xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include "llvm/Target/TargetOptions.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 static bool darwinHasSinCos(const Triple &TT) {
102   assert(TT.isOSDarwin() && "should be called with darwin triple");
103   // Don't bother with 32 bit x86.
104   if (TT.getArch() == Triple::x86)
105     return false;
106   // Macos < 10.9 has no sincos_stret.
107   if (TT.isMacOSX())
108     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109   // iOS < 7.0 has no sincos_stret.
110   if (TT.isiOS())
111     return !TT.isOSVersionLT(7, 0);
112   // Any other darwin such as WatchOS/TvOS is new enough.
113   return true;
114 }
115 
116 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117 #define HANDLE_LIBCALL(code, name) \
118   setLibcallName(RTLIB::code, name);
119 #include "llvm/IR/RuntimeLibcalls.def"
120 #undef HANDLE_LIBCALL
121   // Initialize calling conventions to their default.
122   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124 
125   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126   if (TT.isPPC()) {
127     setLibcallName(RTLIB::ADD_F128, "__addkf3");
128     setLibcallName(RTLIB::SUB_F128, "__subkf3");
129     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130     setLibcallName(RTLIB::DIV_F128, "__divkf3");
131     setLibcallName(RTLIB::POWI_F128, "__powikf2");
132     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138     setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141     setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144     setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147     setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149     setLibcallName(RTLIB::UNE_F128, "__nekf2");
150     setLibcallName(RTLIB::OGE_F128, "__gekf2");
151     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152     setLibcallName(RTLIB::OLE_F128, "__lekf2");
153     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154     setLibcallName(RTLIB::UO_F128, "__unordkf2");
155   }
156 
157   // A few names are different on particular architectures or environments.
158   if (TT.isOSDarwin()) {
159     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160     // of the gnueabi-style __gnu_*_ieee.
161     // FIXME: What about other targets?
162     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
164 
165     // Some darwins have an optimized __bzero/bzero function.
166     switch (TT.getArch()) {
167     case Triple::x86:
168     case Triple::x86_64:
169       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170         setLibcallName(RTLIB::BZERO, "__bzero");
171       break;
172     case Triple::aarch64:
173     case Triple::aarch64_32:
174       setLibcallName(RTLIB::BZERO, "bzero");
175       break;
176     default:
177       break;
178     }
179 
180     if (darwinHasSinCos(TT)) {
181       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183       if (TT.isWatchABI()) {
184         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185                               CallingConv::ARM_AAPCS_VFP);
186         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187                               CallingConv::ARM_AAPCS_VFP);
188       }
189     }
190   } else {
191     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
193   }
194 
195   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198     setLibcallName(RTLIB::SINCOS_F64, "sincos");
199     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
202   }
203 
204   if (TT.isPS()) {
205     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206     setLibcallName(RTLIB::SINCOS_F64, "sincos");
207   }
208 
209   if (TT.isOSOpenBSD()) {
210     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211   }
212 }
213 
214 /// GetFPLibCall - Helper to return the right libcall for the given floating
215 /// point type, or UNKNOWN_LIBCALL if there is none.
216 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
217                                    RTLIB::Libcall Call_F32,
218                                    RTLIB::Libcall Call_F64,
219                                    RTLIB::Libcall Call_F80,
220                                    RTLIB::Libcall Call_F128,
221                                    RTLIB::Libcall Call_PPCF128) {
222   return
223     VT == MVT::f32 ? Call_F32 :
224     VT == MVT::f64 ? Call_F64 :
225     VT == MVT::f80 ? Call_F80 :
226     VT == MVT::f128 ? Call_F128 :
227     VT == MVT::ppcf128 ? Call_PPCF128 :
228     RTLIB::UNKNOWN_LIBCALL;
229 }
230 
231 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
232 /// UNKNOWN_LIBCALL if there is none.
233 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
234   if (OpVT == MVT::f16) {
235     if (RetVT == MVT::f32)
236       return FPEXT_F16_F32;
237     if (RetVT == MVT::f64)
238       return FPEXT_F16_F64;
239     if (RetVT == MVT::f80)
240       return FPEXT_F16_F80;
241     if (RetVT == MVT::f128)
242       return FPEXT_F16_F128;
243   } else if (OpVT == MVT::f32) {
244     if (RetVT == MVT::f64)
245       return FPEXT_F32_F64;
246     if (RetVT == MVT::f128)
247       return FPEXT_F32_F128;
248     if (RetVT == MVT::ppcf128)
249       return FPEXT_F32_PPCF128;
250   } else if (OpVT == MVT::f64) {
251     if (RetVT == MVT::f128)
252       return FPEXT_F64_F128;
253     else if (RetVT == MVT::ppcf128)
254       return FPEXT_F64_PPCF128;
255   } else if (OpVT == MVT::f80) {
256     if (RetVT == MVT::f128)
257       return FPEXT_F80_F128;
258   }
259 
260   return UNKNOWN_LIBCALL;
261 }
262 
263 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
264 /// UNKNOWN_LIBCALL if there is none.
265 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
266   if (RetVT == MVT::f16) {
267     if (OpVT == MVT::f32)
268       return FPROUND_F32_F16;
269     if (OpVT == MVT::f64)
270       return FPROUND_F64_F16;
271     if (OpVT == MVT::f80)
272       return FPROUND_F80_F16;
273     if (OpVT == MVT::f128)
274       return FPROUND_F128_F16;
275     if (OpVT == MVT::ppcf128)
276       return FPROUND_PPCF128_F16;
277   } else if (RetVT == MVT::bf16) {
278     if (OpVT == MVT::f32)
279       return FPROUND_F32_BF16;
280     if (OpVT == MVT::f64)
281       return FPROUND_F64_BF16;
282   } else if (RetVT == MVT::f32) {
283     if (OpVT == MVT::f64)
284       return FPROUND_F64_F32;
285     if (OpVT == MVT::f80)
286       return FPROUND_F80_F32;
287     if (OpVT == MVT::f128)
288       return FPROUND_F128_F32;
289     if (OpVT == MVT::ppcf128)
290       return FPROUND_PPCF128_F32;
291   } else if (RetVT == MVT::f64) {
292     if (OpVT == MVT::f80)
293       return FPROUND_F80_F64;
294     if (OpVT == MVT::f128)
295       return FPROUND_F128_F64;
296     if (OpVT == MVT::ppcf128)
297       return FPROUND_PPCF128_F64;
298   } else if (RetVT == MVT::f80) {
299     if (OpVT == MVT::f128)
300       return FPROUND_F128_F80;
301   }
302 
303   return UNKNOWN_LIBCALL;
304 }
305 
306 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
307 /// UNKNOWN_LIBCALL if there is none.
308 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
309   if (OpVT == MVT::f16) {
310     if (RetVT == MVT::i32)
311       return FPTOSINT_F16_I32;
312     if (RetVT == MVT::i64)
313       return FPTOSINT_F16_I64;
314     if (RetVT == MVT::i128)
315       return FPTOSINT_F16_I128;
316   } else if (OpVT == MVT::f32) {
317     if (RetVT == MVT::i32)
318       return FPTOSINT_F32_I32;
319     if (RetVT == MVT::i64)
320       return FPTOSINT_F32_I64;
321     if (RetVT == MVT::i128)
322       return FPTOSINT_F32_I128;
323   } else if (OpVT == MVT::f64) {
324     if (RetVT == MVT::i32)
325       return FPTOSINT_F64_I32;
326     if (RetVT == MVT::i64)
327       return FPTOSINT_F64_I64;
328     if (RetVT == MVT::i128)
329       return FPTOSINT_F64_I128;
330   } else if (OpVT == MVT::f80) {
331     if (RetVT == MVT::i32)
332       return FPTOSINT_F80_I32;
333     if (RetVT == MVT::i64)
334       return FPTOSINT_F80_I64;
335     if (RetVT == MVT::i128)
336       return FPTOSINT_F80_I128;
337   } else if (OpVT == MVT::f128) {
338     if (RetVT == MVT::i32)
339       return FPTOSINT_F128_I32;
340     if (RetVT == MVT::i64)
341       return FPTOSINT_F128_I64;
342     if (RetVT == MVT::i128)
343       return FPTOSINT_F128_I128;
344   } else if (OpVT == MVT::ppcf128) {
345     if (RetVT == MVT::i32)
346       return FPTOSINT_PPCF128_I32;
347     if (RetVT == MVT::i64)
348       return FPTOSINT_PPCF128_I64;
349     if (RetVT == MVT::i128)
350       return FPTOSINT_PPCF128_I128;
351   }
352   return UNKNOWN_LIBCALL;
353 }
354 
355 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
356 /// UNKNOWN_LIBCALL if there is none.
