1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/ISDOpcodes.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineMemOperand.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RuntimeLibcalls.h" 33 #include "llvm/CodeGen/StackMaps.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/ValueTypes.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalValue.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/IRBuilder.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MachineValueType.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include "llvm/Transforms/Utils/SizeOpts.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstddef> 60 #include <cstdint> 61 #include <cstring> 62 #include <iterator> 63 #include <string> 64 #include <tuple> 65 #include <utility> 66 67 using namespace llvm; 68 69 static cl::opt<bool> JumpIsExpensiveOverride( 70 "jump-is-expensive", cl::init(false), 71 cl::desc("Do not create extra branches to split comparison logic."), 72 cl::Hidden); 73 74 static cl::opt<unsigned> MinimumJumpTableEntries 75 ("min-jump-table-entries", cl::init(4), cl::Hidden, 76 cl::desc("Set minimum number of entries to use a jump table.")); 77 78 static cl::opt<unsigned> MaximumJumpTableSize 79 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 80 cl::desc("Set maximum size of jump tables.")); 81 82 /// Minimum jump table density for normal functions. 83 static cl::opt<unsigned> 84 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 85 cl::desc("Minimum density for building a jump table in " 86 "a normal function")); 87 88 /// Minimum jump table density for -Os or -Oz functions. 89 static cl::opt<unsigned> OptsizeJumpTableDensity( 90 "optsize-jump-table-density", cl::init(40), cl::Hidden, 91 cl::desc("Minimum density for building a jump table in " 92 "an optsize function")); 93 94 // FIXME: This option is only to test if the strict fp operation processed 95 // correctly by preventing mutating strict fp operation to normal fp operation 96 // during development. When the backend supports strict float operation, this 97 // option will be meaningless. 98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 99 cl::desc("Don't mutate strict-float node to a legalize node"), 100 cl::init(false), cl::Hidden); 101 102 static bool darwinHasSinCos(const Triple &TT) { 103 assert(TT.isOSDarwin() && "should be called with darwin triple"); 104 // Don't bother with 32 bit x86. 105 if (TT.getArch() == Triple::x86) 106 return false; 107 // Macos < 10.9 has no sincos_stret. 108 if (TT.isMacOSX()) 109 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 110 // iOS < 7.0 has no sincos_stret. 111 if (TT.isiOS()) 112 return !TT.isOSVersionLT(7, 0); 113 // Any other darwin such as WatchOS/TvOS is new enough. 114 return true; 115 } 116 117 // Although this default value is arbitrary, it is not random. It is assumed 118 // that a condition that evaluates the same way by a higher percentage than this 119 // is best represented as control flow. Therefore, the default value N should be 120 // set such that the win from N% correct executions is greater than the loss 121 // from (100 - N)% mispredicted executions for the majority of intended targets. 122 static cl::opt<int> MinPercentageForPredictableBranch( 123 "min-predictable-branch", cl::init(99), 124 cl::desc("Minimum percentage (0-100) that a condition must be either true " 125 "or false to assume that the condition is predictable"), 126 cl::Hidden); 127 128 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 129 #define HANDLE_LIBCALL(code, name) \ 130 setLibcallName(RTLIB::code, name); 131 #include "llvm/IR/RuntimeLibcalls.def" 132 #undef HANDLE_LIBCALL 133 // Initialize calling conventions to their default. 134 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 135 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 136 137 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 138 if (TT.isPPC()) { 139 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 140 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 141 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 142 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 143 setLibcallName(RTLIB::POWI_F128, "__powikf2"); 144 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 145 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 146 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 147 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 148 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 149 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 150 setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti"); 151 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 152 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 153 setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti"); 154 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 155 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 156 setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf"); 157 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 158 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 159 setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf"); 160 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 161 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 162 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 163 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 164 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 165 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 166 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 167 } 168 169 // A few names are different on particular architectures or environments. 170 if (TT.isOSDarwin()) { 171 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 172 // of the gnueabi-style __gnu_*_ieee. 173 // FIXME: What about other targets? 174 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 175 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 176 177 // Some darwins have an optimized __bzero/bzero function. 