xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 2e3507c25e42292b45a5482e116d278f5515d04d)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/MachineValueType.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/TargetParser/Triple.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 static bool darwinHasSinCos(const Triple &TT) {
102   assert(TT.isOSDarwin() && "should be called with darwin triple");
103   // Don't bother with 32 bit x86.
104   if (TT.getArch() == Triple::x86)
105     return false;
106   // Macos < 10.9 has no sincos_stret.
107   if (TT.isMacOSX())
108     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109   // iOS < 7.0 has no sincos_stret.
110   if (TT.isiOS())
111     return !TT.isOSVersionLT(7, 0);
112   // Any other darwin such as WatchOS/TvOS is new enough.
113   return true;
114 }
115 
116 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117 #define HANDLE_LIBCALL(code, name) \
118   setLibcallName(RTLIB::code, name);
119 #include "llvm/IR/RuntimeLibcalls.def"
120 #undef HANDLE_LIBCALL
121   // Initialize calling conventions to their default.
122   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124 
125   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126   if (TT.isPPC()) {
127     setLibcallName(RTLIB::ADD_F128, "__addkf3");
128     setLibcallName(RTLIB::SUB_F128, "__subkf3");
129     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130     setLibcallName(RTLIB::DIV_F128, "__divkf3");
131     setLibcallName(RTLIB::POWI_F128, "__powikf2");
132     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138     setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141     setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144     setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147     setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149     setLibcallName(RTLIB::UNE_F128, "__nekf2");
150     setLibcallName(RTLIB::OGE_F128, "__gekf2");
151     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152     setLibcallName(RTLIB::OLE_F128, "__lekf2");
153     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154     setLibcallName(RTLIB::UO_F128, "__unordkf2");
155   }
156 
157   // A few names are different on particular architectures or environments.
158   if (TT.isOSDarwin()) {
159     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160     // of the gnueabi-style __gnu_*_ieee.
161     // FIXME: What about other targets?
162     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
164 
165     // Some darwins have an optimized __bzero/bzero function.
166     switch (TT.getArch()) {
167     case Triple::x86:
168     case Triple::x86_64:
169       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170         setLibcallName(RTLIB::BZERO, "__bzero");
171       break;
172     case Triple::aarch64:
173     case Triple::aarch64_32:
174       setLibcallName(RTLIB::BZERO, "bzero");
175       break;
176     default:
177       break;
178     }
179 
180     if (darwinHasSinCos(TT)) {
181       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183       if (TT.isWatchABI()) {
184         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185                               CallingConv::ARM_AAPCS_VFP);
186         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187                               CallingConv::ARM_AAPCS_VFP);
188       }
189     }
190   } else {
191     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
193   }
194 
195   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198     setLibcallName(RTLIB::SINCOS_F64, "sincos");
199     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
202   }
203 
204   if (TT.isPS()) {
205     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206     setLibcallName(RTLIB::SINCOS_F64, "sincos");
207   }
208 
209   if (TT.isOSOpenBSD()) {
210     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211   }
212 
213   if (TT.isOSWindows() && !TT.isOSCygMing()) {
214     setLibcallName(RTLIB::LDEXP_F32, nullptr);
215     setLibcallName(RTLIB::LDEXP_F80, nullptr);
216     setLibcallName(RTLIB::LDEXP_F128, nullptr);
217     setLibcallName(RTLIB::LDEXP_PPCF128, nullptr);
218 
219     setLibcallName(RTLIB::FREXP_F32, nullptr);
220     setLibcallName(RTLIB::FREXP_F80, nullptr);
221     setLibcallName(RTLIB::FREXP_F128, nullptr);
222     setLibcallName(RTLIB::FREXP_PPCF128, nullptr);
223   }
224 }
225 
226 /// GetFPLibCall - Helper to return the right libcall for the given floating
227 /// point type, or UNKNOWN_LIBCALL if there is none.
228 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
229                                    RTLIB::Libcall Call_F32,
230                                    RTLIB::Libcall Call_F64,
231                                    RTLIB::Libcall Call_F80,
232                                    RTLIB::Libcall Call_F128,
233                                    RTLIB::Libcall Call_PPCF128) {
234   return
235     VT == MVT::f32 ? Call_F32 :
236     VT == MVT::f64 ? Call_F64 :
237     VT == MVT::f80 ? Call_F80 :
238     VT == MVT::f128 ? Call_F128 :
239     VT == MVT::ppcf128 ? Call_PPCF128 :
240     RTLIB::UNKNOWN_LIBCALL;
241 }
242 
243 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
244 /// UNKNOWN_LIBCALL if there is none.
245 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
246   if (OpVT == MVT::f16) {
247     if (RetVT == MVT::f32)
248       return FPEXT_F16_F32;
249     if (RetVT == MVT::f64)
250       return FPEXT_F16_F64;
251     if (RetVT == MVT::f80)
252       return FPEXT_F16_F80;
253     if (RetVT == MVT::f128)
254       return FPEXT_F16_F128;
255   } else if (OpVT == MVT::f32) {
256     if (RetVT == MVT::f64)
257       return FPEXT_F32_F64;
258     if (RetVT == MVT::f128)
259       return FPEXT_F32_F128;
260     if (RetVT == MVT::ppcf128)
261       return FPEXT_F32_PPCF128;
262   } else if (OpVT == MVT::f64) {
263     if (RetVT == MVT::f128)
264       return FPEXT_F64_F128;
265     else if (RetVT == MVT::ppcf128)
266       return FPEXT_F64_PPCF128;
267   } else if (OpVT == MVT::f80) {
268     if (RetVT == MVT::f128)
269       return FPEXT_F80_F128;
270   }
271 
272   return UNKNOWN_LIBCALL;
273 }
274 
275 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
276 /// UNKNOWN_LIBCALL if there is none.
277 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
278   if (RetVT == MVT::f16) {
279     if (OpVT == MVT::f32)
280       return FPROUND_F32_F16;
281     if (OpVT == MVT::f64)
282       return FPROUND_F64_F16;
283     if (OpVT == MVT::f80)
284       return FPROUND_F80_F16;
285     if (OpVT == MVT::f128)
286       return FPROUND_F128_F16;
287     if (OpVT == MVT::ppcf128)
288       return FPROUND_PPCF128_F16;
289   } else if (RetVT == MVT::bf16) {
290     if (OpVT == MVT::f32)
291       return FPROUND_F32_BF16;
292     if (OpVT == MVT::f64)
293       return FPROUND_F64_BF16;
294   } else if (RetVT == MVT::f32) {
295     if (OpVT == MVT::f64)
296       return FPROUND_F64_F32;
297     if (OpVT == MVT::f80)
298       return FPROUND_F80_F32;
299     if (OpVT == MVT::f128)
300       return FPROUND_F128_F32;
301     if (OpVT == MVT::ppcf128)
302       return FPROUND_PPCF128_F32;
303   } else if (RetVT == MVT::f64) {
304     if (OpVT == MVT::f80)
305       return FPROUND_F80_F64;
306     if (OpVT == MVT::f128)
307       return FPROUND_F128_F64;
308     if (OpVT == MVT::ppcf128)
309       return FPROUND_PPCF128_F64;
310   } else if (RetVT == MVT::f80) {
311     if (OpVT == MVT::f128)
312       return FPROUND_F128_F80;
313   }
314 
315   return UNKNOWN_LIBCALL;
316 }
317 
318 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
319 /// UNKNOWN_LIBCALL if there is none.
320 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
321   if (OpVT == MVT::f16) {
322     if (RetVT == MVT::i32)
323       return FPTOSINT_F16_I32;
324     if (RetVT == MVT::i64)
325       return FPTOSINT_F16_I64;
326     if (RetVT == MVT::i128)
327       return FPTOSINT_F16_I128;
328   } else if (OpVT == MVT::f32) {
329     if (RetVT == MVT::i32)
330       return FPTOSINT_F32_I32;
331     if (RetVT == MVT::i64)
332       return FPTOSINT_F32_I64;
333     if (RetVT == MVT::i128)
334       return FPTOSINT_F32_I128;
335   } else if (OpVT == MVT::f64) {
336     if (RetVT == MVT::i32)
337       return FPTOSINT_F64_I32;
338     if (RetVT == MVT::i64)
339       return FPTOSINT_F64_I64;
340     if (RetVT == MVT::i128)
341       return FPTOSINT_F64_I128;
342   } else if (OpVT == MVT::f80) {
343     if (RetVT == MVT::i32)
344       return FPTOSINT_F80_I32;
345     if (RetVT == MVT::i64)
346       return FPTOSINT_F80_I64;
347     if (RetVT == MVT::i128)
348       return FPTOSINT_F80_I128;
349   } else if (OpVT == MVT::f128) {
350     if (RetVT == MVT::i32)
351       return FPTOSINT_F128_I32;
352     if (RetVT == MVT::i64)
353       return FPTOSINT_F128_I64;
354     if (RetVT == MVT::i128)
355       return FPTOSINT_F128_I128;
356   } else if (OpVT == MVT::ppcf128) {
357     if (RetVT == MVT::i32)
358       return FPTOSINT_PPCF128_I32;
359     if (RetVT == MVT::i64)
360       return FPTOSINT_PPCF128_I64;
361     if (RetVT == MVT::i128)
362       return FPTOSINT_PPCF128_I128;
363   }
364   return UNKNOWN_LIBCALL;
365 }
366 
367 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
368 /// UNKNOWN_LIBCALL if there is none.