357 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
358   if (OpVT == MVT::f16) {
359     if (RetVT == MVT::i32)
360       return FPTOUINT_F16_I32;
361     if (RetVT == MVT::i64)
362       return FPTOUINT_F16_I64;
363     if (RetVT == MVT::i128)
364       return FPTOUINT_F16_I128;
365   } else if (OpVT == MVT::f32) {
366     if (RetVT == MVT::i32)
367       return FPTOUINT_F32_I32;
368     if (RetVT == MVT::i64)
369       return FPTOUINT_F32_I64;
370     if (RetVT == MVT::i128)
371       return FPTOUINT_F32_I128;
372   } else if (OpVT == MVT::f64) {
373     if (RetVT == MVT::i32)
374       return FPTOUINT_F64_I32;
375     if (RetVT == MVT::i64)
376       return FPTOUINT_F64_I64;
377     if (RetVT == MVT::i128)
378       return FPTOUINT_F64_I128;
379   } else if (OpVT == MVT::f80) {
380     if (RetVT == MVT::i32)
381       return FPTOUINT_F80_I32;
382     if (RetVT == MVT::i64)
383       return FPTOUINT_F80_I64;
384     if (RetVT == MVT::i128)
385       return FPTOUINT_F80_I128;
386   } else if (OpVT == MVT::f128) {
387     if (RetVT == MVT::i32)
388       return FPTOUINT_F128_I32;
389     if (RetVT == MVT::i64)
390       return FPTOUINT_F128_I64;
391     if (RetVT == MVT::i128)
392       return FPTOUINT_F128_I128;
393   } else if (OpVT == MVT::ppcf128) {
394     if (RetVT == MVT::i32)
395       return FPTOUINT_PPCF128_I32;
396     if (RetVT == MVT::i64)
397       return FPTOUINT_PPCF128_I64;
398     if (RetVT == MVT::i128)
399       return FPTOUINT_PPCF128_I128;
400   }
401   return UNKNOWN_LIBCALL;
402 }
403 
404 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
405 /// UNKNOWN_LIBCALL if there is none.
406 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
407   if (OpVT == MVT::i32) {
408     if (RetVT == MVT::f16)
409       return SINTTOFP_I32_F16;
410     if (RetVT == MVT::f32)
411       return SINTTOFP_I32_F32;
412     if (RetVT == MVT::f64)
413       return SINTTOFP_I32_F64;
414     if (RetVT == MVT::f80)
415       return SINTTOFP_I32_F80;
416     if (RetVT == MVT::f128)
417       return SINTTOFP_I32_F128;
418     if (RetVT == MVT::ppcf128)
419       return SINTTOFP_I32_PPCF128;
420   } else if (OpVT == MVT::i64) {
421     if (RetVT == MVT::f16)
422       return SINTTOFP_I64_F16;
423     if (RetVT == MVT::f32)
424       return SINTTOFP_I64_F32;
425     if (RetVT == MVT::f64)
426       return SINTTOFP_I64_F64;
427     if (RetVT == MVT::f80)
428       return SINTTOFP_I64_F80;
429     if (RetVT == MVT::f128)
430       return SINTTOFP_I64_F128;
431     if (RetVT == MVT::ppcf128)
432       return SINTTOFP_I64_PPCF128;
433   } else if (OpVT == MVT::i128) {
434     if (RetVT == MVT::f16)
435       return SINTTOFP_I128_F16;
436     if (RetVT == MVT::f32)
437       return SINTTOFP_I128_F32;
438     if (RetVT == MVT::f64)
439       return SINTTOFP_I128_F64;
440     if (RetVT == MVT::f80)
441       return SINTTOFP_I128_F80;
442     if (RetVT == MVT::f128)
443       return SINTTOFP_I128_F128;
444     if (RetVT == MVT::ppcf128)
445       return SINTTOFP_I128_PPCF128;
446   }
447   return UNKNOWN_LIBCALL;
448 }
449 
450 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
451 /// UNKNOWN_LIBCALL if there is none.
452 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
453   if (OpVT == MVT::i32) {
454     if (RetVT == MVT::f16)
455       return UINTTOFP_I32_F16;
456     if (RetVT == MVT::f32)
457       return UINTTOFP_I32_F32;
458     if (RetVT == MVT::f64)
459       return UINTTOFP_I32_F64;
460     if (RetVT == MVT::f80)
461       return UINTTOFP_I32_F80;
462     if (RetVT == MVT::f128)
463       return UINTTOFP_I32_F128;
464     if (RetVT == MVT::ppcf128)
465       return UINTTOFP_I32_PPCF128;
466   } else if (OpVT == MVT::i64) {
467     if (RetVT == MVT::f16)
468       return UINTTOFP_I64_F16;
469     if (RetVT == MVT::f32)
470       return UINTTOFP_I64_F32;
471     if (RetVT == MVT::f64)
472       return UINTTOFP_I64_F64;
473     if (RetVT == MVT::f80)
474       return UINTTOFP_I64_F80;
475     if (RetVT == MVT::f128)
476       return UINTTOFP_I64_F128;
477     if (RetVT == MVT::ppcf128)
478       return UINTTOFP_I64_PPCF128;
479   } else if (OpVT == MVT::i128) {
480     if (RetVT == MVT::f16)
481       return UINTTOFP_I128_F16;
482     if (RetVT == MVT::f32)
483       return UINTTOFP_I128_F32;
484     if (RetVT == MVT::f64)
485       return UINTTOFP_I128_F64;
486     if (RetVT == MVT::f80)
487       return UINTTOFP_I128_F80;
488     if (RetVT == MVT::f128)
489       return UINTTOFP_I128_F128;
490     if (RetVT == MVT::ppcf128)
491       return UINTTOFP_I128_PPCF128;
492   }
493   return UNKNOWN_LIBCALL;
494 }
495 
496 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
497   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
498                       POWI_PPCF128);
499 }
500 
501 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
502                                         MVT VT) {
503   unsigned ModeN, ModelN;
504   switch (VT.SimpleTy) {
505   case MVT::i8:
506     ModeN = 0;
507     break;
508   case MVT::i16:
509     ModeN = 1;
510     break;
511   case MVT::i32:
512     ModeN = 2;
513     break;
514   case MVT::i64:
515     ModeN = 3;
516     break;
517   case MVT::i128:
518     ModeN = 4;
519     break;
520   default:
521     return UNKNOWN_LIBCALL;
522   }
523 
524   switch (Order) {
525   case AtomicOrdering::Monotonic:
526     ModelN = 0;
527     break;
528   case AtomicOrdering::Acquire:
529     ModelN = 1;
530     break;
531   case AtomicOrdering::Release:
532     ModelN = 2;
533     break;
534   case AtomicOrdering::AcquireRelease:
535   case AtomicOrdering::SequentiallyConsistent:
536     ModelN = 3;
537     break;
538   default:
539     return UNKNOWN_LIBCALL;
540   }
541 
542 #define LCALLS(A, B)                                                           \
543   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
544 #define LCALL5(A)                                                              \
545   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
546   switch (Opc) {
547   case ISD::ATOMIC_CMP_SWAP: {
548     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
549     return LC[ModeN][ModelN];
550   }
551   case ISD::ATOMIC_SWAP: {
552     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
553     return LC[ModeN][ModelN];
554   }
555   case ISD::ATOMIC_LOAD_ADD: {
556     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
557     return LC[ModeN][ModelN];
558   }
559   case ISD::ATOMIC_LOAD_OR: {
560     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
561     return LC[ModeN][ModelN];
562   }
563   case ISD::ATOMIC_LOAD_CLR: {
564     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
565     return LC[ModeN][ModelN];
566   }
567   case ISD::ATOMIC_LOAD_XOR: {
568     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
569     return LC[ModeN][ModelN];
570   }
571   default:
572     return UNKNOWN_LIBCALL;
573   }
574 #undef LCALLS
575 #undef LCALL5
576 }
577 
578 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
579 #define OP_TO_LIBCALL(Name, Enum)                                              \
580   case Name:                                                                   \
581     switch (VT.SimpleTy) {                                                     \
582     default:                                                                   \
583       return UNKNOWN_LIBCALL;                                                  \
584     case MVT::i8:                                                              \
585       return Enum##_1;                                                         \
586     case MVT::i16:                                                             \
587       return Enum##_2;                                                         \
588     case MVT::i32:                                                             \
589       return Enum##_4;                                                         \
590     case MVT::i64:                                                             \
591       return Enum##_8;                                                         \
592     case MVT::i128:                                                            \
593       return Enum##_16;                                                        \
594     }
595 
596   switch (Opc) {
597     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
598     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
599     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
600     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
601     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
602     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
603     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
604     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
605     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
606     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
607     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
608     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
609   }
610 
611 #undef OP_TO_LIBCALL
612 
613   return UNKNOWN_LIBCALL;
614 }
615 
616 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
617   switch (ElementSize) {
618   case 1:
619     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
620   case 2:
621     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
622   case 4:
623     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
624   case 8:
625     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
626   case 16:
627     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
628   default:
629     return UNKNOWN_LIBCALL;
630   }
631 }
632 
633 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
634   switch (ElementSize) {
635   case 1:
636     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
637   case 2:
638     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
639   case 4:
640     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
641   case 8:
642     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
643   case 16:
644     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
645   default:
646     return UNKNOWN_LIBCALL;
647   }
648 }
649 
650 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
651   switch (ElementSize) {
652   case 1:
653     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
654   case 2:
655     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
656   case 4:
657     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
658   case 8:
659     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
660   case 16:
661     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
662   default:
663     return UNKNOWN_LIBCALL;
664   }
665 }
666 
667 /// InitCmpLibcallCCs - Set default comparison libcall CC.