178 switch (TT.getArch()) { 179 case Triple::x86: 180 case Triple::x86_64: 181 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 182 setLibcallName(RTLIB::BZERO, "__bzero"); 183 break; 184 case Triple::aarch64: 185 case Triple::aarch64_32: 186 setLibcallName(RTLIB::BZERO, "bzero"); 187 break; 188 default: 189 break; 190 } 191 192 if (darwinHasSinCos(TT)) { 193 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 194 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 195 if (TT.isWatchABI()) { 196 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 197 CallingConv::ARM_AAPCS_VFP); 198 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 199 CallingConv::ARM_AAPCS_VFP); 200 } 201 } 202 } else { 203 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 204 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 205 } 206 207 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 208 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 209 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 210 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 211 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 212 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 213 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 214 } 215 216 if (TT.isPS4CPU()) { 217 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 218 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 219 } 220 221 if (TT.isOSOpenBSD()) { 222 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 223 } 224 } 225 226 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 227 /// UNKNOWN_LIBCALL if there is none. 228 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 229 if (OpVT == MVT::f16) { 230 if (RetVT == MVT::f32) 231 return FPEXT_F16_F32; 232 if (RetVT == MVT::f64) 233 return FPEXT_F16_F64; 234 if (RetVT == MVT::f128) 235 return FPEXT_F16_F128; 236 } else if (OpVT == MVT::f32) { 237 if (RetVT == MVT::f64) 238 return FPEXT_F32_F64; 239 if (RetVT == MVT::f128) 240 return FPEXT_F32_F128; 241 if (RetVT == MVT::ppcf128) 242 return FPEXT_F32_PPCF128; 243 } else if (OpVT == MVT::f64) { 244 if (RetVT == MVT::f128) 245 return FPEXT_F64_F128; 246 else if (RetVT == MVT::ppcf128) 247 return FPEXT_F64_PPCF128; 248 } else if (OpVT == MVT::f80) { 249 if (RetVT == MVT::f128) 250 return FPEXT_F80_F128; 251 } 252 253 return UNKNOWN_LIBCALL; 254 } 255 256 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 257 /// UNKNOWN_LIBCALL if there is none. 258 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 259 if (RetVT == MVT::f16) { 260 if (OpVT == MVT::f32) 261 return FPROUND_F32_F16; 262 if (OpVT == MVT::f64) 263 return FPROUND_F64_F16; 264 if (OpVT == MVT::f80) 265 return FPROUND_F80_F16; 266 if (OpVT == MVT::f128) 267 return FPROUND_F128_F16; 268 if (OpVT == MVT::ppcf128) 269 return FPROUND_PPCF128_F16; 270 } else if (RetVT == MVT::f32) { 271 if (OpVT == MVT::f64) 272 return FPROUND_F64_F32; 273 if (OpVT == MVT::f80) 274 return FPROUND_F80_F32; 275 if (OpVT == MVT::f128) 276 return FPROUND_F128_F32; 277 if (OpVT == MVT::ppcf128) 278 return FPROUND_PPCF128_F32; 279 } else if (RetVT == MVT::f64) { 280 if (OpVT == MVT::f80) 281 return FPROUND_F80_F64; 282 if (OpVT == MVT::f128) 283 return FPROUND_F128_F64; 284 if (OpVT == MVT::ppcf128) 285 return FPROUND_PPCF128_F64; 286 } else if (RetVT == MVT::f80) { 287 if (OpVT == MVT::f128) 288 return FPROUND_F128_F80; 289 } 290 291 return UNKNOWN_LIBCALL; 292 } 293 294 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 295 /// UNKNOWN_LIBCALL if there is none. 296 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 297 if (OpVT == MVT::f16) { 298 if (RetVT == MVT::i32) 299 return FPTOSINT_F16_I32; 300 if (RetVT == MVT::i64) 301 return FPTOSINT_F16_I64; 302 if (RetVT == MVT::i128) 303 return FPTOSINT_F16_I128; 304 } else if (OpVT == MVT::f32) { 305 if (RetVT == MVT::i32) 306 return FPTOSINT_F32_I32; 307 if (RetVT == MVT::i64) 308 return FPTOSINT_F32_I64; 309 if (RetVT == MVT::i128) 310 return FPTOSINT_F32_I128; 311 } else if (OpVT == MVT::f64) { 312 if (RetVT == MVT::i32) 313 return FPTOSINT_F64_I32; 314 if (RetVT == MVT::i64) 315 return FPTOSINT_F64_I64; 316 if (RetVT == MVT::i128) 317 return FPTOSINT_F64_I128; 318 } else if (OpVT == MVT::f80) { 319 if (RetVT == MVT::i32) 320 return FPTOSINT_F80_I32; 321 if (RetVT == MVT::i64) 322 return FPTOSINT_F80_I64; 323 if (RetVT == MVT::i128) 324 return FPTOSINT_F80_I128; 325 } else if (OpVT == MVT::f128) { 326 if (RetVT == MVT::i32) 327 return FPTOSINT_F128_I32; 328 if (RetVT == MVT::i64) 329 return FPTOSINT_F128_I64; 330 if (RetVT == MVT::i128) 331 return FPTOSINT_F128_I128; 332 } else if (OpVT == MVT::ppcf128) { 333 if (RetVT == MVT::i32) 334 return FPTOSINT_PPCF128_I32; 335 if (RetVT == MVT::i64) 336 return FPTOSINT_PPCF128_I64; 337 if (RetVT == MVT::i128) 338 return FPTOSINT_PPCF128_I128; 339 } 340 return UNKNOWN_LIBCALL; 341 } 342 343 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 344 /// UNKNOWN_LIBCALL if there is none. 345 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 346 if (OpVT == MVT::f16) { 347 if (RetVT == MVT::i32) 348 return FPTOUINT_F16_I32; 349 if (RetVT == MVT::i64) 350 return FPTOUINT_F16_I64; 351 if (RetVT == MVT::i128) 352 return FPTOUINT_F16_I128; 353 } else if (OpVT == MVT::f32) { 354 if (RetVT == MVT::i32) 355 return FPTOUINT_F32_I32; 356 if (RetVT == MVT::i64) 357 return FPTOUINT_F32_I64; 358 if (RetVT == MVT::i128) 359 return FPTOUINT_F32_I128; 360 } else if (OpVT == MVT::f64) { 361 if (RetVT == MVT::i32) 362 return FPTOUINT_F64_I32; 363 if (RetVT == MVT::i64) 364 return FPTOUINT_F64_I64; 365 if (RetVT == MVT::i128) 366 return FPTOUINT_F64_I128; 367 } else if (OpVT == MVT::f80) { 368 if (RetVT == MVT::i32) 369 return FPTOUINT_F80_I32; 370 if (RetVT == MVT::i64) 371 return FPTOUINT_F80_I64; 372 if (RetVT == MVT::i128) 373 return FPTOUINT_F80_I128; 