369 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
370   if (OpVT == MVT::f16) {
371     if (RetVT == MVT::i32)
372       return FPTOUINT_F16_I32;
373     if (RetVT == MVT::i64)
374       return FPTOUINT_F16_I64;
375     if (RetVT == MVT::i128)
376       return FPTOUINT_F16_I128;
377   } else if (OpVT == MVT::f32) {
378     if (RetVT == MVT::i32)
379       return FPTOUINT_F32_I32;
380     if (RetVT == MVT::i64)
381       return FPTOUINT_F32_I64;
382     if (RetVT == MVT::i128)
383       return FPTOUINT_F32_I128;
384   } else if (OpVT == MVT::f64) {
385     if (RetVT == MVT::i32)
386       return FPTOUINT_F64_I32;
387     if (RetVT == MVT::i64)
388       return FPTOUINT_F64_I64;
389     if (RetVT == MVT::i128)
390       return FPTOUINT_F64_I128;
391   } else if (OpVT == MVT::f80) {
392     if (RetVT == MVT::i32)
393       return FPTOUINT_F80_I32;
394     if (RetVT == MVT::i64)
395       return FPTOUINT_F80_I64;
396     if (RetVT == MVT::i128)
397       return FPTOUINT_F80_I128;
398   } else if (OpVT == MVT::f128) {
399     if (RetVT == MVT::i32)
400       return FPTOUINT_F128_I32;
401     if (RetVT == MVT::i64)
402       return FPTOUINT_F128_I64;
403     if (RetVT == MVT::i128)
404       return FPTOUINT_F128_I128;
405   } else if (OpVT == MVT::ppcf128) {
406     if (RetVT == MVT::i32)
407       return FPTOUINT_PPCF128_I32;
408     if (RetVT == MVT::i64)
409       return FPTOUINT_PPCF128_I64;
410     if (RetVT == MVT::i128)
411       return FPTOUINT_PPCF128_I128;
412   }
413   return UNKNOWN_LIBCALL;
414 }
415 
416 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
417 /// UNKNOWN_LIBCALL if there is none.
418 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
419   if (OpVT == MVT::i32) {
420     if (RetVT == MVT::f16)
421       return SINTTOFP_I32_F16;
422     if (RetVT == MVT::f32)
423       return SINTTOFP_I32_F32;
424     if (RetVT == MVT::f64)
425       return SINTTOFP_I32_F64;
426     if (RetVT == MVT::f80)
427       return SINTTOFP_I32_F80;
428     if (RetVT == MVT::f128)
429       return SINTTOFP_I32_F128;
430     if (RetVT == MVT::ppcf128)
431       return SINTTOFP_I32_PPCF128;
432   } else if (OpVT == MVT::i64) {
433     if (RetVT == MVT::f16)
434       return SINTTOFP_I64_F16;
435     if (RetVT == MVT::f32)
436       return SINTTOFP_I64_F32;
437     if (RetVT == MVT::f64)
438       return SINTTOFP_I64_F64;
439     if (RetVT == MVT::f80)
440       return SINTTOFP_I64_F80;
441     if (RetVT == MVT::f128)
442       return SINTTOFP_I64_F128;
443     if (RetVT == MVT::ppcf128)
444       return SINTTOFP_I64_PPCF128;
445   } else if (OpVT == MVT::i128) {
446     if (RetVT == MVT::f16)
447       return SINTTOFP_I128_F16;
448     if (RetVT == MVT::f32)
449       return SINTTOFP_I128_F32;
450     if (RetVT == MVT::f64)
451       return SINTTOFP_I128_F64;
452     if (RetVT == MVT::f80)
453       return SINTTOFP_I128_F80;
454     if (RetVT == MVT::f128)
455       return SINTTOFP_I128_F128;
456     if (RetVT == MVT::ppcf128)
457       return SINTTOFP_I128_PPCF128;
458   }
459   return UNKNOWN_LIBCALL;
460 }
461 
462 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
463 /// UNKNOWN_LIBCALL if there is none.
464 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
465   if (OpVT == MVT::i32) {
466     if (RetVT == MVT::f16)
467       return UINTTOFP_I32_F16;
468     if (RetVT == MVT::f32)
469       return UINTTOFP_I32_F32;
470     if (RetVT == MVT::f64)
471       return UINTTOFP_I32_F64;
472     if (RetVT == MVT::f80)
473       return UINTTOFP_I32_F80;
474     if (RetVT == MVT::f128)
475       return UINTTOFP_I32_F128;
476     if (RetVT == MVT::ppcf128)
477       return UINTTOFP_I32_PPCF128;
478   } else if (OpVT == MVT::i64) {
479     if (RetVT == MVT::f16)
480       return UINTTOFP_I64_F16;
481     if (RetVT == MVT::f32)
482       return UINTTOFP_I64_F32;
483     if (RetVT == MVT::f64)
484       return UINTTOFP_I64_F64;
485     if (RetVT == MVT::f80)
486       return UINTTOFP_I64_F80;
487     if (RetVT == MVT::f128)
488       return UINTTOFP_I64_F128;
489     if (RetVT == MVT::ppcf128)
490       return UINTTOFP_I64_PPCF128;
491   } else if (OpVT == MVT::i128) {
492     if (RetVT == MVT::f16)
493       return UINTTOFP_I128_F16;
494     if (RetVT == MVT::f32)
495       return UINTTOFP_I128_F32;
496     if (RetVT == MVT::f64)
497       return UINTTOFP_I128_F64;
498     if (RetVT == MVT::f80)
499       return UINTTOFP_I128_F80;
500     if (RetVT == MVT::f128)
501       return UINTTOFP_I128_F128;
502     if (RetVT == MVT::ppcf128)
503       return UINTTOFP_I128_PPCF128;
504   }
505   return UNKNOWN_LIBCALL;
506 }
507 
508 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
509   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
510                       POWI_PPCF128);
511 }
512 
513 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
514   return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
515                       LDEXP_PPCF128);
516 }
517 
518 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
519   return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
520                       FREXP_PPCF128);
521 }
522 
523 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
524                                         MVT VT) {
525   unsigned ModeN, ModelN;
526   switch (VT.SimpleTy) {
527   case MVT::i8:
528     ModeN = 0;
529     break;
530   case MVT::i16:
531     ModeN = 1;
532     break;
533   case MVT::i32:
534     ModeN = 2;
535     break;
536   case MVT::i64:
537     ModeN = 3;
538     break;
539   case MVT::i128:
540     ModeN = 4;
541     break;
542   default:
543     return UNKNOWN_LIBCALL;
544   }
545 
546   switch (Order) {
547   case AtomicOrdering::Monotonic:
548     ModelN = 0;
549     break;
550   case AtomicOrdering::Acquire:
551     ModelN = 1;
552     break;
553   case AtomicOrdering::Release:
554     ModelN = 2;
555     break;
556   case AtomicOrdering::AcquireRelease:
557   case AtomicOrdering::SequentiallyConsistent:
558     ModelN = 3;
559     break;
560   default:
561     return UNKNOWN_LIBCALL;
562   }
563 
564 #define LCALLS(A, B)                                                           \
565   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
566 #define LCALL5(A)                                                              \
567   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
568   switch (Opc) {
569   case ISD::ATOMIC_CMP_SWAP: {
570     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
571     return LC[ModeN][ModelN];
572   }
573   case ISD::ATOMIC_SWAP: {
574     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
575     return LC[ModeN][ModelN];
576   }
577   case ISD::ATOMIC_LOAD_ADD: {
578     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
579     return LC[ModeN][ModelN];
580   }
581   case ISD::ATOMIC_LOAD_OR: {
582     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
583     return LC[ModeN][ModelN];
584   }
585   case ISD::ATOMIC_LOAD_CLR: {
586     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
587     return LC[ModeN][ModelN];
588   }
589   case ISD::ATOMIC_LOAD_XOR: {
590     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
591     return LC[ModeN][ModelN];
592   }
593   default:
594     return UNKNOWN_LIBCALL;
595   }
596 #undef LCALLS
597 #undef LCALL5
598 }
599 
600 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
601 #define OP_TO_LIBCALL(Name, Enum)                                              \
602   case Name:                                                                   \
603     switch (VT.SimpleTy) {                                                     \
604     default:                                                                   \
605       return UNKNOWN_LIBCALL;                                                  \
606     case MVT::i8:                                                              \
607       return Enum##_1;                                                         \
608     case MVT::i16:                                                             \
609       return Enum##_2;                                                         \
610     case MVT::i32:                                                             \
611       return Enum##_4;                                                         \
612     case MVT::i64:                                                             \
613       return Enum##_8;                                                         \
614     case MVT::i128:                                                            \
615       return Enum##_16;                                                        \
616     }
617 
618   switch (Opc) {
619     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
620     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
621     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
622     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
623     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
624     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
625     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
626     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
627     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
628     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
629     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
630     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
631   }
632 
633 #undef OP_TO_LIBCALL
634 
635   return UNKNOWN_LIBCALL;
636 }
637 
638 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
639   switch (ElementSize) {
640   case 1:
641     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
642   case 2:
643     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
644   case 4:
645     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
646   case 8:
647     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
648   case 16:
649     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
650   default:
651     return UNKNOWN_LIBCALL;
652   }
653 }
654 
655 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
656   switch (ElementSize) {
657   case 1:
658     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
659   case 2:
660     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
661   case 4:
662     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
663   case 8:
664     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
665   case 16:
666     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
667   default:
668     return UNKNOWN_LIBCALL;
669   }
670 }
671 
672 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
673   switch (ElementSize) {
674   case 1:
675     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
676   case 2:
677     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
678   case 4:
679     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
680   case 8:
681     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
682   case 16:
683     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
684   default:
685     return UNKNOWN_LIBCALL;
686   }
687 }
688 
689 /// InitCmpLibcallCCs - Set default comparison libcall CC.