668 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
669   std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
670   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
671   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
672   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
673   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
674   CCs[RTLIB::UNE_F32] = ISD::SETNE;
675   CCs[RTLIB::UNE_F64] = ISD::SETNE;
676   CCs[RTLIB::UNE_F128] = ISD::SETNE;
677   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
678   CCs[RTLIB::OGE_F32] = ISD::SETGE;
679   CCs[RTLIB::OGE_F64] = ISD::SETGE;
680   CCs[RTLIB::OGE_F128] = ISD::SETGE;
681   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
682   CCs[RTLIB::OLT_F32] = ISD::SETLT;
683   CCs[RTLIB::OLT_F64] = ISD::SETLT;
684   CCs[RTLIB::OLT_F128] = ISD::SETLT;
685   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
686   CCs[RTLIB::OLE_F32] = ISD::SETLE;
687   CCs[RTLIB::OLE_F64] = ISD::SETLE;
688   CCs[RTLIB::OLE_F128] = ISD::SETLE;
689   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
690   CCs[RTLIB::OGT_F32] = ISD::SETGT;
691   CCs[RTLIB::OGT_F64] = ISD::SETGT;
692   CCs[RTLIB::OGT_F128] = ISD::SETGT;
693   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
694   CCs[RTLIB::UO_F32] = ISD::SETNE;
695   CCs[RTLIB::UO_F64] = ISD::SETNE;
696   CCs[RTLIB::UO_F128] = ISD::SETNE;
697   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
698 }
699 
700 /// NOTE: The TargetMachine owns TLOF.
701 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
702   initActions();
703 
704   // Perform these initializations only once.
705   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
706       MaxLoadsPerMemcmp = 8;
707   MaxGluedStoresPerMemcpy = 0;
708   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
709       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
710   HasMultipleConditionRegisters = false;
711   HasExtractBitsInsn = false;
712   JumpIsExpensive = JumpIsExpensiveOverride;
713   PredictableSelectIsExpensive = false;
714   EnableExtLdPromotion = false;
715   StackPointerRegisterToSaveRestore = 0;
716   BooleanContents = UndefinedBooleanContent;
717   BooleanFloatContents = UndefinedBooleanContent;
718   BooleanVectorContents = UndefinedBooleanContent;
719   SchedPreferenceInfo = Sched::ILP;
720   GatherAllAliasesMaxDepth = 18;
721   IsStrictFPEnabled = DisableStrictNodeMutation;
722   MaxBytesForAlignment = 0;
723   // TODO: the default will be switched to 0 in the next commit, along
724   // with the Target-specific changes necessary.
725   MaxAtomicSizeInBitsSupported = 1024;
726 
727   // Assume that even with libcalls, no target supports wider than 128 bit
728   // division.
729   MaxDivRemBitWidthSupported = 128;
730 
731   MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
732 
733   MinCmpXchgSizeInBits = 0;
734   SupportsUnalignedAtomics = false;
735 
736   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
737 
738   InitLibcalls(TM.getTargetTriple());
739   InitCmpLibcallCCs(CmpLibcallCCs);
740 }
741 
742 void TargetLoweringBase::initActions() {
743   // All operations default to being supported.
744   memset(OpActions, 0, sizeof(OpActions));
745   memset(LoadExtActions, 0, sizeof(LoadExtActions));
746   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
747   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
748   memset(CondCodeActions, 0, sizeof(CondCodeActions));
749   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
750   std::fill(std::begin(TargetDAGCombineArray),
751             std::end(TargetDAGCombineArray), 0);
752 
753   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
754   // remove this and targets should individually set these types if not legal.
755   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
756                                    force_iteration_on_noniterable_enum)) {
757     for (MVT VT : {MVT::i2, MVT::i4})
758       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
759   }
760   for (MVT AVT : MVT::all_valuetypes()) {
761     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
762       setTruncStoreAction(AVT, VT, Expand);
763       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
764       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
765     }
766   }
767   for (unsigned IM = (unsigned)ISD::PRE_INC;
768        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
769     for (MVT VT : {MVT::i2, MVT::i4}) {
770       setIndexedLoadAction(IM, VT, Expand);
771       setIndexedStoreAction(IM, VT, Expand);
772       setIndexedMaskedLoadAction(IM, VT, Expand);
773       setIndexedMaskedStoreAction(IM, VT, Expand);
774     }
775   }
776 
777   for (MVT VT : MVT::fp_valuetypes()) {
778     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
779     if (IntVT.isValid()) {
780       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
781       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
782     }
783   }
784 
785   // Set default actions for various operations.
786   for (MVT VT : MVT::all_valuetypes()) {
787     // Default all indexed load / store to expand.
788     for (unsigned IM = (unsigned)ISD::PRE_INC;
789          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
790       setIndexedLoadAction(IM, VT, Expand);
791       setIndexedStoreAction(IM, VT, Expand);
792       setIndexedMaskedLoadAction(IM, VT, Expand);
793       setIndexedMaskedStoreAction(IM, VT, Expand);
794     }
795 
796     // Most backends expect to see the node which just returns the value loaded.
797     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
798 
799     // These operations default to expand.
800     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
801                         ISD::FMINNUM,        ISD::FMAXNUM,
802                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
803                         ISD::FMINIMUM,       ISD::FMAXIMUM,
804                         ISD::FMAD,           ISD::SMIN,
805                         ISD::SMAX,           ISD::UMIN,
806                         ISD::UMAX,           ISD::ABS,
807                         ISD::FSHL,           ISD::FSHR,
808                         ISD::SADDSAT,        ISD::UADDSAT,
809                         ISD::SSUBSAT,        ISD::USUBSAT,
810                         ISD::SSHLSAT,        ISD::USHLSAT,
811                         ISD::SMULFIX,        ISD::SMULFIXSAT,
812                         ISD::UMULFIX,        ISD::UMULFIXSAT,
813                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
814                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
815                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
816                         ISD::IS_FPCLASS},
817                        VT, Expand);
818 
819     // Overflow operations default to expand
820     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
821                         ISD::SMULO, ISD::UMULO},
822                        VT, Expand);
823 
824     // ADDCARRY operations default to expand
825     setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY,
826                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
827                        VT, Expand);
828 
829     // ADDC/ADDE/SUBC/SUBE default to expand.
830     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
831                        Expand);
832 
833     // Halving adds
834     setOperationAction(
835         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
836         Expand);
837 
838     // Absolute difference
839     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
840 
841     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
842     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
843                        Expand);
844 
845     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
846 
847     // These library functions default to expand.
848     setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand);
849 
850     // These operations default to expand for vector types.
851     if (VT.isVector())
852       setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG,
853                           ISD::ANY_EXTEND_VECTOR_INREG,
854                           ISD::SIGN_EXTEND_VECTOR_INREG,
855                           ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR},
856                          VT, Expand);
857 
858     // Constrained floating-point operations default to expand.
859 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
860     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
861 #include "llvm/IR/ConstrainedOps.def"
862 
863     // For most targets @llvm.get.dynamic.area.offset just returns 0.
864     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
865 
866     // Vector reduction default to expand.
867     setOperationAction(
868         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
869          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
870          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
871          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
872          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
873         VT, Expand);
874 
875     // Named vector shuffles default to expand.
876     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
877 
878     // VP_SREM/UREM default to expand.
879     // TODO: Expand all VP intrinsics.
880     setOperationAction(ISD::VP_SREM, VT, Expand);
881     setOperationAction(ISD::VP_UREM, VT, Expand);
882   }
883 
884   // Most targets ignore the @llvm.prefetch intrinsic.
885   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
886 
887   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
888   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
889 
890   // ConstantFP nodes default to expand.  Targets can either change this to
891   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
892   // to optimize expansions for certain constants.
893   setOperationAction(ISD::ConstantFP,
894                      {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
895                      Expand);
896 
897   // These library functions default to expand.
898   setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
899                       ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL,
900                       ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND,
901                       ISD::LRINT, ISD::LLRINT},
902                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
903 
904   // Default ISD::TRAP to expand (which turns it into abort).
905   setOperationAction(ISD::TRAP, MVT::Other, Expand);
906 
907   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
908   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
909   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
910 
911   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
912 }
913 
914 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
915                                                EVT) const {
916   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
917 }
918 
919 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
920                                          bool LegalTypes) const {
921   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
922   if (LHSTy.isVector())
923     return LHSTy;
924   MVT ShiftVT =
925       LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
926   // If any possible shift value won't fit in the prefered type, just use
927   // something safe. Assume it will be legalized when the shift is expanded.
928   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
929     ShiftVT = MVT::i32;
930   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
931          "ShiftVT is still too small!");
932   return ShiftVT;
933 }
934 
935 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
936   assert(isTypeLegal(VT));
937   switch (Op) {
938   default:
939     return false;
940   case ISD::SDIV:
941   case ISD::UDIV:
942   case ISD::SREM:
943   case ISD::UREM:
944     return true;
945   }
946 }
947 
948 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
949                                              unsigned DestAS) const {
950   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
951 }
952 
953 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
954   // If the command-line option was specified, ignore this request.
955   if (!JumpIsExpensiveOverride.getNumOccurrences())
956     JumpIsExpensive = isExpensive;
957 }
958 
959 TargetLoweringBase::LegalizeKind
960 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
961   // If this is a simple type, use the ComputeRegisterProp mechanism.
962   if (VT.isSimple()) {
963     MVT SVT = VT.getSimpleVT();
964     assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
965     MVT NVT = TransformToType[SVT.SimpleTy];
966     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
967 
968     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
969             LA == TypeSoftPromoteHalf ||
970             (NVT.isVector() ||
971              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
972            "Promote may not follow Expand or Promote");
973 
974     if (LA == TypeSplitVector)
975       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
976     if (LA == TypeScalarizeVector)
977       return LegalizeKind(LA, SVT.getVectorElementType());
978     return LegalizeKind(LA, NVT);
979   }
980 
981   // Handle Extended Scalar Types.