374 } else if (OpVT == MVT::f128) { 375 if (RetVT == MVT::i32) 376 return FPTOUINT_F128_I32; 377 if (RetVT == MVT::i64) 378 return FPTOUINT_F128_I64; 379 if (RetVT == MVT::i128) 380 return FPTOUINT_F128_I128; 381 } else if (OpVT == MVT::ppcf128) { 382 if (RetVT == MVT::i32) 383 return FPTOUINT_PPCF128_I32; 384 if (RetVT == MVT::i64) 385 return FPTOUINT_PPCF128_I64; 386 if (RetVT == MVT::i128) 387 return FPTOUINT_PPCF128_I128; 388 } 389 return UNKNOWN_LIBCALL; 390 } 391 392 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 393 /// UNKNOWN_LIBCALL if there is none. 394 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 395 if (OpVT == MVT::i32) { 396 if (RetVT == MVT::f16) 397 return SINTTOFP_I32_F16; 398 if (RetVT == MVT::f32) 399 return SINTTOFP_I32_F32; 400 if (RetVT == MVT::f64) 401 return SINTTOFP_I32_F64; 402 if (RetVT == MVT::f80) 403 return SINTTOFP_I32_F80; 404 if (RetVT == MVT::f128) 405 return SINTTOFP_I32_F128; 406 if (RetVT == MVT::ppcf128) 407 return SINTTOFP_I32_PPCF128; 408 } else if (OpVT == MVT::i64) { 409 if (RetVT == MVT::f16) 410 return SINTTOFP_I64_F16; 411 if (RetVT == MVT::f32) 412 return SINTTOFP_I64_F32; 413 if (RetVT == MVT::f64) 414 return SINTTOFP_I64_F64; 415 if (RetVT == MVT::f80) 416 return SINTTOFP_I64_F80; 417 if (RetVT == MVT::f128) 418 return SINTTOFP_I64_F128; 419 if (RetVT == MVT::ppcf128) 420 return SINTTOFP_I64_PPCF128; 421 } else if (OpVT == MVT::i128) { 422 if (RetVT == MVT::f16) 423 return SINTTOFP_I128_F16; 424 if (RetVT == MVT::f32) 425 return SINTTOFP_I128_F32; 426 if (RetVT == MVT::f64) 427 return SINTTOFP_I128_F64; 428 if (RetVT == MVT::f80) 429 return SINTTOFP_I128_F80; 430 if (RetVT == MVT::f128) 431 return SINTTOFP_I128_F128; 432 if (RetVT == MVT::ppcf128) 433 return SINTTOFP_I128_PPCF128; 434 } 435 return UNKNOWN_LIBCALL; 436 } 437 438 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 439 /// UNKNOWN_LIBCALL if there is none. 440 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 441 if (OpVT == MVT::i32) { 442 if (RetVT == MVT::f16) 443 return UINTTOFP_I32_F16; 444 if (RetVT == MVT::f32) 445 return UINTTOFP_I32_F32; 446 if (RetVT == MVT::f64) 447 return UINTTOFP_I32_F64; 448 if (RetVT == MVT::f80) 449 return UINTTOFP_I32_F80; 450 if (RetVT == MVT::f128) 451 return UINTTOFP_I32_F128; 452 if (RetVT == MVT::ppcf128) 453 return UINTTOFP_I32_PPCF128; 454 } else if (OpVT == MVT::i64) { 455 if (RetVT == MVT::f16) 456 return UINTTOFP_I64_F16; 457 if (RetVT == MVT::f32) 458 return UINTTOFP_I64_F32; 459 if (RetVT == MVT::f64) 460 return UINTTOFP_I64_F64; 461 if (RetVT == MVT::f80) 462 return UINTTOFP_I64_F80; 463 if (RetVT == MVT::f128) 464 return UINTTOFP_I64_F128; 465 if (RetVT == MVT::ppcf128) 466 return UINTTOFP_I64_PPCF128; 467 } else if (OpVT == MVT::i128) { 468 if (RetVT == MVT::f16) 469 return UINTTOFP_I128_F16; 470 if (RetVT == MVT::f32) 471 return UINTTOFP_I128_F32; 472 if (RetVT == MVT::f64) 473 return UINTTOFP_I128_F64; 474 if (RetVT == MVT::f80) 475 return UINTTOFP_I128_F80; 476 if (RetVT == MVT::f128) 477 return UINTTOFP_I128_F128; 478 if (RetVT == MVT::ppcf128) 479 return UINTTOFP_I128_PPCF128; 480 } 481 return UNKNOWN_LIBCALL; 482 } 483 484 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order, 485 MVT VT) { 486 unsigned ModeN, ModelN; 487 switch (VT.SimpleTy) { 488 case MVT::i8: 489 ModeN = 0; 490 break; 491 case MVT::i16: 492 ModeN = 1; 493 break; 494 case MVT::i32: 495 ModeN = 2; 496 break; 497 case MVT::i64: 498 ModeN = 3; 499 break; 500 case MVT::i128: 501 ModeN = 4; 502 break; 503 default: 504 return UNKNOWN_LIBCALL; 505 } 506 507 switch (Order) { 508 case AtomicOrdering::Monotonic: 509 ModelN = 0; 510 break; 511 case AtomicOrdering::Acquire: 512 ModelN = 1; 513 break; 514 case AtomicOrdering::Release: 515 ModelN = 2; 516 break; 517 case AtomicOrdering::AcquireRelease: 518 case AtomicOrdering::SequentiallyConsistent: 519 ModelN = 3; 520 break; 521 default: 522 return UNKNOWN_LIBCALL; 523 } 524 525 #define LCALLS(A, B) \ 526 { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL } 527 #define LCALL5(A) \ 528 LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16) 529 switch (Opc) { 530 case ISD::ATOMIC_CMP_SWAP: { 531 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)}; 532 return LC[ModeN][ModelN]; 533 } 534 case ISD::ATOMIC_SWAP: { 535 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)}; 536 return LC[ModeN][ModelN]; 537 } 538 case ISD::ATOMIC_LOAD_ADD: { 539 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)}; 540 return LC[ModeN][ModelN]; 541 } 542 case ISD::ATOMIC_LOAD_OR: { 543 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)}; 544 return LC[ModeN][ModelN]; 545 } 546 case ISD::ATOMIC_LOAD_CLR: { 547 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)}; 548 return LC[ModeN][ModelN]; 549 } 550 case ISD::ATOMIC_LOAD_XOR: { 551 const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)}; 552 return LC[ModeN][ModelN]; 553 } 554 default: 555 return UNKNOWN_LIBCALL; 556 } 557 #undef LCALLS 558 #undef LCALL5 559 } 560 561 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 562 #define OP_TO_LIBCALL(Name, Enum) \ 563 case Name: \ 564 switch (VT.SimpleTy) { \ 565 default: \ 566 return UNKNOWN_LIBCALL; \ 567 case MVT::i8: \ 568 return Enum##_1; \ 569 case MVT::i16: \ 570 return Enum##_2; \ 571 case MVT::i32: \ 572 return Enum##_4; \ 573 case MVT::i64: \ 574 return Enum##_8; \ 575 case MVT::i128: \ 576 return Enum##_16; \ 577 } 578 579 switch (Opc) { 580 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 581 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 582 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 583 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 584 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 585 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 586 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 587 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 588 