690 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
691   std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
692   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
693   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
694   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
695   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
696   CCs[RTLIB::UNE_F32] = ISD::SETNE;
697   CCs[RTLIB::UNE_F64] = ISD::SETNE;
698   CCs[RTLIB::UNE_F128] = ISD::SETNE;
699   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
700   CCs[RTLIB::OGE_F32] = ISD::SETGE;
701   CCs[RTLIB::OGE_F64] = ISD::SETGE;
702   CCs[RTLIB::OGE_F128] = ISD::SETGE;
703   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
704   CCs[RTLIB::OLT_F32] = ISD::SETLT;
705   CCs[RTLIB::OLT_F64] = ISD::SETLT;
706   CCs[RTLIB::OLT_F128] = ISD::SETLT;
707   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
708   CCs[RTLIB::OLE_F32] = ISD::SETLE;
709   CCs[RTLIB::OLE_F64] = ISD::SETLE;
710   CCs[RTLIB::OLE_F128] = ISD::SETLE;
711   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
712   CCs[RTLIB::OGT_F32] = ISD::SETGT;
713   CCs[RTLIB::OGT_F64] = ISD::SETGT;
714   CCs[RTLIB::OGT_F128] = ISD::SETGT;
715   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
716   CCs[RTLIB::UO_F32] = ISD::SETNE;
717   CCs[RTLIB::UO_F64] = ISD::SETNE;
718   CCs[RTLIB::UO_F128] = ISD::SETNE;
719   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
720 }
721 
722 /// NOTE: The TargetMachine owns TLOF.
723 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
724   initActions();
725 
726   // Perform these initializations only once.
727   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
728       MaxLoadsPerMemcmp = 8;
729   MaxGluedStoresPerMemcpy = 0;
730   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
731       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
732   HasMultipleConditionRegisters = false;
733   HasExtractBitsInsn = false;
734   JumpIsExpensive = JumpIsExpensiveOverride;
735   PredictableSelectIsExpensive = false;
736   EnableExtLdPromotion = false;
737   StackPointerRegisterToSaveRestore = 0;
738   BooleanContents = UndefinedBooleanContent;
739   BooleanFloatContents = UndefinedBooleanContent;
740   BooleanVectorContents = UndefinedBooleanContent;
741   SchedPreferenceInfo = Sched::ILP;
742   GatherAllAliasesMaxDepth = 18;
743   IsStrictFPEnabled = DisableStrictNodeMutation;
744   MaxBytesForAlignment = 0;
745   // TODO: the default will be switched to 0 in the next commit, along
746   // with the Target-specific changes necessary.
747   MaxAtomicSizeInBitsSupported = 1024;
748 
749   // Assume that even with libcalls, no target supports wider than 128 bit
750   // division.
751   MaxDivRemBitWidthSupported = 128;
752 
753   MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
754 
755   MinCmpXchgSizeInBits = 0;
756   SupportsUnalignedAtomics = false;
757 
758   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
759 
760   InitLibcalls(TM.getTargetTriple());
761   InitCmpLibcallCCs(CmpLibcallCCs);
762 }
763 
764 void TargetLoweringBase::initActions() {
765   // All operations default to being supported.
766   memset(OpActions, 0, sizeof(OpActions));
767   memset(LoadExtActions, 0, sizeof(LoadExtActions));
768   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
769   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
770   memset(CondCodeActions, 0, sizeof(CondCodeActions));
771   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
772   std::fill(std::begin(TargetDAGCombineArray),
773             std::end(TargetDAGCombineArray), 0);
774 
775   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
776   // remove this and targets should individually set these types if not legal.
777   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
778                                    force_iteration_on_noniterable_enum)) {
779     for (MVT VT : {MVT::i2, MVT::i4})
780       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
781   }
782   for (MVT AVT : MVT::all_valuetypes()) {
783     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
784       setTruncStoreAction(AVT, VT, Expand);
785       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
786       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
787     }
788   }
789   for (unsigned IM = (unsigned)ISD::PRE_INC;
790        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
791     for (MVT VT : {MVT::i2, MVT::i4}) {
792       setIndexedLoadAction(IM, VT, Expand);
793       setIndexedStoreAction(IM, VT, Expand);
794       setIndexedMaskedLoadAction(IM, VT, Expand);
795       setIndexedMaskedStoreAction(IM, VT, Expand);
796     }
797   }
798 
799   for (MVT VT : MVT::fp_valuetypes()) {
800     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
801     if (IntVT.isValid()) {
802       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
803       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
804     }
805   }
806 
807   // Set default actions for various operations.
808   for (MVT VT : MVT::all_valuetypes()) {
809     // Default all indexed load / store to expand.
810     for (unsigned IM = (unsigned)ISD::PRE_INC;
811          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
812       setIndexedLoadAction(IM, VT, Expand);
813       setIndexedStoreAction(IM, VT, Expand);
814       setIndexedMaskedLoadAction(IM, VT, Expand);
815       setIndexedMaskedStoreAction(IM, VT, Expand);
816     }
817 
818     // Most backends expect to see the node which just returns the value loaded.
819     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
820 
821     // These operations default to expand.
822     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
823                         ISD::FMINNUM,        ISD::FMAXNUM,
824                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
825                         ISD::FMINIMUM,       ISD::FMAXIMUM,
826                         ISD::FMAD,           ISD::SMIN,
827                         ISD::SMAX,           ISD::UMIN,
828                         ISD::UMAX,           ISD::ABS,
829                         ISD::FSHL,           ISD::FSHR,
830                         ISD::SADDSAT,        ISD::UADDSAT,
831                         ISD::SSUBSAT,        ISD::USUBSAT,
832                         ISD::SSHLSAT,        ISD::USHLSAT,
833                         ISD::SMULFIX,        ISD::SMULFIXSAT,
834                         ISD::UMULFIX,        ISD::UMULFIXSAT,
835                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
836                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
837                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
838                         ISD::IS_FPCLASS},
839                        VT, Expand);
840 
841     // Overflow operations default to expand
842     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
843                         ISD::SMULO, ISD::UMULO},
844                        VT, Expand);
845 
846     // Carry-using overflow operations default to expand.
847     setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
848                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
849                        VT, Expand);
850 
851     // ADDC/ADDE/SUBC/SUBE default to expand.
852     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
853                        Expand);
854 
855     // Halving adds
856     setOperationAction(
857         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
858         Expand);
859 
860     // Absolute difference
861     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
862 
863     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
864     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
865                        Expand);
866 
867     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
868 
869     // These library functions default to expand.
870     setOperationAction(
871         {ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP},
872         VT, Expand);
873 
874     // These operations default to expand for vector types.
875     if (VT.isVector())
876       setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG,
877                           ISD::ANY_EXTEND_VECTOR_INREG,
878                           ISD::SIGN_EXTEND_VECTOR_INREG,
879                           ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR},
880                          VT, Expand);
881 
882     // Constrained floating-point operations default to expand.
883 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
884     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
885 #include "llvm/IR/ConstrainedOps.def"
886 
887     // For most targets @llvm.get.dynamic.area.offset just returns 0.
888     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
889 
890     // Vector reduction default to expand.
891     setOperationAction(
892         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
893          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
894          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
895          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
896          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
897          ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
898         VT, Expand);
899 
900     // Named vector shuffles default to expand.
901     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
902 
903     // VP operations default to expand.
904 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
905     setOperationAction(ISD::SDOPC, VT, Expand);
906 #include "llvm/IR/VPIntrinsics.def"
907 
908     // FP environment operations default to expand.
909     setOperationAction(ISD::GET_FPENV, VT, Expand);
910     setOperationAction(ISD::SET_FPENV, VT, Expand);
911     setOperationAction(ISD::RESET_FPENV, VT, Expand);
912   }
913 
914   // Most targets ignore the @llvm.prefetch intrinsic.
915   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
916 
917   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
918   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
919 
920   // ConstantFP nodes default to expand.  Targets can either change this to
921   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
922   // to optimize expansions for certain constants.
923   setOperationAction(ISD::ConstantFP,
924                      {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
925                      Expand);
926 
927   // These library functions default to expand.
928   setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
929                       ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL,
930                       ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND,
931                       ISD::LRINT, ISD::LLRINT},
932                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
933 
934   // Default ISD::TRAP to expand (which turns it into abort).
935   setOperationAction(ISD::TRAP, MVT::Other, Expand);
936 
937   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
938   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
939   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
940 
941   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
942 
943   setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
944   setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
945 }
946 
947 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
948                                                EVT) const {
949   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
950 }
951 
952 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
953                                          bool LegalTypes) const {
954   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
955   if (LHSTy.isVector())
956     return LHSTy;
957   MVT ShiftVT =
958       LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
959   // If any possible shift value won't fit in the prefered type, just use
960   // something safe. Assume it will be legalized when the shift is expanded.
961   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
962     ShiftVT = MVT::i32;
963   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
964          "ShiftVT is still too small!");
965   return ShiftVT;
966 }
967 
968 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
969   assert(isTypeLegal(VT));
970   switch (Op) {
971   default:
972     return false;
973   case ISD::SDIV:
974   case ISD::UDIV:
975   case ISD::SREM:
976   case ISD::UREM:
977     return true;
978   }
979 }
980 
981 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
982                                              unsigned DestAS) const {
983   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
984 }
985 
986 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
987   // If the command-line option was specified, ignore this request.