982   if (!VT.isVector()) {
983     assert(VT.isInteger() && "Float types must be simple");
984     unsigned BitSize = VT.getSizeInBits();
985     // First promote to a power-of-two size, then expand if necessary.
986     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
987       EVT NVT = VT.getRoundIntegerType(Context);
988       assert(NVT != VT && "Unable to round integer VT");
989       LegalizeKind NextStep = getTypeConversion(Context, NVT);
990       // Avoid multi-step promotion.
991       if (NextStep.first == TypePromoteInteger)
992         return NextStep;
993       // Return rounded integer type.
994       return LegalizeKind(TypePromoteInteger, NVT);
995     }
996 
997     return LegalizeKind(TypeExpandInteger,
998                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
999   }
1000 
1001   // Handle vector types.
1002   ElementCount NumElts = VT.getVectorElementCount();
1003   EVT EltVT = VT.getVectorElementType();
1004 
1005   // Vectors with only one element are always scalarized.
1006   if (NumElts.isScalar())
1007     return LegalizeKind(TypeScalarizeVector, EltVT);
1008 
1009   // Try to widen vector elements until the element type is a power of two and
1010   // promote it to a legal type later on, for example:
1011   // <3 x i8> -> <4 x i8> -> <4 x i32>
1012   if (EltVT.isInteger()) {
1013     // Vectors with a number of elements that is not a power of two are always
1014     // widened, for example <3 x i8> -> <4 x i8>.
1015     if (!VT.isPow2VectorType()) {
1016       NumElts = NumElts.coefficientNextPowerOf2();
1017       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1018       return LegalizeKind(TypeWidenVector, NVT);
1019     }
1020 
1021     // Examine the element type.
1022     LegalizeKind LK = getTypeConversion(Context, EltVT);
1023 
1024     // If type is to be expanded, split the vector.
1025     //  <4 x i140> -> <2 x i140>
1026     if (LK.first == TypeExpandInteger) {
1027       if (VT.getVectorElementCount().isScalable())
1028         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1029       return LegalizeKind(TypeSplitVector,
1030                           VT.getHalfNumVectorElementsVT(Context));
1031     }
1032 
1033     // Promote the integer element types until a legal vector type is found
1034     // or until the element integer type is too big. If a legal type was not
1035     // found, fallback to the usual mechanism of widening/splitting the
1036     // vector.
1037     EVT OldEltVT = EltVT;
1038     while (true) {
1039       // Increase the bitwidth of the element to the next pow-of-two
1040       // (which is greater than 8 bits).
1041       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1042                   .getRoundIntegerType(Context);
1043 
1044       // Stop trying when getting a non-simple element type.
1045       // Note that vector elements may be greater than legal vector element
1046       // types. Example: X86 XMM registers hold 64bit element on 32bit
1047       // systems.
1048       if (!EltVT.isSimple())
1049         break;
1050 
1051       // Build a new vector type and check if it is legal.
1052       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1053       // Found a legal promoted vector type.
1054       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1055         return LegalizeKind(TypePromoteInteger,
1056                             EVT::getVectorVT(Context, EltVT, NumElts));
1057     }
1058 
1059     // Reset the type to the unexpanded type if we did not find a legal vector
1060     // type with a promoted vector element type.
1061     EltVT = OldEltVT;
1062   }
1063 
1064   // Try to widen the vector until a legal type is found.
1065   // If there is no wider legal type, split the vector.
1066   while (true) {
1067     // Round up to the next power of 2.
1068     NumElts = NumElts.coefficientNextPowerOf2();
1069 
1070     // If there is no simple vector type with this many elements then there
1071     // cannot be a larger legal vector type.  Note that this assumes that
1072     // there are no skipped intermediate vector types in the simple types.
1073     if (!EltVT.isSimple())
1074       break;
1075     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1076     if (LargerVector == MVT())
1077       break;
1078 
1079     // If this type is legal then widen the vector.
1080     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1081       return LegalizeKind(TypeWidenVector, LargerVector);
1082   }
1083 
1084   // Widen odd vectors to next power of two.
1085   if (!VT.isPow2VectorType()) {
1086     EVT NVT = VT.getPow2VectorType(Context);
1087     return LegalizeKind(TypeWidenVector, NVT);
1088   }
1089 
1090   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1091     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1092 
1093   // Vectors with illegal element types are expanded.
1094   EVT NVT = EVT::getVectorVT(Context, EltVT,
1095                              VT.getVectorElementCount().divideCoefficientBy(2));
1096   return LegalizeKind(TypeSplitVector, NVT);
1097 }
1098 
1099 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1100                                           unsigned &NumIntermediates,
1101                                           MVT &RegisterVT,
1102                                           TargetLoweringBase *TLI) {
1103   // Figure out the right, legal destination reg to copy into.
1104   ElementCount EC = VT.getVectorElementCount();
1105   MVT EltTy = VT.getVectorElementType();
1106 
1107   unsigned NumVectorRegs = 1;
1108 
1109   // Scalable vectors cannot be scalarized, so splitting or widening is
1110   // required.
1111   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1112     llvm_unreachable(
1113         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1114 
1115   // FIXME: We don't support non-power-of-2-sized vectors for now.
1116   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1117   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1118     // Split EC to unit size (scalable property is preserved).
1119     NumVectorRegs = EC.getKnownMinValue();
1120     EC = ElementCount::getFixed(1);
1121   }
1122 
1123   // Divide the input until we get to a supported size. This will
1124   // always end up with an EC that represent a scalar or a scalable
1125   // scalar.
1126   while (EC.getKnownMinValue() > 1 &&
1127          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1128     EC = EC.divideCoefficientBy(2);
1129     NumVectorRegs <<= 1;
1130   }
1131 
1132   NumIntermediates = NumVectorRegs;
1133 
1134   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1135   if (!TLI->isTypeLegal(NewVT))
1136     NewVT = EltTy;
1137   IntermediateVT = NewVT;
1138 
1139   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1140 
1141   // Convert sizes such as i33 to i64.
1142   if (!isPowerOf2_32(LaneSizeInBits))
1143     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1144 
1145   MVT DestVT = TLI->getRegisterType(NewVT);
1146   RegisterVT = DestVT;
1147   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1148     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1149 
1150   // Otherwise, promotion or legal types use the same number of registers as
1151   // the vector decimated to the appropriate level.
1152   return NumVectorRegs;
1153 }
1154 
1155 /// isLegalRC - Return true if the value types that can be represented by the
1156 /// specified register class are all legal.
1157 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1158                                    const TargetRegisterClass &RC) const {
1159   for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1160     if (isTypeLegal(*I))
1161       return true;
1162   return false;
1163 }
1164 
1165 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1166 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1167 MachineBasicBlock *
1168 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1169                                    MachineBasicBlock *MBB) const {
1170   MachineInstr *MI = &InitialMI;
1171   MachineFunction &MF = *MI->getMF();
1172   MachineFrameInfo &MFI = MF.getFrameInfo();
1173 
1174   // We're handling multiple types of operands here:
1175   // PATCHPOINT MetaArgs - live-in, read only, direct
1176   // STATEPOINT Deopt Spill - live-through, read only, indirect
1177   // STATEPOINT Deopt Alloca - live-through, read only, direct
1178   // (We're currently conservative and mark the deopt slots read/write in
1179   // practice.)
1180   // STATEPOINT GC Spill - live-through, read/write, indirect
1181   // STATEPOINT GC Alloca - live-through, read/write, direct
1182   // The live-in vs live-through is handled already (the live through ones are
1183   // all stack slots), but we need to handle the different type of stackmap
1184   // operands and memory effects here.
1185 
1186   if (llvm::none_of(MI->operands(),
1187                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1188     return MBB;
1189 
1190   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1191 
1192   // Inherit previous memory operands.
1193   MIB.cloneMemRefs(*MI);
1194 
1195   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1196     MachineOperand &MO = MI->getOperand(i);
1197     if (!MO.isFI()) {
1198       // Index of Def operand this Use it tied to.
1199       // Since Defs are coming before Uses, if Use is tied, then
1200       // index of Def must be smaller that index of that Use.
1201       // Also, Defs preserve their position in new MI.
1202       unsigned TiedTo = i;
1203       if (MO.isReg() && MO.isTied())
1204         TiedTo = MI->findTiedOperandIdx(i);
1205       MIB.add(MO);
1206       if (TiedTo < i)
1207         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1208       continue;
1209     }
1210 
1211     // foldMemoryOperand builds a new MI after replacing a single FI operand
1212     // with the canonical set of five x86 addressing-mode operands.
1213     int FI = MO.getIndex();
1214 
1215     // Add frame index operands recognized by stackmaps.cpp
1216     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1217       // indirect-mem-ref tag, size, #FI, offset.
1218       // Used for spills inserted by StatepointLowering.  This codepath is not
1219       // used for patchpoints/stackmaps at all, for these spilling is done via
1220       // foldMemoryOperand callback only.
1221       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1222       MIB.addImm(StackMaps::IndirectMemRefOp);
1223       MIB.addImm(MFI.getObjectSize(FI));
1224       MIB.add(MO);
1225       MIB.addImm(0);
1226     } else {
1227       // direct-mem-ref tag, #FI, offset.
1228       // Used by patchpoint, and direct alloca arguments to statepoints
1229       MIB.addImm(StackMaps::DirectMemRefOp);
1230       MIB.add(MO);
1231       MIB.addImm(0);
1232     }
1233 
1234     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1235 
1236     // Add a new memory operand for this FI.