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 589 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 590 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 591 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 592 } 593 594 #undef OP_TO_LIBCALL 595 596 return UNKNOWN_LIBCALL; 597 } 598 599 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 600 switch (ElementSize) { 601 case 1: 602 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 603 case 2: 604 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 605 case 4: 606 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 607 case 8: 608 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 609 case 16: 610 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 611 default: 612 return UNKNOWN_LIBCALL; 613 } 614 } 615 616 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 617 switch (ElementSize) { 618 case 1: 619 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 620 case 2: 621 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 622 case 4: 623 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 624 case 8: 625 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 626 case 16: 627 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 628 default: 629 return UNKNOWN_LIBCALL; 630 } 631 } 632 633 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 634 switch (ElementSize) { 635 case 1: 636 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 637 case 2: 638 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 639 case 4: 640 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 641 case 8: 642 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 643 case 16: 644 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 645 default: 646 return UNKNOWN_LIBCALL; 647 } 648 } 649 650 /// InitCmpLibcallCCs - Set default comparison libcall CC. 651 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 652 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 653 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 654 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 655 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 656 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 657 CCs[RTLIB::UNE_F32] = ISD::SETNE; 658 CCs[RTLIB::UNE_F64] = ISD::SETNE; 659 CCs[RTLIB::UNE_F128] = ISD::SETNE; 660 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 661 CCs[RTLIB::OGE_F32] = ISD::SETGE; 662 CCs[RTLIB::OGE_F64] = ISD::SETGE; 663 CCs[RTLIB::OGE_F128] = ISD::SETGE; 664 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 665 CCs[RTLIB::OLT_F32] = ISD::SETLT; 666 CCs[RTLIB::OLT_F64] = ISD::SETLT; 667 CCs[RTLIB::OLT_F128] = ISD::SETLT; 668 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 669 CCs[RTLIB::OLE_F32] = ISD::SETLE; 670 CCs[RTLIB::OLE_F64] = ISD::SETLE; 671 CCs[RTLIB::OLE_F128] = ISD::SETLE; 672 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 673 CCs[RTLIB::OGT_F32] = ISD::SETGT; 674 CCs[RTLIB::OGT_F64] = ISD::SETGT; 675 CCs[RTLIB::OGT_F128] = ISD::SETGT; 676 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 677 CCs[RTLIB::UO_F32] = ISD::SETNE; 678 CCs[RTLIB::UO_F64] = ISD::SETNE; 679 CCs[RTLIB::UO_F128] = ISD::SETNE; 680 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 681 } 682 683 /// NOTE: The TargetMachine owns TLOF. 684 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 685 initActions(); 686 687 // Perform these initializations only once. 688 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 689 MaxLoadsPerMemcmp = 8; 690 MaxGluedStoresPerMemcpy = 0; 691 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 692 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 693 HasMultipleConditionRegisters = false; 694 HasExtractBitsInsn = false; 695 JumpIsExpensive = JumpIsExpensiveOverride; 696 PredictableSelectIsExpensive = false; 697 EnableExtLdPromotion = false; 698 StackPointerRegisterToSaveRestore = 0; 699 BooleanContents = UndefinedBooleanContent; 700 BooleanFloatContents = UndefinedBooleanContent; 701 BooleanVectorContents = UndefinedBooleanContent; 702 SchedPreferenceInfo = Sched::ILP; 703 GatherAllAliasesMaxDepth = 18; 704 IsStrictFPEnabled = DisableStrictNodeMutation; 705 // TODO: the default will be switched to 0 in the next commit, along 706 // with the Target-specific changes necessary. 707 MaxAtomicSizeInBitsSupported = 1024; 708 709 MinCmpXchgSizeInBits = 0; 710 SupportsUnalignedAtomics = false; 711 712 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 713 714 InitLibcalls(TM.getTargetTriple()); 715 InitCmpLibcallCCs(CmpLibcallCCs); 716 } 717 718 void TargetLoweringBase::initActions() { 719 // All operations default to being supported. 720 memset(OpActions, 0, sizeof(OpActions)); 721 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 722 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 723 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 724 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 725 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 726 std::fill(std::begin(TargetDAGCombineArray), 727 std::end(TargetDAGCombineArray), 0); 728 729 for (MVT VT : MVT::fp_valuetypes()) { 730 MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits()); 731 if (IntVT.isValid()) { 732 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 733 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 734 } 735 } 736 737 // Set default actions for various operations. 738 for (MVT VT : MVT::all_valuetypes()) { 739 // Default all indexed load / store to expand. 740 for (unsigned IM = (unsigned)ISD::PRE_INC; 741 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 742 setIndexedLoadAction(IM, VT, Expand); 743 setIndexedStoreAction(IM, VT, Expand); 744 setIndexedMaskedLoadAction(IM, VT, Expand); 745 setIndexedMaskedStoreAction(IM, VT, Expand); 746 } 747 748 // Most backends expect to see the node which just returns the value loaded. 749 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 750 751 // These operations default to expand. 