988   if (!JumpIsExpensiveOverride.getNumOccurrences())
989     JumpIsExpensive = isExpensive;
990 }
991 
992 TargetLoweringBase::LegalizeKind
993 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
994   // If this is a simple type, use the ComputeRegisterProp mechanism.
995   if (VT.isSimple()) {
996     MVT SVT = VT.getSimpleVT();
997     assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
998     MVT NVT = TransformToType[SVT.SimpleTy];
999     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1000 
1001     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1002             LA == TypeSoftPromoteHalf ||
1003             (NVT.isVector() ||
1004              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1005            "Promote may not follow Expand or Promote");
1006 
1007     if (LA == TypeSplitVector)
1008       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1009     if (LA == TypeScalarizeVector)
1010       return LegalizeKind(LA, SVT.getVectorElementType());
1011     return LegalizeKind(LA, NVT);
1012   }
1013 
1014   // Handle Extended Scalar Types.
1015   if (!VT.isVector()) {
1016     assert(VT.isInteger() && "Float types must be simple");
1017     unsigned BitSize = VT.getSizeInBits();
1018     // First promote to a power-of-two size, then expand if necessary.
1019     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1020       EVT NVT = VT.getRoundIntegerType(Context);
1021       assert(NVT != VT && "Unable to round integer VT");
1022       LegalizeKind NextStep = getTypeConversion(Context, NVT);
1023       // Avoid multi-step promotion.
1024       if (NextStep.first == TypePromoteInteger)
1025         return NextStep;
1026       // Return rounded integer type.
1027       return LegalizeKind(TypePromoteInteger, NVT);
1028     }
1029 
1030     return LegalizeKind(TypeExpandInteger,
1031                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1032   }
1033 
1034   // Handle vector types.
1035   ElementCount NumElts = VT.getVectorElementCount();
1036   EVT EltVT = VT.getVectorElementType();
1037 
1038   // Vectors with only one element are always scalarized.
1039   if (NumElts.isScalar())
1040     return LegalizeKind(TypeScalarizeVector, EltVT);
1041 
1042   // Try to widen vector elements until the element type is a power of two and
1043   // promote it to a legal type later on, for example:
1044   // <3 x i8> -> <4 x i8> -> <4 x i32>
1045   if (EltVT.isInteger()) {
1046     // Vectors with a number of elements that is not a power of two are always
1047     // widened, for example <3 x i8> -> <4 x i8>.
1048     if (!VT.isPow2VectorType()) {
1049       NumElts = NumElts.coefficientNextPowerOf2();
1050       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1051       return LegalizeKind(TypeWidenVector, NVT);
1052     }
1053 
1054     // Examine the element type.
1055     LegalizeKind LK = getTypeConversion(Context, EltVT);
1056 
1057     // If type is to be expanded, split the vector.
1058     //  <4 x i140> -> <2 x i140>
1059     if (LK.first == TypeExpandInteger) {
1060       if (VT.getVectorElementCount().isScalable())
1061         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1062       return LegalizeKind(TypeSplitVector,
1063                           VT.getHalfNumVectorElementsVT(Context));
1064     }
1065 
1066     // Promote the integer element types until a legal vector type is found
1067     // or until the element integer type is too big. If a legal type was not
1068     // found, fallback to the usual mechanism of widening/splitting the
1069     // vector.
1070     EVT OldEltVT = EltVT;
1071     while (true) {
1072       // Increase the bitwidth of the element to the next pow-of-two
1073       // (which is greater than 8 bits).
1074       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1075                   .getRoundIntegerType(Context);
1076 
1077       // Stop trying when getting a non-simple element type.
1078       // Note that vector elements may be greater than legal vector element
1079       // types. Example: X86 XMM registers hold 64bit element on 32bit
1080       // systems.
1081       if (!EltVT.isSimple())
1082         break;
1083 
1084       // Build a new vector type and check if it is legal.
1085       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1086       // Found a legal promoted vector type.
1087       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1088         return LegalizeKind(TypePromoteInteger,
1089                             EVT::getVectorVT(Context, EltVT, NumElts));
1090     }
1091 
1092     // Reset the type to the unexpanded type if we did not find a legal vector
1093     // type with a promoted vector element type.
1094     EltVT = OldEltVT;
1095   }
1096 
1097   // Try to widen the vector until a legal type is found.
1098   // If there is no wider legal type, split the vector.
1099   while (true) {
1100     // Round up to the next power of 2.
1101     NumElts = NumElts.coefficientNextPowerOf2();
1102 
1103     // If there is no simple vector type with this many elements then there
1104     // cannot be a larger legal vector type.  Note that this assumes that
1105     // there are no skipped intermediate vector types in the simple types.
1106     if (!EltVT.isSimple())
1107       break;
1108     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1109     if (LargerVector == MVT())
1110       break;
1111 
1112     // If this type is legal then widen the vector.
1113     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1114       return LegalizeKind(TypeWidenVector, LargerVector);
1115   }
1116 
1117   // Widen odd vectors to next power of two.
1118   if (!VT.isPow2VectorType()) {
1119     EVT NVT = VT.getPow2VectorType(Context);
1120     return LegalizeKind(TypeWidenVector, NVT);
1121   }
1122 
1123   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1124     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1125 
1126   // Vectors with illegal element types are expanded.
1127   EVT NVT = EVT::getVectorVT(Context, EltVT,
1128                              VT.getVectorElementCount().divideCoefficientBy(2));
1129   return LegalizeKind(TypeSplitVector, NVT);
1130 }
1131 
1132 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1133                                           unsigned &NumIntermediates,
1134                                           MVT &RegisterVT,
1135                                           TargetLoweringBase *TLI) {
1136   // Figure out the right, legal destination reg to copy into.
1137   ElementCount EC = VT.getVectorElementCount();
1138   MVT EltTy = VT.getVectorElementType();
1139 
1140   unsigned NumVectorRegs = 1;
1141 
1142   // Scalable vectors cannot be scalarized, so splitting or widening is
1143   // required.
1144   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1145     llvm_unreachable(
1146         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1147 
1148   // FIXME: We don't support non-power-of-2-sized vectors for now.
1149   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1150   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1151     // Split EC to unit size (scalable property is preserved).
1152     NumVectorRegs = EC.getKnownMinValue();
1153     EC = ElementCount::getFixed(1);
1154   }
1155 
1156   // Divide the input until we get to a supported size. This will
1157   // always end up with an EC that represent a scalar or a scalable
1158   // scalar.
1159   while (EC.getKnownMinValue() > 1 &&
1160          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1161     EC = EC.divideCoefficientBy(2);
1162     NumVectorRegs <<= 1;
1163   }
1164 
1165   NumIntermediates = NumVectorRegs;
1166 
1167   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1168   if (!TLI->isTypeLegal(NewVT))
1169     NewVT = EltTy;
1170   IntermediateVT = NewVT;
1171 
1172   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1173 
1174   // Convert sizes such as i33 to i64.
1175   LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1176 
1177   MVT DestVT = TLI->getRegisterType(NewVT);
1178   RegisterVT = DestVT;
1179   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1180     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1181 
1182   // Otherwise, promotion or legal types use the same number of registers as
1183   // the vector decimated to the appropriate level.
1184   return NumVectorRegs;
1185 }
1186 
1187 /// isLegalRC - Return true if the value types that can be represented by the
1188 /// specified register class are all legal.
1189 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1190                                    const TargetRegisterClass &RC) const {
1191   for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1192     if (isTypeLegal(*I))
1193       return true;
1194   return false;
1195 }
1196 
1197 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1198 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1199 MachineBasicBlock *
1200 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1201                                    MachineBasicBlock *MBB) const {
1202   MachineInstr *MI = &InitialMI;
1203   MachineFunction &MF = *MI->getMF();
1204   MachineFrameInfo &MFI = MF.getFrameInfo();
1205 
1206   // We're handling multiple types of operands here:
1207   // PATCHPOINT MetaArgs - live-in, read only, direct
1208   // STATEPOINT Deopt Spill - live-through, read only, indirect
1209   // STATEPOINT Deopt Alloca - live-through, read only, direct
1210   // (We're currently conservative and mark the deopt slots read/write in
1211   // practice.)
1212   // STATEPOINT GC Spill - live-through, read/write, indirect
1213   // STATEPOINT GC Alloca - live-through, read/write, direct
1214   // The live-in vs live-through is handled already (the live through ones are
1215   // all stack slots), but we need to handle the different type of stackmap
1216   // operands and memory effects here.
1217 
1218   if (llvm::none_of(MI->operands(),
1219                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1220     return MBB;
1221 
1222   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1223 
1224   // Inherit previous memory operands.
1225   MIB.cloneMemRefs(*MI);
1226 
1227   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1228     MachineOperand &MO = MI->getOperand(i);
1229     if (!MO.isFI()) {
1230       // Index of Def operand this Use it tied to.
1231       // Since Defs are coming before Uses, if Use is tied, then
1232       // index of Def must be smaller that index of that Use.
1233       // Also, Defs preserve their position in new MI.
1234       unsigned TiedTo = i;
1235       if (MO.isReg() && MO.isTied())
1236         TiedTo = MI->findTiedOperandIdx(i);
1237       MIB.add(MO);
1238       if (TiedTo < i)
1239         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1240       continue;
1241     }
1242 
1243     // foldMemoryOperand builds a new MI after replacing a single FI operand
1244     // with the canonical set of five x86 addressing-mode operands.
1245     int FI = MO.getIndex();
1246 
1247     // Add frame index operands recognized by stackmaps.cpp
1248     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1249       // indirect-mem-ref tag, size, #FI, offset.
1250       // Used for spills inserted by StatepointLowering.  This codepath is not
1251       // used for patchpoints/stackmaps at all, for these spilling is done via
1252       // foldMemoryOperand callback only.