1237     assert(MFI.getObjectOffset(FI) != -1);
1238 
1239     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1240     // PATCHPOINT should be updated to do the same. (TODO)
1241     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1242       auto Flags = MachineMemOperand::MOLoad;
1243       MachineMemOperand *MMO = MF.getMachineMemOperand(
1244           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1245           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1246       MIB->addMemOperand(MF, MMO);
1247     }
1248   }
1249   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1250   MI->eraseFromParent();
1251   return MBB;
1252 }
1253 
1254 /// findRepresentativeClass - Return the largest legal super-reg register class
1255 /// of the register class for the specified type and its associated "cost".
1256 // This function is in TargetLowering because it uses RegClassForVT which would
1257 // need to be moved to TargetRegisterInfo and would necessitate moving
1258 // isTypeLegal over as well - a massive change that would just require
1259 // TargetLowering having a TargetRegisterInfo class member that it would use.
1260 std::pair<const TargetRegisterClass *, uint8_t>
1261 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1262                                             MVT VT) const {
1263   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1264   if (!RC)
1265     return std::make_pair(RC, 0);
1266 
1267   // Compute the set of all super-register classes.
1268   BitVector SuperRegRC(TRI->getNumRegClasses());
1269   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1270     SuperRegRC.setBitsInMask(RCI.getMask());
1271 
1272   // Find the first legal register class with the largest spill size.
1273   const TargetRegisterClass *BestRC = RC;
1274   for (unsigned i : SuperRegRC.set_bits()) {
1275     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1276     // We want the largest possible spill size.
1277     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1278       continue;
1279     if (!isLegalRC(*TRI, *SuperRC))
1280       continue;
1281     BestRC = SuperRC;
1282   }
1283   return std::make_pair(BestRC, 1);
1284 }
1285 
1286 /// computeRegisterProperties - Once all of the register classes are added,
1287 /// this allows us to compute derived properties we expose.
1288 void TargetLoweringBase::computeRegisterProperties(
1289     const TargetRegisterInfo *TRI) {
1290   static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1291                 "Too many value types for ValueTypeActions to hold!");
1292 
1293   // Everything defaults to needing one register.
1294   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1295     NumRegistersForVT[i] = 1;
1296     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1297   }
1298   // ...except isVoid, which doesn't need any registers.
1299   NumRegistersForVT[MVT::isVoid] = 0;
1300 
1301   // Find the largest integer register class.
1302   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1303   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1304     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1305 
1306   // Every integer value type larger than this largest register takes twice as
1307   // many registers to represent as the previous ValueType.
1308   for (unsigned ExpandedReg = LargestIntReg + 1;
1309        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1310     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1311     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1312     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1313     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1314                                    TypeExpandInteger);
1315   }
1316 
1317   // Inspect all of the ValueType's smaller than the largest integer
1318   // register to see which ones need promotion.
1319   unsigned LegalIntReg = LargestIntReg;
1320   for (unsigned IntReg = LargestIntReg - 1;
1321        IntReg >= (unsigned)MVT::i1; --IntReg) {
1322     MVT IVT = (MVT::SimpleValueType)IntReg;
1323     if (isTypeLegal(IVT)) {
1324       LegalIntReg = IntReg;
1325     } else {
1326       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1327         (MVT::SimpleValueType)LegalIntReg;
1328       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1329     }
1330   }
1331 
1332   // ppcf128 type is really two f64's.
1333   if (!isTypeLegal(MVT::ppcf128)) {
1334     if (isTypeLegal(MVT::f64)) {
1335       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1336       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1337       TransformToType[MVT::ppcf128] = MVT::f64;
1338       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1339     } else {
1340       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1341       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1342       TransformToType[MVT::ppcf128] = MVT::i128;
1343       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1344     }
1345   }
1346 
1347   // Decide how to handle f128. If the target does not have native f128 support,
1348   // expand it to i128 and we will be generating soft float library calls.
1349   if (!isTypeLegal(MVT::f128)) {
1350     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1351     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1352     TransformToType[MVT::f128] = MVT::i128;
1353     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1354   }
1355 
1356   // Decide how to handle f80. If the target does not have native f80 support,
1357   // expand it to i96 and we will be generating soft float library calls.
1358   if (!isTypeLegal(MVT::f80)) {
1359     NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1360     RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1361     TransformToType[MVT::f80] = MVT::i32;
1362     ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1363   }
1364 
1365   // Decide how to handle f64. If the target does not have native f64 support,
1366   // expand it to i64 and we will be generating soft float library calls.
1367   if (!isTypeLegal(MVT::f64)) {
1368     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1369     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1370     TransformToType[MVT::f64] = MVT::i64;
1371     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1372   }
1373 
1374   // Decide how to handle f32. If the target does not have native f32 support,
1375   // expand it to i32 and we will be generating soft float library calls.
1376   if (!isTypeLegal(MVT::f32)) {
1377     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1378     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1379     TransformToType[MVT::f32] = MVT::i32;
1380     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1381   }
1382 
1383   // Decide how to handle f16. If the target does not have native f16 support,
1384   // promote it to f32, because there are no f16 library calls (except for
1385   // conversions).
1386   if (!isTypeLegal(MVT::f16)) {
1387     // Allow targets to control how we legalize half.
1388     if (softPromoteHalfType()) {
1389       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1390       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1391       TransformToType[MVT::f16] = MVT::f32;
1392       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1393     } else {
1394       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1395       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1396       TransformToType[MVT::f16] = MVT::f32;
1397       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1398     }
1399   }
1400 
1401   // Decide how to handle bf16. If the target does not have native bf16 support,
1402   // promote it to f32, because there are no bf16 library calls (except for
1403   // converting from f32 to bf16).
1404   if (!isTypeLegal(MVT::bf16)) {
1405     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1406     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1407     TransformToType[MVT::bf16] = MVT::f32;
1408     ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1409   }
1410 
1411   // Loop over all of the vector value types to see which need transformations.
1412   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1413        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1414     MVT VT = (MVT::SimpleValueType) i;
1415     if (isTypeLegal(VT))
1416       continue;
1417 
1418     MVT EltVT = VT.getVectorElementType();
1419     ElementCount EC = VT.getVectorElementCount();
1420     bool IsLegalWiderType = false;
1421     bool IsScalable = VT.isScalableVector();
1422     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1423     switch (PreferredAction) {
1424     case TypePromoteInteger: {
1425       MVT::SimpleValueType EndVT = IsScalable ?
1426                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1427                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1428       // Try to promote the elements of integer vectors. If no legal
1429       // promotion was found, fall through to the widen-vector method.
1430       for (unsigned nVT = i + 1;
1431            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1432         MVT SVT = (MVT::SimpleValueType) nVT;
1433         // Promote vectors of integers to vectors with the same number
1434         // of elements, with a wider element type.
1435         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1436             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1437           TransformToType[i] = SVT;
1438           RegisterTypeForVT[i] = SVT;
1439           NumRegistersForVT[i] = 1;
1440           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1441           IsLegalWiderType = true;
1442           break;
1443         }
1444       }
1445       if (IsLegalWiderType)
1446         break;
1447       [[fallthrough]];
1448     }
1449 
1450     case TypeWidenVector:
1451       if (isPowerOf2_32(EC.getKnownMinValue())) {
1452         // Try to widen the vector.
1453         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1454           MVT SVT = (MVT::SimpleValueType) nVT;
1455           if (SVT.getVectorElementType() == EltVT &&
1456               SVT.isScalableVector() == IsScalable &&
1457               SVT.getVectorElementCount().getKnownMinValue() >
1458                   EC.getKnownMinValue() &&
1459               isTypeLegal(SVT)) {
1460             TransformToType[i] = SVT;
1461             RegisterTypeForVT[i] = SVT;
1462             NumRegistersForVT[i] = 1;
1463             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1464             IsLegalWiderType = true;
1465             break;
1466           }
1467         }
1468         if (IsLegalWiderType)
1469           break;
1470       } else {
1471         // Only widen to the next power of 2 to keep consistency with EVT.
1472         MVT NVT = VT.getPow2VectorType();
1473         if (isTypeLegal(NVT)) {
1474           TransformToType[i] = NVT;
1475           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1476           RegisterTypeForVT[i] = NVT;
1477           NumRegistersForVT[i] = 1;
1478           break;
1479         }
1480       }
1481       [[fallthrough]];
1482 
1483     case TypeSplitVector:
1484     case TypeScalarizeVector: {
1485       MVT IntermediateVT;
1486       MVT RegisterVT;
1487       unsigned NumIntermediates;
1488       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1489           NumIntermediates, RegisterVT, this);
1490       NumRegistersForVT[i] = NumRegisters;
1491       assert(NumRegistersForVT[i] == NumRegisters &&
1492              "NumRegistersForVT size cannot represent NumRegisters!");
1493       RegisterTypeForVT[i] = RegisterVT;
1494 
1495       MVT NVT = VT.getPow2VectorType();
1496       if (NVT == VT) {
1497         // Type is already a power of 2.  The default action is to split.
1498         TransformToType[i] = MVT::Other;
1499         if (PreferredAction == TypeScalarizeVector)
1500           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1501         else if (PreferredAction == TypeSplitVector)
1502           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1503         else if (EC.getKnownMinValue() > 1)
1504           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1505         else
1506           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1507                                                  ? TypeScalarizeScalableVector
1508                                                  : TypeScalarizeVector);
1509       } else {
1510         TransformToType[i] = NVT;
1511         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1512       }
1513       break;
1514     }
1515     default:
1516       llvm_unreachable("Unknown vector legalization action!");
1517     }
1518   }
1519 
1520   // Determine the 'representative' register class for each value type.