752 setOperationAction(ISD::FGETSIGN, VT, Expand); 753 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 754 setOperationAction(ISD::FMINNUM, VT, Expand); 755 setOperationAction(ISD::FMAXNUM, VT, Expand); 756 setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); 757 setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); 758 setOperationAction(ISD::FMINIMUM, VT, Expand); 759 setOperationAction(ISD::FMAXIMUM, VT, Expand); 760 setOperationAction(ISD::FMAD, VT, Expand); 761 setOperationAction(ISD::SMIN, VT, Expand); 762 setOperationAction(ISD::SMAX, VT, Expand); 763 setOperationAction(ISD::UMIN, VT, Expand); 764 setOperationAction(ISD::UMAX, VT, Expand); 765 setOperationAction(ISD::ABS, VT, Expand); 766 setOperationAction(ISD::FSHL, VT, Expand); 767 setOperationAction(ISD::FSHR, VT, Expand); 768 setOperationAction(ISD::SADDSAT, VT, Expand); 769 setOperationAction(ISD::UADDSAT, VT, Expand); 770 setOperationAction(ISD::SSUBSAT, VT, Expand); 771 setOperationAction(ISD::USUBSAT, VT, Expand); 772 setOperationAction(ISD::SSHLSAT, VT, Expand); 773 setOperationAction(ISD::USHLSAT, VT, Expand); 774 setOperationAction(ISD::SMULFIX, VT, Expand); 775 setOperationAction(ISD::SMULFIXSAT, VT, Expand); 776 setOperationAction(ISD::UMULFIX, VT, Expand); 777 setOperationAction(ISD::UMULFIXSAT, VT, Expand); 778 setOperationAction(ISD::SDIVFIX, VT, Expand); 779 setOperationAction(ISD::SDIVFIXSAT, VT, Expand); 780 setOperationAction(ISD::UDIVFIX, VT, Expand); 781 setOperationAction(ISD::UDIVFIXSAT, VT, Expand); 782 setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand); 783 setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand); 784 785 // Overflow operations default to expand 786 setOperationAction(ISD::SADDO, VT, Expand); 787 setOperationAction(ISD::SSUBO, VT, Expand); 788 setOperationAction(ISD::UADDO, VT, Expand); 789 setOperationAction(ISD::USUBO, VT, Expand); 790 setOperationAction(ISD::SMULO, VT, Expand); 791 setOperationAction(ISD::UMULO, VT, Expand); 792 793 // ADDCARRY operations default to expand 794 setOperationAction(ISD::ADDCARRY, VT, Expand); 795 setOperationAction(ISD::SUBCARRY, VT, Expand); 796 setOperationAction(ISD::SETCCCARRY, VT, Expand); 797 setOperationAction(ISD::SADDO_CARRY, VT, Expand); 798 setOperationAction(ISD::SSUBO_CARRY, VT, Expand); 799 800 // ADDC/ADDE/SUBC/SUBE default to expand. 801 setOperationAction(ISD::ADDC, VT, Expand); 802 setOperationAction(ISD::ADDE, VT, Expand); 803 setOperationAction(ISD::SUBC, VT, Expand); 804 setOperationAction(ISD::SUBE, VT, Expand); 805 806 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 807 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 808 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 809 810 setOperationAction(ISD::BITREVERSE, VT, Expand); 811 setOperationAction(ISD::PARITY, VT, Expand); 812 813 // These library functions default to expand. 814 setOperationAction(ISD::FROUND, VT, Expand); 815 setOperationAction(ISD::FROUNDEVEN, VT, Expand); 816 setOperationAction(ISD::FPOWI, VT, Expand); 817 818 // These operations default to expand for vector types. 819 if (VT.isVector()) { 820 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 821 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 822 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 823 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 824 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 825 setOperationAction(ISD::SPLAT_VECTOR, VT, Expand); 826 } 827 828 // Constrained floating-point operations default to expand. 829 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 830 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 831 #include "llvm/IR/ConstrainedOps.def" 832 833 // For most targets @llvm.get.dynamic.area.offset just returns 0. 834 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 835 836 // Vector reduction default to expand. 837 setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); 838 setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); 839 setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); 840 setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); 841 setOperationAction(ISD::VECREDUCE_AND, VT, Expand); 842 setOperationAction(ISD::VECREDUCE_OR, VT, Expand); 843 setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); 844 setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); 845 setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); 846 setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); 847 setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); 848 setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); 849 setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); 850 setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand); 851 setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand); 852 } 853 854 // Most targets ignore the @llvm.prefetch intrinsic. 855 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 856 857 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 858 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 859 860 // ConstantFP nodes default to expand. Targets can either change this to 861 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 862 // to optimize expansions for certain constants. 863 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 864 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 865 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 866 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 867 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 868 869 // These library functions default to expand. 