1253       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1254       MIB.addImm(StackMaps::IndirectMemRefOp);
1255       MIB.addImm(MFI.getObjectSize(FI));
1256       MIB.add(MO);
1257       MIB.addImm(0);
1258     } else {
1259       // direct-mem-ref tag, #FI, offset.
1260       // Used by patchpoint, and direct alloca arguments to statepoints
1261       MIB.addImm(StackMaps::DirectMemRefOp);
1262       MIB.add(MO);
1263       MIB.addImm(0);
1264     }
1265 
1266     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1267 
1268     // Add a new memory operand for this FI.
1269     assert(MFI.getObjectOffset(FI) != -1);
1270 
1271     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1272     // PATCHPOINT should be updated to do the same. (TODO)
1273     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1274       auto Flags = MachineMemOperand::MOLoad;
1275       MachineMemOperand *MMO = MF.getMachineMemOperand(
1276           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1277           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1278       MIB->addMemOperand(MF, MMO);
1279     }
1280   }
1281   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1282   MI->eraseFromParent();
1283   return MBB;
1284 }
1285 
1286 /// findRepresentativeClass - Return the largest legal super-reg register class
1287 /// of the register class for the specified type and its associated "cost".
1288 // This function is in TargetLowering because it uses RegClassForVT which would
1289 // need to be moved to TargetRegisterInfo and would necessitate moving
1290 // isTypeLegal over as well - a massive change that would just require
1291 // TargetLowering having a TargetRegisterInfo class member that it would use.
1292 std::pair<const TargetRegisterClass *, uint8_t>
1293 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1294                                             MVT VT) const {
1295   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1296   if (!RC)
1297     return std::make_pair(RC, 0);
1298 
1299   // Compute the set of all super-register classes.
1300   BitVector SuperRegRC(TRI->getNumRegClasses());
1301   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1302     SuperRegRC.setBitsInMask(RCI.getMask());
1303 
1304   // Find the first legal register class with the largest spill size.
1305   const TargetRegisterClass *BestRC = RC;
1306   for (unsigned i : SuperRegRC.set_bits()) {
1307     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1308     // We want the largest possible spill size.
1309     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1310       continue;
1311     if (!isLegalRC(*TRI, *SuperRC))
1312       continue;
1313     BestRC = SuperRC;
1314   }
1315   return std::make_pair(BestRC, 1);
1316 }
1317 
1318 /// computeRegisterProperties - Once all of the register classes are added,
1319 /// this allows us to compute derived properties we expose.
1320 void TargetLoweringBase::computeRegisterProperties(
1321     const TargetRegisterInfo *TRI) {
1322   static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1323                 "Too many value types for ValueTypeActions to hold!");
1324 
1325   // Everything defaults to needing one register.
1326   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1327     NumRegistersForVT[i] = 1;
1328     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1329   }
1330   // ...except isVoid, which doesn't need any registers.
1331   NumRegistersForVT[MVT::isVoid] = 0;
1332 
1333   // Find the largest integer register class.
1334   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1335   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1336     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1337 
1338   // Every integer value type larger than this largest register takes twice as
1339   // many registers to represent as the previous ValueType.
1340   for (unsigned ExpandedReg = LargestIntReg + 1;
1341        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1342     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1343     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1344     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1345     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1346                                    TypeExpandInteger);
1347   }
1348 
1349   // Inspect all of the ValueType's smaller than the largest integer
1350   // register to see which ones need promotion.
1351   unsigned LegalIntReg = LargestIntReg;
1352   for (unsigned IntReg = LargestIntReg - 1;
1353        IntReg >= (unsigned)MVT::i1; --IntReg) {
1354     MVT IVT = (MVT::SimpleValueType)IntReg;
1355     if (isTypeLegal(IVT)) {
1356       LegalIntReg = IntReg;
1357     } else {
1358       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1359         (MVT::SimpleValueType)LegalIntReg;
1360       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1361     }
1362   }
1363 
1364   // ppcf128 type is really two f64's.
1365   if (!isTypeLegal(MVT::ppcf128)) {
1366     if (isTypeLegal(MVT::f64)) {
1367       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1368       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1369       TransformToType[MVT::ppcf128] = MVT::f64;
1370       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1371     } else {
1372       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1373       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1374       TransformToType[MVT::ppcf128] = MVT::i128;
1375       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1376     }
1377   }
1378 
1379   // Decide how to handle f128. If the target does not have native f128 support,
1380   // expand it to i128 and we will be generating soft float library calls.
1381   if (!isTypeLegal(MVT::f128)) {
1382     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1383     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1384     TransformToType[MVT::f128] = MVT::i128;
1385     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1386   }
1387 
1388   // Decide how to handle f80. If the target does not have native f80 support,
1389   // expand it to i96 and we will be generating soft float library calls.
1390   if (!isTypeLegal(MVT::f80)) {
1391     NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1392     RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1393     TransformToType[MVT::f80] = MVT::i32;
1394     ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1395   }
1396 
1397   // Decide how to handle f64. If the target does not have native f64 support,
1398   // expand it to i64 and we will be generating soft float library calls.
1399   if (!isTypeLegal(MVT::f64)) {
1400     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1401     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1402     TransformToType[MVT::f64] = MVT::i64;
1403     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1404   }
1405 
1406   // Decide how to handle f32. If the target does not have native f32 support,
1407   // expand it to i32 and we will be generating soft float library calls.
1408   if (!isTypeLegal(MVT::f32)) {
1409     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1410     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1411     TransformToType[MVT::f32] = MVT::i32;
1412     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1413   }
1414 
1415   // Decide how to handle f16. If the target does not have native f16 support,
1416   // promote it to f32, because there are no f16 library calls (except for
1417   // conversions).
1418   if (!isTypeLegal(MVT::f16)) {
1419     // Allow targets to control how we legalize half.
1420     if (softPromoteHalfType()) {
1421       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1422       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1423       TransformToType[MVT::f16] = MVT::f32;
1424       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1425     } else {
1426       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1427       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1428       TransformToType[MVT::f16] = MVT::f32;
1429       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1430     }
1431   }
1432 
1433   // Decide how to handle bf16. If the target does not have native bf16 support,
1434   // promote it to f32, because there are no bf16 library calls (except for
1435   // converting from f32 to bf16).
1436   if (!isTypeLegal(MVT::bf16)) {
1437     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1438     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1439     TransformToType[MVT::bf16] = MVT::f32;
1440     ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1441   }
1442 
1443   // Loop over all of the vector value types to see which need transformations.
1444   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1445        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1446     MVT VT = (MVT::SimpleValueType) i;
1447     if (isTypeLegal(VT))
1448       continue;
1449 
1450     MVT EltVT = VT.getVectorElementType();
1451     ElementCount EC = VT.getVectorElementCount();
1452     bool IsLegalWiderType = false;
1453     bool IsScalable = VT.isScalableVector();
1454     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1455     switch (PreferredAction) {
1456     case TypePromoteInteger: {
1457       MVT::SimpleValueType EndVT = IsScalable ?
1458                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1459                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1460       // Try to promote the elements of integer vectors. If no legal
1461       // promotion was found, fall through to the widen-vector method.
1462       for (unsigned nVT = i + 1;
1463            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1464         MVT SVT = (MVT::SimpleValueType) nVT;
1465         // Promote vectors of integers to vectors with the same number
1466         // of elements, with a wider element type.
1467         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1468             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1469           TransformToType[i] = SVT;
1470           RegisterTypeForVT[i] = SVT;
1471           NumRegistersForVT[i] = 1;
1472           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1473           IsLegalWiderType = true;
1474           break;
1475         }
1476       }
1477       if (IsLegalWiderType)
1478         break;
1479       [[fallthrough]];
1480     }
1481 
1482     case TypeWidenVector:
1483       if (isPowerOf2_32(EC.getKnownMinValue())) {
1484         // Try to widen the vector.
1485         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1486           MVT SVT = (MVT::SimpleValueType) nVT;
1487           if (SVT.getVectorElementType() == EltVT &&
1488               SVT.isScalableVector() == IsScalable &&
1489               SVT.getVectorElementCount().getKnownMinValue() >
1490                   EC.getKnownMinValue() &&
1491               isTypeLegal(SVT)) {
1492             TransformToType[i] = SVT;
1493             RegisterTypeForVT[i] = SVT;
1494             NumRegistersForVT[i] = 1;
1495             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1496             IsLegalWiderType = true;
1497             break;
1498           }
1499         }
1500         if (IsLegalWiderType)
1501           break;
1502       } else {
1503         // Only widen to the next power of 2 to keep consistency with EVT.
1504         MVT NVT = VT.getPow2VectorType();
1505         if (isTypeLegal(NVT)) {
1506           TransformToType[i] = NVT;
1507           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1508           RegisterTypeForVT[i] = NVT;
1509           NumRegistersForVT[i] = 1;
1510           break;
1511         }
1512       }
1513       [[fallthrough]];
1514 
1515     case TypeSplitVector:
1516     case TypeScalarizeVector: {
1517       MVT IntermediateVT;
1518       MVT RegisterVT;
1519       unsigned NumIntermediates;
1520       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1521           NumIntermediates, RegisterVT, this);
1522       NumRegistersForVT[i] = NumRegisters;
1523       assert(NumRegistersForVT[i] == NumRegisters &&
1524              "NumRegistersForVT size cannot represent NumRegisters!");
1525       RegisterTypeForVT[i] = RegisterVT;
1526 
1527       MVT NVT = VT.getPow2VectorType();
1528       if (NVT == VT) {
1529         // Type is already a power of 2.  The default action is to split.