1521   // An representative register class is the largest (meaning one which is
1522   // not a sub-register class / subreg register class) legal register class for
1523   // a group of value types. For example, on i386, i8, i16, and i32
1524   // representative would be GR32; while on x86_64 it's GR64.
1525   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1526     const TargetRegisterClass* RRC;
1527     uint8_t Cost;
1528     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1529     RepRegClassForVT[i] = RRC;
1530     RepRegClassCostForVT[i] = Cost;
1531   }
1532 }
1533 
1534 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1535                                            EVT VT) const {
1536   assert(!VT.isVector() && "No default SetCC type for vectors!");
1537   return getPointerTy(DL).SimpleTy;
1538 }
1539 
1540 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1541   return MVT::i32; // return the default value
1542 }
1543 
1544 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1545 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1546 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1547 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1548 ///
1549 /// This method returns the number of registers needed, and the VT for each
1550 /// register.  It also returns the VT and quantity of the intermediate values
1551 /// before they are promoted/expanded.
1552 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1553                                                     EVT VT, EVT &IntermediateVT,
1554                                                     unsigned &NumIntermediates,
1555                                                     MVT &RegisterVT) const {
1556   ElementCount EltCnt = VT.getVectorElementCount();
1557 
1558   // If there is a wider vector type with the same element type as this one,
1559   // or a promoted vector type that has the same number of elements which
1560   // are wider, then we should convert to that legal vector type.
1561   // This handles things like <2 x float> -> <4 x float> and
1562   // <4 x i1> -> <4 x i32>.
1563   LegalizeTypeAction TA = getTypeAction(Context, VT);
1564   if (!EltCnt.isScalar() &&
1565       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1566     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1567     if (isTypeLegal(RegisterEVT)) {
1568       IntermediateVT = RegisterEVT;
1569       RegisterVT = RegisterEVT.getSimpleVT();
1570       NumIntermediates = 1;
1571       return 1;
1572     }
1573   }
1574 
1575   // Figure out the right, legal destination reg to copy into.
1576   EVT EltTy = VT.getVectorElementType();
1577 
1578   unsigned NumVectorRegs = 1;
1579 
1580   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1581   // types like done elsewhere in SelectionDAG.
1582   if (EltCnt.isScalable()) {
1583     LegalizeKind LK;
1584     EVT PartVT = VT;
1585     do {
1586       // Iterate until we've found a legal (part) type to hold VT.
1587       LK = getTypeConversion(Context, PartVT);
1588       PartVT = LK.second;
1589     } while (LK.first != TypeLegal);
1590 
1591     if (!PartVT.isVector()) {
1592       report_fatal_error(
1593           "Don't know how to legalize this scalable vector type");
1594     }
1595 
1596     NumIntermediates =
1597         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1598                    PartVT.getVectorElementCount().getKnownMinValue());
1599     IntermediateVT = PartVT;
1600     RegisterVT = getRegisterType(Context, IntermediateVT);
1601     return NumIntermediates;
1602   }
1603 
1604   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1605   // we could break down into LHS/RHS like LegalizeDAG does.
1606   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1607     NumVectorRegs = EltCnt.getKnownMinValue();
1608     EltCnt = ElementCount::getFixed(1);
1609   }
1610 
1611   // Divide the input until we get to a supported size.  This will always
1612   // end with a scalar if the target doesn't support vectors.
1613   while (EltCnt.getKnownMinValue() > 1 &&
1614          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1615     EltCnt = EltCnt.divideCoefficientBy(2);
1616     NumVectorRegs <<= 1;
1617   }
1618 
1619   NumIntermediates = NumVectorRegs;
1620 
1621   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1622   if (!isTypeLegal(NewVT))
1623     NewVT = EltTy;
1624   IntermediateVT = NewVT;
1625 
1626   MVT DestVT = getRegisterType(Context, NewVT);
1627   RegisterVT = DestVT;
1628 
1629   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1630     TypeSize NewVTSize = NewVT.getSizeInBits();
1631     // Convert sizes such as i33 to i64.
1632     if (!isPowerOf2_32(NewVTSize.getKnownMinValue()))
1633       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1634     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1635   }
1636 
1637   // Otherwise, promotion or legal types use the same number of registers as
1638   // the vector decimated to the appropriate level.
1639   return NumVectorRegs;
1640 }
1641 
1642 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1643                                                 uint64_t NumCases,
1644                                                 uint64_t Range,
1645                                                 ProfileSummaryInfo *PSI,
1646                                                 BlockFrequencyInfo *BFI) const {
1647   // FIXME: This function check the maximum table size and density, but the
1648   // minimum size is not checked. It would be nice if the minimum size is
1649   // also combined within this function. Currently, the minimum size check is
1650   // performed in findJumpTable() in SelectionDAGBuiler and
1651   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1652   const bool OptForSize =
1653       SI->getParent()->getParent()->hasOptSize() ||
1654       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1655   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1656   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1657 
1658   // Check whether the number of cases is small enough and
1659   // the range is dense enough for a jump table.
1660   return (OptForSize || Range <= MaxJumpTableSize) &&
1661          (NumCases * 100 >= Range * MinDensity);
1662 }
1663 
1664 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1665                                                         EVT ConditionVT) const {
1666   return getRegisterType(Context, ConditionVT);
1667 }
1668 
1669 /// Get the EVTs and ArgFlags collections that represent the legalized return
1670 /// type of the given function.  This does not require a DAG or a return value,
1671 /// and is suitable for use before any DAGs for the function are constructed.
1672 /// TODO: Move this out of TargetLowering.cpp.
1673 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1674                          AttributeList attr,
1675                          SmallVectorImpl<ISD::OutputArg> &Outs,
1676                          const TargetLowering &TLI, const DataLayout &DL) {
1677   SmallVector<EVT, 4> ValueVTs;
1678   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1679   unsigned NumValues = ValueVTs.size();
1680   if (NumValues == 0) return;
1681 
1682   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1683     EVT VT = ValueVTs[j];
1684     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1685 
1686     if (attr.hasRetAttr(Attribute::SExt))
1687       ExtendKind = ISD::SIGN_EXTEND;
1688     else if (attr.hasRetAttr(Attribute::ZExt))
1689       ExtendKind = ISD::ZERO_EXTEND;
1690 
1691     // FIXME: C calling convention requires the return type to be promoted to
1692     // at least 32-bit. But this is not necessary for non-C calling
1693     // conventions. The frontend should mark functions whose return values
1694     // require promoting with signext or zeroext attributes.
1695     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1696       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1697       if (VT.bitsLT(MinVT))
1698         VT = MinVT;
1699     }
1700 
1701     unsigned NumParts =
1702         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1703     MVT PartVT =
1704         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1705 
1706     // 'inreg' on function refers to return value
1707     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1708     if (attr.hasRetAttr(Attribute::InReg))
1709       Flags.setInReg();
1710 
1711     // Propagate extension type if any
1712     if (attr.hasRetAttr(Attribute::SExt))
1713       Flags.setSExt();
1714     else if (attr.hasRetAttr(Attribute::ZExt))
1715       Flags.setZExt();
1716 
1717     for (unsigned i = 0; i < NumParts; ++i)
1718       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1719   }
1720 }
1721 
1722 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1723 /// function arguments in the caller parameter area.  This is the actual
1724 /// alignment, not its logarithm.
1725 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1726                                                    const DataLayout &DL) const {
1727   return DL.getABITypeAlign(Ty).value();
1728 }
1729 
1730 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1731     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1732     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1733   // Check if the specified alignment is sufficient based on the data layout.
1734   // TODO: While using the data layout works in practice, a better solution
1735   // would be to implement this check directly (make this a virtual function).
1736   // For example, the ABI alignment may change based on software platform while
1737   // this function should only be affected by hardware implementation.
1738   Type *Ty = VT.getTypeForEVT(Context);
1739   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1740     // Assume that an access that meets the ABI-specified alignment is fast.
1741     if (Fast != nullptr)
1742       *Fast = 1;
1743     return true;
1744   }
1745 
1746   // This is a misaligned access.