870 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 871 setOperationAction(ISD::FCBRT, VT, Expand); 872 setOperationAction(ISD::FLOG , VT, Expand); 873 setOperationAction(ISD::FLOG2, VT, Expand); 874 setOperationAction(ISD::FLOG10, VT, Expand); 875 setOperationAction(ISD::FEXP , VT, Expand); 876 setOperationAction(ISD::FEXP2, VT, Expand); 877 setOperationAction(ISD::FFLOOR, VT, Expand); 878 setOperationAction(ISD::FNEARBYINT, VT, Expand); 879 setOperationAction(ISD::FCEIL, VT, Expand); 880 setOperationAction(ISD::FRINT, VT, Expand); 881 setOperationAction(ISD::FTRUNC, VT, Expand); 882 setOperationAction(ISD::FROUND, VT, Expand); 883 setOperationAction(ISD::FROUNDEVEN, VT, Expand); 884 setOperationAction(ISD::LROUND, VT, Expand); 885 setOperationAction(ISD::LLROUND, VT, Expand); 886 setOperationAction(ISD::LRINT, VT, Expand); 887 setOperationAction(ISD::LLRINT, VT, Expand); 888 } 889 890 // Default ISD::TRAP to expand (which turns it into abort). 891 setOperationAction(ISD::TRAP, MVT::Other, Expand); 892 893 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 894 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 895 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 896 897 setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand); 898 } 899 900 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 901 EVT) const { 902 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 903 } 904 905 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 906 bool LegalTypes) const { 907 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 908 if (LHSTy.isVector()) 909 return LHSTy; 910 return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) 911 : getPointerTy(DL); 912 } 913 914 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 915 assert(isTypeLegal(VT)); 916 switch (Op) { 917 default: 918 return false; 919 case ISD::SDIV: 920 case ISD::UDIV: 921 case ISD::SREM: 922 case ISD::UREM: 923 return true; 924 } 925 } 926 927 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS, 928 unsigned DestAS) const { 929 return TM.isNoopAddrSpaceCast(SrcAS, DestAS); 930 } 931 932 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 933 // If the command-line option was specified, ignore this request. 934 if (!JumpIsExpensiveOverride.getNumOccurrences()) 935 JumpIsExpensive = isExpensive; 936 } 937 938 TargetLoweringBase::LegalizeKind 939 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 940 // If this is a simple type, use the ComputeRegisterProp mechanism. 941 if (VT.isSimple()) { 942 MVT SVT = VT.getSimpleVT(); 943 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 944 MVT NVT = TransformToType[SVT.SimpleTy]; 945 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 946 947 assert((LA == TypeLegal || LA == TypeSoftenFloat || 948 LA == TypeSoftPromoteHalf || 949 (NVT.isVector() || 950 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 951 "Promote may not follow Expand or Promote"); 952 953 if (LA == TypeSplitVector) 954 return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context)); 955 if (LA == TypeScalarizeVector) 956 return LegalizeKind(LA, SVT.getVectorElementType()); 957 return LegalizeKind(LA, NVT); 958 } 959 960 // Handle Extended Scalar Types. 961 if (!VT.isVector()) { 962 assert(VT.isInteger() && "Float types must be simple"); 963 unsigned BitSize = VT.getSizeInBits(); 964 // First promote to a power-of-two size, then expand if necessary. 965 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 966 EVT NVT = VT.getRoundIntegerType(Context); 967 assert(NVT != VT && "Unable to round integer VT"); 968 LegalizeKind NextStep = getTypeConversion(Context, NVT); 969 // Avoid multi-step promotion. 970 if (NextStep.first == TypePromoteInteger) 971 return NextStep; 972 // Return rounded integer type. 973 return LegalizeKind(TypePromoteInteger, NVT); 974 } 975 976 return LegalizeKind(TypeExpandInteger, 977 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 978 } 979 980 // Handle vector types. 981 ElementCount NumElts = VT.getVectorElementCount(); 982 EVT EltVT = VT.getVectorElementType(); 983 984 // Vectors with only one element are always scalarized. 985 if (NumElts.isScalar()) 986 return LegalizeKind(TypeScalarizeVector, EltVT); 987 988 if (VT.getVectorElementCount() == ElementCount::getScalable(1)) 989 report_fatal_error("Cannot legalize this vector"); 990 991 // Try to widen vector elements until the element type is a power of two and 992 // promote it to a legal type later on, for example: 993 // <3 x i8> -> <4 x i8> -> <4 x i32> 994 if (EltVT.isInteger()) { 995 // Vectors with a number of elements that is not a power of two are always 996 // widened, for example <3 x i8> -> <4 x i8>. 997 if (!VT.isPow2VectorType()) { 998 NumElts = NumElts.coefficientNextPowerOf2(); 999 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 1000 return LegalizeKind(TypeWidenVector, NVT); 1001 } 1002 1003 // Examine the element type. 1004 LegalizeKind LK = getTypeConversion(Context, EltVT); 1005 1006 // If type is to be expanded, split the vector. 1007 // <4 x i140> -> <2 x i140> 1008 if (LK.first == TypeExpandInteger) 1009 return LegalizeKind(TypeSplitVector, 1010 VT.getHalfNumVectorElementsVT(Context)); 1011 1012 // Promote the integer element types until a legal vector type is found 1013 // or until the element integer type is too big. If a legal type was not 1014 // found, fallback to the usual mechanism of widening/splitting the 1015 // vector. 1016 EVT OldEltVT = EltVT; 1017 while (true) { 1018 // Increase the bitwidth of the element to the next pow-of-two 1019 // (which is greater than 8 bits). 1020 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 1021 .getRoundIntegerType(Context); 1022 1023 // Stop trying when getting a non-simple element type. 1024 // Note that vector elements may be greater than legal vector element 1025 // types. Example: X86 XMM registers hold 64bit element on 32bit 1026 // systems. 1027 if (!EltVT.isSimple()) 1028 break; 1029 1030 // Build a new vector type and check if it is legal. 