1530         TransformToType[i] = MVT::Other;
1531         if (PreferredAction == TypeScalarizeVector)
1532           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1533         else if (PreferredAction == TypeSplitVector)
1534           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1535         else if (EC.getKnownMinValue() > 1)
1536           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1537         else
1538           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1539                                                  ? TypeScalarizeScalableVector
1540                                                  : TypeScalarizeVector);
1541       } else {
1542         TransformToType[i] = NVT;
1543         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1544       }
1545       break;
1546     }
1547     default:
1548       llvm_unreachable("Unknown vector legalization action!");
1549     }
1550   }
1551 
1552   // Determine the 'representative' register class for each value type.
1553   // An representative register class is the largest (meaning one which is
1554   // not a sub-register class / subreg register class) legal register class for
1555   // a group of value types. For example, on i386, i8, i16, and i32
1556   // representative would be GR32; while on x86_64 it's GR64.
1557   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1558     const TargetRegisterClass* RRC;
1559     uint8_t Cost;
1560     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1561     RepRegClassForVT[i] = RRC;
1562     RepRegClassCostForVT[i] = Cost;
1563   }
1564 }
1565 
1566 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1567                                            EVT VT) const {
1568   assert(!VT.isVector() && "No default SetCC type for vectors!");
1569   return getPointerTy(DL).SimpleTy;
1570 }
1571 
1572 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1573   return MVT::i32; // return the default value
1574 }
1575 
1576 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1577 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1578 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1579 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1580 ///
1581 /// This method returns the number of registers needed, and the VT for each
1582 /// register.  It also returns the VT and quantity of the intermediate values
1583 /// before they are promoted/expanded.
1584 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1585                                                     EVT VT, EVT &IntermediateVT,
1586                                                     unsigned &NumIntermediates,
1587                                                     MVT &RegisterVT) const {
1588   ElementCount EltCnt = VT.getVectorElementCount();
1589 
1590   // If there is a wider vector type with the same element type as this one,
1591   // or a promoted vector type that has the same number of elements which
1592   // are wider, then we should convert to that legal vector type.
1593   // This handles things like <2 x float> -> <4 x float> and
1594   // <4 x i1> -> <4 x i32>.
1595   LegalizeTypeAction TA = getTypeAction(Context, VT);
1596   if (!EltCnt.isScalar() &&
1597       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1598     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1599     if (isTypeLegal(RegisterEVT)) {
1600       IntermediateVT = RegisterEVT;
1601       RegisterVT = RegisterEVT.getSimpleVT();
1602       NumIntermediates = 1;
1603       return 1;
1604     }
1605   }
1606 
1607   // Figure out the right, legal destination reg to copy into.
1608   EVT EltTy = VT.getVectorElementType();
1609 
1610   unsigned NumVectorRegs = 1;
1611 
1612   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1613   // types like done elsewhere in SelectionDAG.
1614   if (EltCnt.isScalable()) {
1615     LegalizeKind LK;
1616     EVT PartVT = VT;
1617     do {
1618       // Iterate until we've found a legal (part) type to hold VT.
1619       LK = getTypeConversion(Context, PartVT);
1620       PartVT = LK.second;
1621     } while (LK.first != TypeLegal);
1622 
1623     if (!PartVT.isVector()) {
1624       report_fatal_error(
1625           "Don't know how to legalize this scalable vector type");
1626     }
1627 
1628     NumIntermediates =
1629         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1630                    PartVT.getVectorElementCount().getKnownMinValue());
1631     IntermediateVT = PartVT;
1632     RegisterVT = getRegisterType(Context, IntermediateVT);
1633     return NumIntermediates;
1634   }
1635 
1636   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1637   // we could break down into LHS/RHS like LegalizeDAG does.
1638   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1639     NumVectorRegs = EltCnt.getKnownMinValue();
1640     EltCnt = ElementCount::getFixed(1);
1641   }
1642 
1643   // Divide the input until we get to a supported size.  This will always
1644   // end with a scalar if the target doesn't support vectors.
1645   while (EltCnt.getKnownMinValue() > 1 &&
1646          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1647     EltCnt = EltCnt.divideCoefficientBy(2);
1648     NumVectorRegs <<= 1;
1649   }
1650 
1651   NumIntermediates = NumVectorRegs;
1652 
1653   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1654   if (!isTypeLegal(NewVT))
1655     NewVT = EltTy;
1656   IntermediateVT = NewVT;
1657 
1658   MVT DestVT = getRegisterType(Context, NewVT);
1659   RegisterVT = DestVT;
1660 
1661   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1662     TypeSize NewVTSize = NewVT.getSizeInBits();
1663     // Convert sizes such as i33 to i64.
1664     if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1665       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1666     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1667   }
1668 
1669   // Otherwise, promotion or legal types use the same number of registers as
1670   // the vector decimated to the appropriate level.
1671   return NumVectorRegs;
1672 }
1673 
1674 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1675                                                 uint64_t NumCases,
1676                                                 uint64_t Range,
1677                                                 ProfileSummaryInfo *PSI,
1678                                                 BlockFrequencyInfo *BFI) const {
1679   // FIXME: This function check the maximum table size and density, but the
1680   // minimum size is not checked. It would be nice if the minimum size is
1681   // also combined within this function. Currently, the minimum size check is
1682   // performed in findJumpTable() in SelectionDAGBuiler and
1683   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1684   const bool OptForSize =
1685       SI->getParent()->getParent()->hasOptSize() ||
1686       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1687   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1688   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1689 
1690   // Check whether the number of cases is small enough and
1691   // the range is dense enough for a jump table.
1692   return (OptForSize || Range <= MaxJumpTableSize) &&
1693          (NumCases * 100 >= Range * MinDensity);
1694 }
1695 
1696 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1697                                                         EVT ConditionVT) const {
1698   return getRegisterType(Context, ConditionVT);
1699 }
1700 
1701 /// Get the EVTs and ArgFlags collections that represent the legalized return
1702 /// type of the given function.  This does not require a DAG or a return value,
1703 /// and is suitable for use before any DAGs for the function are constructed.
1704 /// TODO: Move this out of TargetLowering.cpp.
1705 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1706                          AttributeList attr,
1707                          SmallVectorImpl<ISD::OutputArg> &Outs,
1708                          const TargetLowering &TLI, const DataLayout &DL) {
1709   SmallVector<EVT, 4> ValueVTs;
1710   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1711   unsigned NumValues = ValueVTs.size();
1712   if (NumValues == 0) return;
1713 
1714   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1715     EVT VT = ValueVTs[j];
1716     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1717 
1718     if (attr.hasRetAttr(Attribute::SExt))
1719       ExtendKind = ISD::SIGN_EXTEND;
1720     else if (attr.hasRetAttr(Attribute::ZExt))
1721       ExtendKind = ISD::ZERO_EXTEND;
1722 
1723     // FIXME: C calling convention requires the return type to be promoted to
1724     // at least 32-bit. But this is not necessary for non-C calling
1725     // conventions. The frontend should mark functions whose return values
1726     // require promoting with signext or zeroext attributes.
1727     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1728       MVT MinVT = TLI.getRegisterType(MVT::i32);
1729       if (VT.bitsLT(MinVT))
1730         VT = MinVT;
1731     }
1732 
1733     unsigned NumParts =
1734         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1735     MVT PartVT =
1736         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1737 
1738     // 'inreg' on function refers to return value
1739     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1740     if (attr.hasRetAttr(Attribute::InReg))
1741       Flags.setInReg();
1742 
1743     // Propagate extension type if any
1744     if (attr.hasRetAttr(Attribute::SExt))
1745       Flags.setSExt();
1746     else if (attr.hasRetAttr(Attribute::ZExt))
1747       Flags.setZExt();
1748 
1749     for (unsigned i = 0; i < NumParts; ++i)
1750       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1751   }
1752 }
1753 
1754 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1755 /// function arguments in the caller parameter area.  This is the actual
1756 /// alignment, not its logarithm.
1757 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1758                                                    const DataLayout &DL) const {
1759   return DL.getABITypeAlign(Ty).value();
1760 }
1761 
1762 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1763     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1764     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1765   // Check if the specified alignment is sufficient based on the data layout.
1766   // TODO: While using the data layout works in practice, a better solution
1767   // would be to implement this check directly (make this a virtual function).
1768   // For example, the ABI alignment may change based on software platform while
1769   // this function should only be affected by hardware implementation.
1770   Type *Ty = VT.getTypeForEVT(Context);
1771   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1772     // Assume that an access that meets the ABI-specified alignment is fast.
1773     if (Fast != nullptr)
1774       *Fast = 1;
1775     return true;
1776   }
1777 
1778   // This is a misaligned access.