1747   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1748 }
1749 
1750 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1751     LLVMContext &Context, const DataLayout &DL, EVT VT,
1752     const MachineMemOperand &MMO, unsigned *Fast) const {
1753   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1754                                         MMO.getAlign(), MMO.getFlags(), Fast);
1755 }
1756 
1757 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1758                                             const DataLayout &DL, EVT VT,
1759                                             unsigned AddrSpace, Align Alignment,
1760                                             MachineMemOperand::Flags Flags,
1761                                             unsigned *Fast) const {
1762   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1763                                         Flags, Fast);
1764 }
1765 
1766 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1767                                             const DataLayout &DL, EVT VT,
1768                                             const MachineMemOperand &MMO,
1769                                             unsigned *Fast) const {
1770   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1771                             MMO.getFlags(), Fast);
1772 }
1773 
1774 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1775                                             const DataLayout &DL, LLT Ty,
1776                                             const MachineMemOperand &MMO,
1777                                             unsigned *Fast) const {
1778   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1779   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1780                             MMO.getFlags(), Fast);
1781 }
1782 
1783 //===----------------------------------------------------------------------===//
1784 //  TargetTransformInfo Helpers
1785 //===----------------------------------------------------------------------===//
1786 
1787 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1788   enum InstructionOpcodes {
1789 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1790 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1791 #include "llvm/IR/Instruction.def"
1792   };
1793   switch (static_cast<InstructionOpcodes>(Opcode)) {
1794   case Ret:            return 0;
1795   case Br:             return 0;
1796   case Switch:         return 0;
1797   case IndirectBr:     return 0;
1798   case Invoke:         return 0;
1799   case CallBr:         return 0;
1800   case Resume:         return 0;
1801   case Unreachable:    return 0;
1802   case CleanupRet:     return 0;
1803   case CatchRet:       return 0;
1804   case CatchPad:       return 0;
1805   case CatchSwitch:    return 0;
1806   case CleanupPad:     return 0;
1807   case FNeg:           return ISD::FNEG;
1808   case Add:            return ISD::ADD;
1809   case FAdd:           return ISD::FADD;
1810   case Sub:            return ISD::SUB;
1811   case FSub:           return ISD::FSUB;
1812   case Mul:            return ISD::MUL;
1813   case FMul:           return ISD::FMUL;
1814   case UDiv:           return ISD::UDIV;
1815   case SDiv:           return ISD::SDIV;
1816   case FDiv:           return ISD::FDIV;
1817   case URem:           return ISD::UREM;
1818   case SRem:           return ISD::SREM;
1819   case FRem:           return ISD::FREM;
1820   case Shl:            return ISD::SHL;
1821   case LShr:           return ISD::SRL;
1822   case AShr:           return ISD::SRA;
1823   case And:            return ISD::AND;
1824   case Or:             return ISD::OR;
1825   case Xor:            return ISD::XOR;
1826   case Alloca:         return 0;
1827   case Load:           return ISD::LOAD;
1828   case Store:          return ISD::STORE;
1829   case GetElementPtr:  return 0;
1830   case Fence:          return 0;
1831   case AtomicCmpXchg:  return 0;
1832   case AtomicRMW:      return 0;
1833   case Trunc:          return ISD::TRUNCATE;
1834   case ZExt:           return ISD::ZERO_EXTEND;
1835   case SExt:           return ISD::SIGN_EXTEND;
1836   case FPToUI:         return ISD::FP_TO_UINT;
1837   case FPToSI:         return ISD::FP_TO_SINT;
1838   case UIToFP:         return ISD::UINT_TO_FP;
1839   case SIToFP:         return ISD::SINT_TO_FP;
1840   case FPTrunc:        return ISD::FP_ROUND;
1841   case FPExt:          return ISD::FP_EXTEND;
1842   case PtrToInt:       return ISD::BITCAST;
1843   case IntToPtr:       return ISD::BITCAST;
1844   case BitCast:        return ISD::BITCAST;
1845   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1846   case ICmp:           return ISD::SETCC;
1847   case FCmp:           return ISD::SETCC;
1848   case PHI:            return 0;
1849   case Call:           return 0;
1850   case Select:         return ISD::SELECT;
1851   case UserOp1:        return 0;
1852   case UserOp2:        return 0;
1853   case VAArg:          return 0;
1854   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1855   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1856   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1857   case ExtractValue:   return ISD::MERGE_VALUES;
1858   case InsertValue:    return ISD::MERGE_VALUES;
1859   case LandingPad:     return 0;
1860   case Freeze:         return ISD::FREEZE;
1861   }
1862 
1863   llvm_unreachable("Unknown instruction type encountered!");
1864 }
1865 
1866 Value *
1867 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1868                                                        bool UseTLS) const {
1869   // compiler-rt provides a variable with a magic name.  Targets that do not
1870   // link with compiler-rt may also provide such a variable.
1871   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1872   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1873   auto UnsafeStackPtr =
1874       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1875 
1876   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1877 
1878   if (!UnsafeStackPtr) {
1879     auto TLSModel = UseTLS ?
1880         GlobalValue::InitialExecTLSModel :
1881         GlobalValue::NotThreadLocal;
1882     // The global variable is not defined yet, define it ourselves.
1883     // We use the initial-exec TLS model because we do not support the
1884     // variable living anywhere other than in the main executable.
1885     UnsafeStackPtr = new GlobalVariable(
1886         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1887         UnsafeStackPtrVar, nullptr, TLSModel);
1888   } else {
1889     // The variable exists, check its type and attributes.
1890     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1891       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1892     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1893       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1894                          (UseTLS ? "" : "not ") + "be thread-local");
1895   }
1896   return UnsafeStackPtr;
1897 }
1898 
1899 Value *
1900 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1901   if (!TM.getTargetTriple().isAndroid())
1902     return getDefaultSafeStackPointerLocation(IRB, true);
1903 
1904   // Android provides a libc function to retrieve the address of the current
1905   // thread's unsafe stack pointer.
1906   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1907   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1908   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1909                                              StackPtrTy->getPointerTo(0));
1910   return IRB.CreateCall(Fn);
1911 }
1912 
1913 //===----------------------------------------------------------------------===//
1914 //  Loop Strength Reduction hooks
1915 //===----------------------------------------------------------------------===//
1916 
1917 /// isLegalAddressingMode - Return true if the addressing mode represented
1918 /// by AM is legal for this target, for a load/store of the specified type.
1919 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1920                                                const AddrMode &AM, Type *Ty,
1921                                                unsigned AS, Instruction *I) const {
1922   // The default implementation of this implements a conservative RISCy, r+r and
1923   // r+i addr mode.
1924 
1925   // Allows a sign-extended 16-bit immediate field.
1926   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1927     return false;
1928 
1929   // No global is ever allowed as a base.
1930   if (AM.BaseGV)
1931     return false;
1932 
1933   // Only support r+r,
1934   switch (AM.Scale) {
1935   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1936     break;
1937   case 1:
1938     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1939       return false;
1940     // Otherwise we have r+r or r+i.
1941     break;
1942   case 2:
1943     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1944       return false;
1945     // Allow 2*r as r+r.
1946     break;
1947   default: // Don't allow n * r
1948     return false;
1949   }
1950 
1951   return true;
1952 }
1953 
1954 //===----------------------------------------------------------------------===//
1955 //  Stack Protector
1956 //===----------------------------------------------------------------------===//
1957 
1958 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1959 // so that SelectionDAG handle SSP.
1960 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1961   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1962     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1963     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1964     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1965     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1966       G->setVisibility(GlobalValue::HiddenVisibility);
1967     return C;
1968   }
1969   return nullptr;
1970 }
1971 
1972 // Currently only support "standard" __stack_chk_guard.
1973 // TODO: add LOAD_STACK_GUARD support.
1974 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1975   if (!M.getNamedValue("__stack_chk_guard")) {
1976     auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1977                                   GlobalVariable::ExternalLinkage, nullptr,
1978                                   "__stack_chk_guard");
1979 
1980     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1981     if (TM.getRelocationModel() == Reloc::Static &&
1982         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1983         !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD()))
1984       GV->setDSOLocal(true);
1985   }
1986 }
1987 
1988 // Currently only support "standard" __stack_chk_guard.
1989 // TODO: add LOAD_STACK_GUARD support.
1990 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1991   return M.getNamedValue("__stack_chk_guard");
1992 }
1993 
1994 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1995   return nullptr;
1996 }
1997 
1998 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1999   return MinimumJumpTableEntries;
2000 }
2001 
2002 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2003   MinimumJumpTableEntries = Val;
2004 }
2005 
2006 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2007   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2008 }
2009 
2010 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2011   return MaximumJumpTableSize;
2012 }
2013 
2014 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2015   MaximumJumpTableSize = Val;
2016 }
2017 
2018 bool TargetLoweringBase::isJumpTableRelative() const {
2019   return getTargetMachine().isPositionIndependent();
2020 }
2021 
2022 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2023   if (TM.Options.LoopAlignment)
2024     return Align(TM.Options.LoopAlignment);
2025   return PrefLoopAlignment;
2026 }
2027 
2028 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2029     MachineBasicBlock *MBB) const {
2030   return MaxBytesForAlignment;
2031 }
2032 
2033 //===----------------------------------------------------------------------===//
2034 //  Reciprocal Estimates
2035 //===----------------------------------------------------------------------===//
2036 
2037 /// Get the reciprocal estimate attribute string for a function that will
2038 /// override the target defaults.
2039 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2040   const Function &F = MF.getFunction();
2041   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2042 }
2043 
2044 /// Construct a string for the given reciprocal operation of the given type.
2045 /// This string should match the corresponding option to the front-end's
2046 /// "-mrecip" flag assuming those strings have been passed through in an
2047 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2048 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2049   std::string Name = VT.isVector() ? "vec-" : "";
2050 
2051   Name += IsSqrt ? "sqrt" : "div";
2052 
2053   // TODO: Handle other float types?
2054   if (VT.getScalarType() == MVT::f64) {
2055     Name += "d";
2056   } else if (VT.getScalarType() == MVT::f16) {
2057     Name += "h";
2058   } else {
2059     assert(VT.getScalarType() == MVT::f32 &&
2060            "Unexpected FP type for reciprocal estimate");
2061     Name += "f";
2062   }
2063 
2064   return Name;
2065 }
2066 
2067 /// Return the character position and value (a single numeric character) of a
2068 /// customized refinement operation in the input string if it exists. Return
2069 /// false if there is no customized refinement step count.
