementStep(StringRef In, size_t &Position, 2060 uint8_t &Value) { 2061 const char RefStepToken = ':'; 2062 Position = In.find(RefStepToken); 2063 if (Position == StringRef::npos) 2064 return false; 2065 2066 StringRef RefStepString = In.substr(Position + 1); 2067 // Allow exactly one numeric character for the additional refinement 2068 // step parameter. 2069 if (RefStepString.size() == 1) { 2070 char RefStepChar = RefStepString[0]; 2071 if (isDigit(RefStepChar)) { 2072 Value = RefStepChar - '0'; 2073 return true; 2074 } 2075 } 2076 report_fatal_error("Invalid refinement step for -recip."); 2077 } 2078 2079 /// For the input attribute string, return one of the ReciprocalEstimate enum 2080 /// status values (enabled, disabled, or not specified) for this operation on 2081 /// the specified data type. 2082 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 2083 if (Override.empty()) 2084 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2085 2086 SmallVector<StringRef, 4> OverrideVector; 2087 Override.split(OverrideVector, ','); 2088 unsigned NumArgs = OverrideVector.size(); 2089 2090 // Check if "all", "none", or "default" was specified. 2091 if (NumArgs == 1) { 2092 // Look for an optional setting of the number of refinement steps needed 2093 // for this type of reciprocal operation. 2094 size_t RefPos; 2095 uint8_t RefSteps; 2096 if (parseRefinementStep(Override, RefPos, RefSteps)) { 2097 // Split the string for further processing. 2098 Override = Override.substr(0, RefPos); 2099 } 2100 2101 // All reciprocal types are enabled. 2102 if (Override == "all") 2103 return TargetLoweringBase::ReciprocalEstimate::Enabled; 2104 2105 // All reciprocal types are disabled. 2106 if (Override == "none") 2107 return TargetLoweringBase::ReciprocalEstimate::Disabled; 2108 2109 // Target defaults for enablement are used. 2110 if (Override == "default") 2111 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2112 } 2113 2114 // The attribute string may omit the size suffix ('f'/'d'). 2115 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2116 std::string VTNameNoSize = VTName; 2117 VTNameNoSize.pop_back(); 2118 static const char DisabledPrefix = '!'; 2119 2120 for (StringRef RecipType : OverrideVector) { 2121 size_t RefPos; 2122 uint8_t RefSteps; 2123 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 2124 RecipType = RecipType.substr(0, RefPos); 2125 2126 // Ignore the disablement token for string matching. 2127 bool IsDisabled = RecipType[0] == DisabledPrefix; 2128 if (IsDisabled) 2129 RecipType = RecipType.substr(1); 2130 2131 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2132 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 2133 : TargetLoweringBase::ReciprocalEstimate::Enabled; 2134 } 2135 2136 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2137 } 2138 2139 /// For the input attribute string, return the customized refinement step count 2140 /// for this operation on the specified data type. If the step count does not 2141 /// exist, return the ReciprocalEstimate enum value for unspecified. 2142 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 2143 if (Override.empty()) 2144 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2145 2146 SmallVector<StringRef, 4> OverrideVector; 2147 Override.split(OverrideVector, ','); 2148 unsigned NumArgs = OverrideVector.size(); 2149 2150 // Check if "all", "default", or "none" was specified. 2151 if (NumArgs == 1) { 2152 // Look for an optional setting of the number of refinement steps needed 2153 // for this type of reciprocal operation. 2154 size_t RefPos; 2155 uint8_t RefSteps; 2156 if (!parseRefinementStep(Override, RefPos, RefSteps)) 2157 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2158 2159 // Split the string for further processing. 2160 Override = Override.substr(0, RefPos); 2161 assert(Override != "none" && 2162 "Disabled reciprocals, but specifed refinement steps?"); 2163 2164 // If this is a general override, return the specified number of steps. 2165 if (Override == "all" || Override == "default") 2166 return RefSteps; 2167 } 2168 2169 // The attribute string may omit the size suffix ('f'/'d'). 2170 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2171 std::string VTNameNoSize = VTName; 2172 VTNameNoSize.pop_back(); 2173 2174 for (StringRef RecipType : OverrideVector) { 2175 size_t RefPos; 2176 uint8_t RefSteps; 2177 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 2178 continue; 2179 2180 RecipType = RecipType.substr(0, RefPos); 2181 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2182 return RefSteps; 2183 } 2184 2185 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2186 } 2187 2188 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 2189 MachineFunction &MF) const { 2190 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 2191 } 2192 2193 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 2194 MachineFunction &MF) const { 2195 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 2196 } 2197 2198 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 2199 MachineFunction &MF) const { 2200 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 2201 } 2202 2203 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2204 MachineFunction &MF) const { 2205 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2206 } 2207 2208 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2209 MF.getRegInfo().freezeReservedRegs(MF); 2210 } 2211 2212 MachineMemOperand::Flags 2213 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI, 2214 const DataLayout &DL) const { 2215 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 2216 if (LI.isVolatile()) 2217 Flags |= MachineMemOperand::MOVolatile; 2218 2219 if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 2220 Flags |= MachineMemOperand::MONonTemporal; 2221 2222 if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 2223 Flags |= MachineMemOperand::MOInvariant; 2224 2225 if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL)) 2226 Flags |= MachineMemOperand::MODereferenceable; 2227 2228 Flags |= getTargetMMOFlags(LI); 2229 return Flags; 2230 } 2231 2232 MachineMemOperand::Flags 2233 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 2234 const DataLayout &DL) const { 2235 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 2236 2237 if (SI.isVolatile()) 2238 Flags |= MachineMemOperand::MOVolatile; 2239 2240 if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 2241 Flags |= MachineMemOperand::MONonTemporal; 2242 2243 // FIXME: Not preserving dereferenceable 2244 Flags |= getTargetMMOFlags(SI); 2245 return Flags; 2246 } 2247 2248 MachineMemOperand::Flags 2249 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 2250 const DataLayout &DL) const { 2251 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2252 2253 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 2254 if (RMW->isVolatile()) 2255 Flags |= MachineMemOperand::MOVolatile; 2256 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 2257 if (CmpX->isVolatile()) 2258 Flags |= MachineMemOperand::MOVolatile; 2259 } else 2260 llvm_unreachable("not an atomic instruction"); 2261 2262 // FIXME: Not preserving dereferenceable 2263 Flags |= getTargetMMOFlags(AI); 2264 return Flags; 2265 } 2266 2267 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder, 2268 Instruction *Inst, 2269 AtomicOrdering Ord) const { 2270 if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) 2271 return Builder.CreateFence(Ord); 2272 else 2273 return nullptr; 2274 } 2275 2276 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder, 2277 Instruction *Inst, 2278 AtomicOrdering Ord) const { 2279 if (isAcquireOrStronger(Ord)) 2280 return Builder.CreateFence(Ord); 2281 else 2282 return nullptr; 2283 } 2284 2285 //===----------------------------------------------------------------------===// 2286 // GlobalISel Hooks 2287 //===----------------------------------------------------------------------===// 2288 2289 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 2290 const TargetTransformInfo *TTI) const { 2291 auto &MF = *MI.getMF(); 2292 auto &MRI = MF.getRegInfo(); 2293 // Assuming a spill and reload of a value has a cost of 1 instruction each, 2294 // this helper function computes the maximum number of uses we should consider 2295 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 2296 // break even in terms of code size when the original MI has 2 users vs 2297 // choosing to potentially spill. Any more than 2 users we we have a net code 2298 // size increase. This doesn't take into account register pressure though. 2299 auto maxUses = [](unsigned RematCost) { 2300 // A cost of 1 means remats are basically free. 2301 if (RematCost == 1) 2302 return UINT_MAX; 2303 if (RematCost == 2) 2304 return 2U; 2305 2306 // Remat is too expensive, only sink if there's one user. 2307 if (RematCost > 2) 2308 return 1U; 2309 llvm_unreachable("Unexpected remat cost"); 2310 }; 2311 2312 // Helper to walk through uses and terminate if we've reached a limit. Saves 2313 // us spending time traversing uses if all we want to know is if it's >= min. 2314 auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) { 2315 unsigned NumUses = 0; 2316 auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end(); 2317 for (; UI != UE && NumUses < MaxUses; ++UI) { 2318 NumUses++; 2319 } 2320 // If we haven't reached the end yet then there are more than MaxUses users. 2321 return UI == UE; 2322 }; 2323 2324 switch (MI.getOpcode()) { 2325 default: 2326 return false; 2327 // Constants-like instructions should be close to their users. 2328 // We don't want long live-ranges for them. 2329 case TargetOpcode::G_CONSTANT: 2330 case TargetOpcode::G_FCONSTANT: 2331 case TargetOpcode::G_FRAME_INDEX: 2332 case TargetOpcode::G_INTTOPTR: 2333 return true; 2334 case TargetOpcode::G_GLOBAL_VALUE: { 2335 unsigned RematCost = TTI->getGISelRematGlobalCost(); 2336 Register Reg = MI.getOperand(0).getReg(); 2337 unsigned MaxUses = maxUses(RematCost); 2338 if (MaxUses == UINT_MAX) 2339 return true; // Remats are "free" so always localize. 2340 bool B = isUsesAtMost(Reg, MaxUses); 2341 return B; 2342 } 2343 } 2344 } 2345