1779   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1780 }
1781 
1782 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1783     LLVMContext &Context, const DataLayout &DL, EVT VT,
1784     const MachineMemOperand &MMO, unsigned *Fast) const {
1785   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1786                                         MMO.getAlign(), MMO.getFlags(), Fast);
1787 }
1788 
1789 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1790                                             const DataLayout &DL, EVT VT,
1791                                             unsigned AddrSpace, Align Alignment,
1792                                             MachineMemOperand::Flags Flags,
1793                                             unsigned *Fast) const {
1794   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1795                                         Flags, Fast);
1796 }
1797 
1798 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1799                                             const DataLayout &DL, EVT VT,
1800                                             const MachineMemOperand &MMO,
1801                                             unsigned *Fast) const {
1802   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1803                             MMO.getFlags(), Fast);
1804 }
1805 
1806 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1807                                             const DataLayout &DL, LLT Ty,
1808                                             const MachineMemOperand &MMO,
1809                                             unsigned *Fast) const {
1810   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1811   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1812                             MMO.getFlags(), Fast);
1813 }
1814 
1815 //===----------------------------------------------------------------------===//
1816 //  TargetTransformInfo Helpers
1817 //===----------------------------------------------------------------------===//
1818 
1819 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1820   enum InstructionOpcodes {
1821 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1822 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1823 #include "llvm/IR/Instruction.def"
1824   };
1825   switch (static_cast<InstructionOpcodes>(Opcode)) {
1826   case Ret:            return 0;
1827   case Br:             return 0;
1828   case Switch:         return 0;
1829   case IndirectBr:     return 0;
1830   case Invoke:         return 0;
1831   case CallBr:         return 0;
1832   case Resume:         return 0;
1833   case Unreachable:    return 0;
1834   case CleanupRet:     return 0;
1835   case CatchRet:       return 0;
1836   case CatchPad:       return 0;
1837   case CatchSwitch:    return 0;
1838   case CleanupPad:     return 0;
1839   case FNeg:           return ISD::FNEG;
1840   case Add:            return ISD::ADD;
1841   case FAdd:           return ISD::FADD;
1842   case Sub:            return ISD::SUB;
1843   case FSub:           return ISD::FSUB;
1844   case Mul:            return ISD::MUL;
1845   case FMul:           return ISD::FMUL;
1846   case UDiv:           return ISD::UDIV;
1847   case SDiv:           return ISD::SDIV;
1848   case FDiv:           return ISD::FDIV;
1849   case URem:           return ISD::UREM;
1850   case SRem:           return ISD::SREM;
1851   case FRem:           return ISD::FREM;
1852   case Shl:            return ISD::SHL;
1853   case LShr:           return ISD::SRL;
1854   case AShr:           return ISD::SRA;
1855   case And:            return ISD::AND;
1856   case Or:             return ISD::OR;
1857   case Xor:            return ISD::XOR;
1858   case Alloca:         return 0;
1859   case Load:           return ISD::LOAD;
1860   case Store:          return ISD::STORE;
1861   case GetElementPtr:  return 0;
1862   case Fence:          return 0;
1863   case AtomicCmpXchg:  return 0;
1864   case AtomicRMW:      return 0;
1865   case Trunc:          return ISD::TRUNCATE;
1866   case ZExt:           return ISD::ZERO_EXTEND;
1867   case SExt:           return ISD::SIGN_EXTEND;
1868   case FPToUI:         return ISD::FP_TO_UINT;
1869   case FPToSI:         return ISD::FP_TO_SINT;
1870   case UIToFP:         return ISD::UINT_TO_FP;
1871   case SIToFP:         return ISD::SINT_TO_FP;
1872   case FPTrunc:        return ISD::FP_ROUND;
1873   case FPExt:          return ISD::FP_EXTEND;
1874   case PtrToInt:       return ISD::BITCAST;
1875   case IntToPtr:       return ISD::BITCAST;
1876   case BitCast:        return ISD::BITCAST;
1877   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1878   case ICmp:           return ISD::SETCC;
1879   case FCmp:           return ISD::SETCC;
1880   case PHI:            return 0;
1881   case Call:           return 0;
1882   case Select:         return ISD::SELECT;
1883   case UserOp1:        return 0;
1884   case UserOp2:        return 0;
1885   case VAArg:          return 0;
1886   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1887   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1888   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1889   case ExtractValue:   return ISD::MERGE_VALUES;
1890   case InsertValue:    return ISD::MERGE_VALUES;
1891   case LandingPad:     return 0;
1892   case Freeze:         return ISD::FREEZE;
1893   }
1894 
1895   llvm_unreachable("Unknown instruction type encountered!");
1896 }
1897 
1898 Value *
1899 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1900                                                        bool UseTLS) const {
1901   // compiler-rt provides a variable with a magic name.  Targets that do not
1902   // link with compiler-rt may also provide such a variable.
1903   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1904   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1905   auto UnsafeStackPtr =
1906       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1907 
1908   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1909 
1910   if (!UnsafeStackPtr) {
1911     auto TLSModel = UseTLS ?
1912         GlobalValue::InitialExecTLSModel :
1913         GlobalValue::NotThreadLocal;
1914     // The global variable is not defined yet, define it ourselves.
1915     // We use the initial-exec TLS model because we do not support the
1916     // variable living anywhere other than in the main executable.
1917     UnsafeStackPtr = new GlobalVariable(
1918         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1919         UnsafeStackPtrVar, nullptr, TLSModel);
1920   } else {
1921     // The variable exists, check its type and attributes.
1922     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1923       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1924     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1925       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1926                          (UseTLS ? "" : "not ") + "be thread-local");
1927   }
1928   return UnsafeStackPtr;
1929 }
1930 
1931 Value *
1932 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1933   if (!TM.getTargetTriple().isAndroid())
1934     return getDefaultSafeStackPointerLocation(IRB, true);
1935 
1936   // Android provides a libc function to retrieve the address of the current
1937   // thread's unsafe stack pointer.
1938   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1939   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1940   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1941                                              StackPtrTy->getPointerTo(0));
1942   return IRB.CreateCall(Fn);
1943 }
1944 
1945 //===----------------------------------------------------------------------===//
1946 //  Loop Strength Reduction hooks
1947 //===----------------------------------------------------------------------===//
1948 
1949 /// isLegalAddressingMode - Return true if the addressing mode represented
1950 /// by AM is legal for this target, for a load/store of the specified type.
1951 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1952                                                const AddrMode &AM, Type *Ty,
1953                                                unsigned AS, Instruction *I) const {
1954   // The default implementation of this implements a conservative RISCy, r+r and
1955   // r+i addr mode.
1956 
1957   // Allows a sign-extended 16-bit immediate field.
1958   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1959     return false;
1960 
1961   // No global is ever allowed as a base.
1962   if (AM.BaseGV)
1963     return false;
1964 
1965   // Only support r+r,
1966   switch (AM.Scale) {
1967   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1968     break;
1969   case 1:
1970     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1971       return false;
1972     // Otherwise we have r+r or r+i.
1973     break;
1974   case 2:
1975     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1976       return false;
1977     // Allow 2*r as r+r.
1978     break;
1979   default: // Don't allow n * r
1980     return false;
1981   }
1982 
1983   return true;
1984 }
1985 
1986 //===----------------------------------------------------------------------===//
1987 //  Stack Protector
1988 //===----------------------------------------------------------------------===//
1989 
1990 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1991 // so that SelectionDAG handle SSP.
1992 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1993   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1994     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1995     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1996     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1997     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1998       G->setVisibility(GlobalValue::HiddenVisibility);
1999     return C;
2000   }
2001   return nullptr;
2002 }
2003 
2004 // Currently only support "standard" __stack_chk_guard.
2005 // TODO: add LOAD_STACK_GUARD support.
2006 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
2007   if (!M.getNamedValue("__stack_chk_guard")) {
2008     auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
2009                                   GlobalVariable::ExternalLinkage, nullptr,
2010                                   "__stack_chk_guard");
2011 
2012     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2013     if (M.getDirectAccessExternalData() &&
2014         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
2015         !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD()) &&
2016         !TM.getTargetTriple().isOSDarwin())
2017       GV->setDSOLocal(true);
2018   }
2019 }
2020 
2021 // Currently only support "standard" __stack_chk_guard.
2022 // TODO: add LOAD_STACK_GUARD support.
2023 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2024   return M.getNamedValue("__stack_chk_guard");
2025 }
2026 
2027 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2028   return nullptr;
2029 }
2030 
2031 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2032   return MinimumJumpTableEntries;
2033 }
2034 
2035 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2036   MinimumJumpTableEntries = Val;
2037 }
2038 
2039 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2040   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2041 }
2042 
2043 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2044   return MaximumJumpTableSize;
2045 }
2046 
2047 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2048   MaximumJumpTableSize = Val;
2049 }
2050 
2051 bool TargetLoweringBase::isJumpTableRelative() const {
2052   return getTargetMachine().isPositionIndependent();
2053 }
2054 
2055 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2056   if (TM.Options.LoopAlignment)
2057     return Align(TM.Options.LoopAlignment);
2058   return PrefLoopAlignment;
2059 }
2060 
2061 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2062     MachineBasicBlock *MBB) const {
2063   return MaxBytesForAlignment;
2064 }
2065 
2066 //===----------------------------------------------------------------------===//
2067 //  Reciprocal Estimates
2068 //===----------------------------------------------------------------------===//
2069 
2070 /// Get the reciprocal estimate attribute string for a function that will
2071 /// override the target defaults.
2072 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2073   const Function &F = MF.getFunction();
2074   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2075 }
2076 
2077 /// Construct a string for the given reciprocal operation of the given type.
2078 /// This string should match the corresponding option to the front-end's
2079 /// "-mrecip" flag assuming those strings have been passed through in an
2080 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2081 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2082   std::string Name = VT.isVector() ? "vec-" : "";
2083 
2084   Name += IsSqrt ? "sqrt" : "div";
2085 
2086   // TODO: Handle other float types?
2087   if (VT.getScalarType() == MVT::f64) {
2088     Name += "d";
2089   } else if (VT.getScalarType() == MVT::f16) {
2090     Name += "h";
2091   } else {
2092     assert(VT.getScalarType() == MVT::f32 &&
2093            "Unexpected FP type for reciprocal estimate");
2094     Name += "f";
2095   }
2096 
2097   return Name;
2098 }
2099 
2100 /// Return the character position and value (a single numeric character) of a
2101 /// customized refinement operation in the input string if it exists. Return
2102 /// false if there is no customized refinement step count.