2070 static bool parseRefinementStep(StringRef In, size_t &Position,
2071                                 uint8_t &Value) {
2072   const char RefStepToken = ':';
2073   Position = In.find(RefStepToken);
2074   if (Position == StringRef::npos)
2075     return false;
2076 
2077   StringRef RefStepString = In.substr(Position + 1);
2078   // Allow exactly one numeric character for the additional refinement
2079   // step parameter.
2080   if (RefStepString.size() == 1) {
2081     char RefStepChar = RefStepString[0];
2082     if (isDigit(RefStepChar)) {
2083       Value = RefStepChar - '0';
2084       return true;
2085     }
2086   }
2087   report_fatal_error("Invalid refinement step for -recip.");
2088 }
2089 
2090 /// For the input attribute string, return one of the ReciprocalEstimate enum
2091 /// status values (enabled, disabled, or not specified) for this operation on
2092 /// the specified data type.
2093 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2094   if (Override.empty())
2095     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2096 
2097   SmallVector<StringRef, 4> OverrideVector;
2098   Override.split(OverrideVector, ',');
2099   unsigned NumArgs = OverrideVector.size();
2100 
2101   // Check if "all", "none", or "default" was specified.
2102   if (NumArgs == 1) {
2103     // Look for an optional setting of the number of refinement steps needed
2104     // for this type of reciprocal operation.
2105     size_t RefPos;
2106     uint8_t RefSteps;
2107     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2108       // Split the string for further processing.
2109       Override = Override.substr(0, RefPos);
2110     }
2111 
2112     // All reciprocal types are enabled.
2113     if (Override == "all")
2114       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2115 
2116     // All reciprocal types are disabled.
2117     if (Override == "none")
2118       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2119 
2120     // Target defaults for enablement are used.
2121     if (Override == "default")
2122       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2123   }
2124 
2125   // The attribute string may omit the size suffix ('f'/'d').
2126   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2127   std::string VTNameNoSize = VTName;
2128   VTNameNoSize.pop_back();
2129   static const char DisabledPrefix = '!';
2130 
2131   for (StringRef RecipType : OverrideVector) {
2132     size_t RefPos;
2133     uint8_t RefSteps;
2134     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2135       RecipType = RecipType.substr(0, RefPos);
2136 
2137     // Ignore the disablement token for string matching.
2138     bool IsDisabled = RecipType[0] == DisabledPrefix;
2139     if (IsDisabled)
2140       RecipType = RecipType.substr(1);
2141 
2142     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2143       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2144                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2145   }
2146 
2147   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2148 }
2149 
2150 /// For the input attribute string, return the customized refinement step count
2151 /// for this operation on the specified data type. If the step count does not
2152 /// exist, return the ReciprocalEstimate enum value for unspecified.
2153 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2154   if (Override.empty())
2155     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2156 
2157   SmallVector<StringRef, 4> OverrideVector;
2158   Override.split(OverrideVector, ',');
2159   unsigned NumArgs = OverrideVector.size();
2160 
2161   // Check if "all", "default", or "none" was specified.
2162   if (NumArgs == 1) {
2163     // Look for an optional setting of the number of refinement steps needed
2164     // for this type of reciprocal operation.
2165     size_t RefPos;
2166     uint8_t RefSteps;
2167     if (!parseRefinementStep(Override, RefPos, RefSteps))
2168       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2169 
2170     // Split the string for further processing.
2171     Override = Override.substr(0, RefPos);
2172     assert(Override != "none" &&
2173            "Disabled reciprocals, but specifed refinement steps?");
2174 
2175     // If this is a general override, return the specified number of steps.
2176     if (Override == "all" || Override == "default")
2177       return RefSteps;
2178   }
2179 
2180   // The attribute string may omit the size suffix ('f'/'d').
2181   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2182   std::string VTNameNoSize = VTName;
2183   VTNameNoSize.pop_back();
2184 
2185   for (StringRef RecipType : OverrideVector) {
2186     size_t RefPos;
2187     uint8_t RefSteps;
2188     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2189       continue;
2190 
2191     RecipType = RecipType.substr(0, RefPos);
2192     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2193       return RefSteps;
2194   }
2195 
2196   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2197 }
2198 
2199 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2200                                                     MachineFunction &MF) const {
2201   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2202 }
2203 
2204 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2205                                                    MachineFunction &MF) const {
2206   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2207 }
2208 
2209 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2210                                                MachineFunction &MF) const {
2211   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2212 }
2213 
2214 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2215                                               MachineFunction &MF) const {
2216   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2217 }
2218 
2219 bool TargetLoweringBase::isLoadBitCastBeneficial(
2220     EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2221     const MachineMemOperand &MMO) const {
2222   // Single-element vectors are scalarized, so we should generally avoid having
2223   // any memory operations on such types, as they would get scalarized too.
2224   if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2225       BitcastVT.getVectorNumElements() == 1)
2226     return false;
2227 
2228   // Don't do if we could do an indexed load on the original type, but not on
2229   // the new one.
2230   if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2231     return true;
2232 
2233   MVT LoadMVT = LoadVT.getSimpleVT();
2234 
2235   // Don't bother doing this if it's just going to be promoted again later, as
2236   // doing so might interfere with other combines.
2237   if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2238       getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2239     return false;
2240 
2241   unsigned Fast = 0;
2242   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2243                             MMO, &Fast) &&
2244          Fast;
2245 }
2246 
2247 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2248   MF.getRegInfo().freezeReservedRegs(MF);
2249 }
2250 
2251 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2252     const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2253     const TargetLibraryInfo *LibInfo) const {
2254   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2255   if (LI.isVolatile())
2256     Flags |= MachineMemOperand::MOVolatile;
2257 
2258   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2259     Flags |= MachineMemOperand::MONonTemporal;
2260 
2261   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2262     Flags |= MachineMemOperand::MOInvariant;
2263 
2264   if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2265                                          LI.getAlign(), DL, &LI, AC,
2266                                          /*DT=*/nullptr, LibInfo))
2267     Flags |= MachineMemOperand::MODereferenceable;
2268 
2269   Flags |= getTargetMMOFlags(LI);
2270   return Flags;
2271 }
2272 
2273 MachineMemOperand::Flags
2274 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2275                                             const DataLayout &DL) const {
2276   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2277 
2278   if (SI.isVolatile())
2279     Flags |= MachineMemOperand::MOVolatile;
2280 
2281   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2282     Flags |= MachineMemOperand::MONonTemporal;
2283 
2284   // FIXME: Not preserving dereferenceable
2285   Flags |= getTargetMMOFlags(SI);
2286   return Flags;
2287 }
2288 
2289 MachineMemOperand::Flags
2290 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2291                                              const DataLayout &DL) const {
2292   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2293 
2294   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2295     if (RMW->isVolatile())
2296       Flags |= MachineMemOperand::MOVolatile;
2297   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2298     if (CmpX->isVolatile())
2299       Flags |= MachineMemOperand::MOVolatile;
2300   } else
2301     llvm_unreachable("not an atomic instruction");
2302 
2303   // FIXME: Not preserving dereferenceable
2304   Flags |= getTargetMMOFlags(AI);
2305   return Flags;
2306 }
2307 
2308 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2309                                                   Instruction *Inst,
2310                                                   AtomicOrdering Ord) const {
2311   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2312     return Builder.CreateFence(Ord);
2313   else
2314     return nullptr;
2315 }
2316 
2317 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2318                                                    Instruction *Inst,
2319                                                    AtomicOrdering Ord) const {
2320   if (isAcquireOrStronger(Ord))
2321     return Builder.CreateFence(Ord);
2322   else
2323     return nullptr;
2324 }
2325 
2326 //===----------------------------------------------------------------------===//
2327 //  GlobalISel Hooks
2328 //===----------------------------------------------------------------------===//
2329 
2330 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2331                                         const TargetTransformInfo *TTI) const {
2332   auto &MF = *MI.getMF();
2333   auto &MRI = MF.getRegInfo();
2334   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2335   // this helper function computes the maximum number of uses we should consider
2336   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2337   // break even in terms of code size when the original MI has 2 users vs
2338   // choosing to potentially spill. Any more than 2 users we we have a net code
2339   // size increase. This doesn't take into account register pressure though.
2340   auto maxUses = [](unsigned RematCost) {
2341     // A cost of 1 means remats are basically free.
2342     if (RematCost == 1)
2343       return std::numeric_limits<unsigned>::max();
2344     if (RematCost == 2)
2345       return 2U;
2346 
2347     // Remat is too expensive, only sink if there's one user.
2348     if (RematCost > 2)
2349       return 1U;
2350     llvm_unreachable("Unexpected remat cost");
2351   };
2352 
2353   switch (MI.getOpcode()) {
2354   default:
2355     return false;
2356   // Constants-like instructions should be close to their users.
2357   // We don't want long live-ranges for them.
2358   case TargetOpcode::G_CONSTANT:
2359   case TargetOpcode::G_FCONSTANT:
2360   case TargetOpcode::G_FRAME_INDEX:
2361   case TargetOpcode::G_INTTOPTR:
2362     return true;
2363   case TargetOpcode::G_GLOBAL_VALUE: {
2364     unsigned RematCost = TTI->getGISelRematGlobalCost();
2365     Register Reg = MI.getOperand(0).getReg();
2366     unsigned MaxUses = maxUses(RematCost);
2367     if (MaxUses == UINT_MAX)
2368       return true; // Remats are "free" so always localize.
2369     return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2370   }
2371   }
2372 }
2373