1031 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1032 // Found a legal promoted vector type. 1033 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 1034 return LegalizeKind(TypePromoteInteger, 1035 EVT::getVectorVT(Context, EltVT, NumElts)); 1036 } 1037 1038 // Reset the type to the unexpanded type if we did not find a legal vector 1039 // type with a promoted vector element type. 1040 EltVT = OldEltVT; 1041 } 1042 1043 // Try to widen the vector until a legal type is found. 1044 // If there is no wider legal type, split the vector. 1045 while (true) { 1046 // Round up to the next power of 2. 1047 NumElts = NumElts.coefficientNextPowerOf2(); 1048 1049 // If there is no simple vector type with this many elements then there 1050 // cannot be a larger legal vector type. Note that this assumes that 1051 // there are no skipped intermediate vector types in the simple types. 1052 if (!EltVT.isSimple()) 1053 break; 1054 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1055 if (LargerVector == MVT()) 1056 break; 1057 1058 // If this type is legal then widen the vector. 1059 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1060 return LegalizeKind(TypeWidenVector, LargerVector); 1061 } 1062 1063 // Widen odd vectors to next power of two. 1064 if (!VT.isPow2VectorType()) { 1065 EVT NVT = VT.getPow2VectorType(Context); 1066 return LegalizeKind(TypeWidenVector, NVT); 1067 } 1068 1069 // Vectors with illegal element types are expanded. 1070 EVT NVT = EVT::getVectorVT(Context, EltVT, 1071 VT.getVectorElementCount().divideCoefficientBy(2)); 1072 return LegalizeKind(TypeSplitVector, NVT); 1073 } 1074 1075 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1076 unsigned &NumIntermediates, 1077 MVT &RegisterVT, 1078 TargetLoweringBase *TLI) { 1079 // Figure out the right, legal destination reg to copy into. 1080 ElementCount EC = VT.getVectorElementCount(); 1081 MVT EltTy = VT.getVectorElementType(); 1082 1083 unsigned NumVectorRegs = 1; 1084 1085 // Scalable vectors cannot be scalarized, so splitting or widening is 1086 // required. 1087 if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue())) 1088 llvm_unreachable( 1089 "Splitting or widening of non-power-of-2 MVTs is not implemented."); 1090 1091 // FIXME: We don't support non-power-of-2-sized vectors for now. 1092 // Ideally we could break down into LHS/RHS like LegalizeDAG does. 1093 if (!isPowerOf2_32(EC.getKnownMinValue())) { 1094 // Split EC to unit size (scalable property is preserved). 1095 NumVectorRegs = EC.getKnownMinValue(); 1096 EC = ElementCount::getFixed(1); 1097 } 1098 1099 // Divide the input until we get to a supported size. This will 1100 // always end up with an EC that represent a scalar or a scalable 1101 // scalar. 1102 while (EC.getKnownMinValue() > 1 && 1103 !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) { 1104 EC = EC.divideCoefficientBy(2); 1105 NumVectorRegs <<= 1; 1106 } 1107 1108 NumIntermediates = NumVectorRegs; 1109 1110 MVT NewVT = MVT::getVectorVT(EltTy, EC); 1111 if (!TLI->isTypeLegal(NewVT)) 1112 NewVT = EltTy; 1113 IntermediateVT = NewVT; 1114 1115 unsigned LaneSizeInBits = NewVT.getScalarSizeInBits(); 1116 1117 // Convert sizes such as i33 to i64. 1118 if (!isPowerOf2_32(LaneSizeInBits)) 1119 LaneSizeInBits = NextPowerOf2(LaneSizeInBits); 1120 1121 MVT DestVT = TLI->getRegisterType(NewVT); 1122 RegisterVT = DestVT; 1123 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1124 return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits()); 1125 1126 // Otherwise, promotion or legal types use the same number of registers as 1127 // the vector decimated to the appropriate level. 1128 return NumVectorRegs; 1129 } 1130 1131 /// isLegalRC - Return true if the value types that can be represented by the 1132 /// specified register class are all legal. 1133 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1134 const TargetRegisterClass &RC) const { 1135 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1136 if (isTypeLegal(*I)) 1137 return true; 1138 return false; 1139 } 1140 1141 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1142 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1143 MachineBasicBlock * 1144 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1145 MachineBasicBlock *MBB) const { 1146 MachineInstr *MI = &InitialMI; 1147 MachineFunction &MF = *MI->getMF(); 1148 MachineFrameInfo &MFI = MF.getFrameInfo(); 1149 1150 // We're handling multiple types of operands here: 1151 // PATCHPOINT MetaArgs - live-in, read only, direct 1152 // STATEPOINT Deopt Spill - live-through, read only, indirect 1153 // STATEPOINT Deopt Alloca - live-through, read only, direct 1154 // (We're currently conservative and mark the deopt slots read/write in 1155 // practice.) 1156 // STATEPOINT GC Spill - live-through, read/write, indirect 1157 // STATEPOINT GC Alloca - live-through, read/write, direct 1158 // The live-in vs live-through is handled already (the live through ones are 1159 // all stack slots), but we need to handle the different type of stackmap 1160 // operands and memory effects here. 1161 1162 if (!llvm::any_of(MI->operands(), 1163 [](MachineOperand &Operand) { return Operand.isFI(); })) 1164 return MBB; 1165 1166 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1167 1168 // Inherit previous memory operands. 1169 MIB.cloneMemRefs(*MI); 1170 1171 for (unsigned i = 0; i < MI->getNumOperands(); ++i) { 1172 MachineOperand &MO = MI->getOperand(i); 1173 if (!MO.isFI()) { 1174 // Index of Def operand this Use it tied to. 1175 // Since Defs are coming before Uses, if Use is tied, then 1176 // index of Def must be smaller that index of that Use. 1177 // Also, Defs preserve their position in new MI. 1178 unsigned TiedTo = i; 1179 if (MO.isReg() && MO.isTied()) 1180 TiedTo = MI->findTiedOperandIdx(i); 1181 MIB.add(MO); 1182 if (TiedTo < i) 1183 MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1); 1184 continue; 1185 } 1186 1187 // foldMemoryOperand builds a new MI after replacing a single FI operand 1188 // with the canonical set of five x86 addressing-mode operands. 