2103 static bool parseRefinementStep(StringRef In, size_t &Position,
2104                                 uint8_t &Value) {
2105   const char RefStepToken = ':';
2106   Position = In.find(RefStepToken);
2107   if (Position == StringRef::npos)
2108     return false;
2109 
2110   StringRef RefStepString = In.substr(Position + 1);
2111   // Allow exactly one numeric character for the additional refinement
2112   // step parameter.
2113   if (RefStepString.size() == 1) {
2114     char RefStepChar = RefStepString[0];
2115     if (isDigit(RefStepChar)) {
2116       Value = RefStepChar - '0';
2117       return true;
2118     }
2119   }
2120   report_fatal_error("Invalid refinement step for -recip.");
2121 }
2122 
2123 /// For the input attribute string, return one of the ReciprocalEstimate enum
2124 /// status values (enabled, disabled, or not specified) for this operation on
2125 /// the specified data type.
2126 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2127   if (Override.empty())
2128     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2129 
2130   SmallVector<StringRef, 4> OverrideVector;
2131   Override.split(OverrideVector, ',');
2132   unsigned NumArgs = OverrideVector.size();
2133 
2134   // Check if "all", "none", or "default" was specified.
2135   if (NumArgs == 1) {
2136     // Look for an optional setting of the number of refinement steps needed
2137     // for this type of reciprocal operation.
2138     size_t RefPos;
2139     uint8_t RefSteps;
2140     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2141       // Split the string for further processing.
2142       Override = Override.substr(0, RefPos);
2143     }
2144 
2145     // All reciprocal types are enabled.
2146     if (Override == "all")
2147       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2148 
2149     // All reciprocal types are disabled.
2150     if (Override == "none")
2151       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2152 
2153     // Target defaults for enablement are used.
2154     if (Override == "default")
2155       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2156   }
2157 
2158   // The attribute string may omit the size suffix ('f'/'d').
2159   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2160   std::string VTNameNoSize = VTName;
2161   VTNameNoSize.pop_back();
2162   static const char DisabledPrefix = '!';
2163 
2164   for (StringRef RecipType : OverrideVector) {
2165     size_t RefPos;
2166     uint8_t RefSteps;
2167     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2168       RecipType = RecipType.substr(0, RefPos);
2169 
2170     // Ignore the disablement token for string matching.
2171     bool IsDisabled = RecipType[0] == DisabledPrefix;
2172     if (IsDisabled)
2173       RecipType = RecipType.substr(1);
2174 
2175     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2176       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2177                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2178   }
2179 
2180   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2181 }
2182 
2183 /// For the input attribute string, return the customized refinement step count
2184 /// for this operation on the specified data type. If the step count does not
2185 /// exist, return the ReciprocalEstimate enum value for unspecified.
2186 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2187   if (Override.empty())
2188     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2189 
2190   SmallVector<StringRef, 4> OverrideVector;
2191   Override.split(OverrideVector, ',');
2192   unsigned NumArgs = OverrideVector.size();
2193 
2194   // Check if "all", "default", or "none" was specified.
2195   if (NumArgs == 1) {
2196     // Look for an optional setting of the number of refinement steps needed
2197     // for this type of reciprocal operation.
2198     size_t RefPos;
2199     uint8_t RefSteps;
2200     if (!parseRefinementStep(Override, RefPos, RefSteps))
2201       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2202 
2203     // Split the string for further processing.
2204     Override = Override.substr(0, RefPos);
2205     assert(Override != "none" &&
2206            "Disabled reciprocals, but specifed refinement steps?");
2207 
2208     // If this is a general override, return the specified number of steps.
2209     if (Override == "all" || Override == "default")
2210       return RefSteps;
2211   }
2212 
2213   // The attribute string may omit the size suffix ('f'/'d').
2214   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2215   std::string VTNameNoSize = VTName;
2216   VTNameNoSize.pop_back();
2217 
2218   for (StringRef RecipType : OverrideVector) {
2219     size_t RefPos;
2220     uint8_t RefSteps;
2221     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2222       continue;
2223 
2224     RecipType = RecipType.substr(0, RefPos);
2225     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2226       return RefSteps;
2227   }
2228 
2229   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2230 }
2231 
2232 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2233                                                     MachineFunction &MF) const {
2234   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2235 }
2236 
2237 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2238                                                    MachineFunction &MF) const {
2239   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2240 }
2241 
2242 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2243                                                MachineFunction &MF) const {
2244   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2245 }
2246 
2247 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2248                                               MachineFunction &MF) const {
2249   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2250 }
2251 
2252 bool TargetLoweringBase::isLoadBitCastBeneficial(
2253     EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2254     const MachineMemOperand &MMO) const {
2255   // Single-element vectors are scalarized, so we should generally avoid having
2256   // any memory operations on such types, as they would get scalarized too.
2257   if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2258       BitcastVT.getVectorNumElements() == 1)
2259     return false;
2260 
2261   // Don't do if we could do an indexed load on the original type, but not on
2262   // the new one.
2263   if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2264     return true;
2265 
2266   MVT LoadMVT = LoadVT.getSimpleVT();
2267 
2268   // Don't bother doing this if it's just going to be promoted again later, as
2269   // doing so might interfere with other combines.
2270   if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2271       getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2272     return false;
2273 
2274   unsigned Fast = 0;
2275   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2276                             MMO, &Fast) &&
2277          Fast;
2278 }
2279 
2280 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2281   MF.getRegInfo().freezeReservedRegs(MF);
2282 }
2283 
2284 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2285     const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2286     const TargetLibraryInfo *LibInfo) const {
2287   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2288   if (LI.isVolatile())
2289     Flags |= MachineMemOperand::MOVolatile;
2290 
2291   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2292     Flags |= MachineMemOperand::MONonTemporal;
2293 
2294   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2295     Flags |= MachineMemOperand::MOInvariant;
2296 
2297   if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2298                                          LI.getAlign(), DL, &LI, AC,
2299                                          /*DT=*/nullptr, LibInfo))
2300     Flags |= MachineMemOperand::MODereferenceable;
2301 
2302   Flags |= getTargetMMOFlags(LI);
2303   return Flags;
2304 }
2305 
2306 MachineMemOperand::Flags
2307 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2308                                             const DataLayout &DL) const {
2309   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2310 
2311   if (SI.isVolatile())
2312     Flags |= MachineMemOperand::MOVolatile;
2313 
2314   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2315     Flags |= MachineMemOperand::MONonTemporal;
2316 
2317   // FIXME: Not preserving dereferenceable
2318   Flags |= getTargetMMOFlags(SI);
2319   return Flags;
2320 }
2321 
2322 MachineMemOperand::Flags
2323 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2324                                              const DataLayout &DL) const {
2325   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2326 
2327   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2328     if (RMW->isVolatile())
2329       Flags |= MachineMemOperand::MOVolatile;
2330   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2331     if (CmpX->isVolatile())
2332       Flags |= MachineMemOperand::MOVolatile;
2333   } else
2334     llvm_unreachable("not an atomic instruction");
2335 
2336   // FIXME: Not preserving dereferenceable
2337   Flags |= getTargetMMOFlags(AI);
2338   return Flags;
2339 }
2340 
2341 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2342                                                   Instruction *Inst,
2343                                                   AtomicOrdering Ord) const {
2344   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2345     return Builder.CreateFence(Ord);
2346   else
2347     return nullptr;
2348 }
2349 
2350 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2351                                                    Instruction *Inst,
2352                                                    AtomicOrdering Ord) const {
2353   if (isAcquireOrStronger(Ord))
2354     return Builder.CreateFence(Ord);
2355   else
2356     return nullptr;
2357 }
2358 
2359 //===----------------------------------------------------------------------===//
2360 //  GlobalISel Hooks
2361 //===----------------------------------------------------------------------===//
2362 
2363 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2364                                         const TargetTransformInfo *TTI) const {
2365   auto &MF = *MI.getMF();
2366   auto &MRI = MF.getRegInfo();
2367   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2368   // this helper function computes the maximum number of uses we should consider
2369   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2370   // break even in terms of code size when the original MI has 2 users vs
2371   // choosing to potentially spill. Any more than 2 users we we have a net code
2372   // size increase. This doesn't take into account register pressure though.
2373   auto maxUses = [](unsigned RematCost) {
2374     // A cost of 1 means remats are basically free.
2375     if (RematCost == 1)
2376       return std::numeric_limits<unsigned>::max();
2377     if (RematCost == 2)
2378       return 2U;
2379 
2380     // Remat is too expensive, only sink if there's one user.
2381     if (RematCost > 2)
2382       return 1U;
2383     llvm_unreachable("Unexpected remat cost");
2384   };
2385 
2386   switch (MI.getOpcode()) {
2387   default:
2388     return false;
2389   // Constants-like instructions should be close to their users.
2390   // We don't want long live-ranges for them.
2391   case TargetOpcode::G_CONSTANT:
2392   case TargetOpcode::G_FCONSTANT:
2393   case TargetOpcode::G_FRAME_INDEX:
2394   case TargetOpcode::G_INTTOPTR:
2395     return true;
2396   case TargetOpcode::G_GLOBAL_VALUE: {
2397     unsigned RematCost = TTI->getGISelRematGlobalCost();
2398     Register Reg = MI.getOperand(0).getReg();
2399     unsigned MaxUses = maxUses(RematCost);
2400     if (MaxUses == UINT_MAX)
2401       return true; // Remats are "free" so always localize.
2402     return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2403   }
2404   }
2405 }
2406