1189 int FI = MO.getIndex(); 1190 1191 // Add frame index operands recognized by stackmaps.cpp 1192 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1193 // indirect-mem-ref tag, size, #FI, offset. 1194 // Used for spills inserted by StatepointLowering. This codepath is not 1195 // used for patchpoints/stackmaps at all, for these spilling is done via 1196 // foldMemoryOperand callback only. 1197 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1198 MIB.addImm(StackMaps::IndirectMemRefOp); 1199 MIB.addImm(MFI.getObjectSize(FI)); 1200 MIB.add(MO); 1201 MIB.addImm(0); 1202 } else { 1203 // direct-mem-ref tag, #FI, offset. 1204 // Used by patchpoint, and direct alloca arguments to statepoints 1205 MIB.addImm(StackMaps::DirectMemRefOp); 1206 MIB.add(MO); 1207 MIB.addImm(0); 1208 } 1209 1210 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1211 1212 // Add a new memory operand for this FI. 1213 assert(MFI.getObjectOffset(FI) != -1); 1214 1215 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1216 // PATCHPOINT should be updated to do the same. (TODO) 1217 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1218 auto Flags = MachineMemOperand::MOLoad; 1219 MachineMemOperand *MMO = MF.getMachineMemOperand( 1220 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1221 MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI)); 1222 MIB->addMemOperand(MF, MMO); 1223 } 1224 } 1225 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1226 MI->eraseFromParent(); 1227 return MBB; 1228 } 1229 1230 /// findRepresentativeClass - Return the largest legal super-reg register class 1231 /// of the register class for the specified type and its associated "cost". 1232 // This function is in TargetLowering because it uses RegClassForVT which would 1233 // need to be moved to TargetRegisterInfo and would necessitate moving 1234 // isTypeLegal over as well - a massive change that would just require 1235 // TargetLowering having a TargetRegisterInfo class member that it would use. 1236 std::pair<const TargetRegisterClass *, uint8_t> 1237 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1238 MVT VT) const { 1239 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1240 if (!RC) 1241 return std::make_pair(RC, 0); 1242 1243 // Compute the set of all super-register classes. 1244 BitVector SuperRegRC(TRI->getNumRegClasses()); 1245 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1246 SuperRegRC.setBitsInMask(RCI.getMask()); 1247 1248 // Find the first legal register class with the largest spill size. 1249 const TargetRegisterClass *BestRC = RC; 1250 for (unsigned i : SuperRegRC.set_bits()) { 1251 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1252 // We want the largest possible spill size. 1253 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1254 continue; 1255 if (!isLegalRC(*TRI, *SuperRC)) 1256 continue; 1257 BestRC = SuperRC; 1258 } 1259 return std::make_pair(BestRC, 1); 1260 } 1261 1262 /// computeRegisterProperties - Once all of the register classes are added, 1263 /// this allows us to compute derived properties we expose. 1264 void TargetLoweringBase::computeRegisterProperties( 1265 const TargetRegisterInfo *TRI) { 1266 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 1267 "Too many value types for ValueTypeActions to hold!"); 1268 1269 // Everything defaults to needing one register. 1270 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1271 NumRegistersForVT[i] = 1; 1272 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1273 } 1274 // ...except isVoid, which doesn't need any registers. 1275 NumRegistersForVT[MVT::isVoid] = 0; 1276 1277 // Find the largest integer register class. 1278 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1279 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1280 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1281 1282 // Every integer value type larger than this largest register takes twice as 1283 // many registers to represent as the previous ValueType. 1284 for (unsigned ExpandedReg = LargestIntReg + 1; 1285 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1286 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1287 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1288 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1289 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1290 TypeExpandInteger); 1291 } 1292 1293 // Inspect all of the ValueType's smaller than the largest integer 1294 // register to see which ones need promotion. 1295 unsigned LegalIntReg = LargestIntReg; 1296 for (unsigned IntReg = LargestIntReg - 1; 1297 IntReg >= (unsigned)MVT::i1; --IntReg) { 1298 MVT IVT = (MVT::SimpleValueType)IntReg; 1299 if (isTypeLegal(IVT)) { 1300 LegalIntReg = IntReg; 1301 } else { 1302 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1303 (MVT::SimpleValueType)LegalIntReg; 1304 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1305 } 1306 } 1307 1308 // ppcf128 type is really two f64's. 1309 if (!isTypeLegal(MVT::ppcf128)) { 1310 if (isTypeLegal(MVT::f64)) { 1311 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1312 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1313 TransformToType[MVT::ppcf128] = MVT::f64; 1314 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1315 } else { 1316 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1317 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1318 TransformToType[MVT::ppcf128] = MVT::i128; 1319 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1320 } 1321 } 1322 1323 // Decide how to handle f128. If the target does not have native f128 support, 1324 // expand it to i128 and we will be generating soft float library calls. 1325 if (!isTypeLegal(MVT::f128)) { 1326 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1327 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1328 TransformToType[MVT::f128] = MVT::i128; 1329 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1330 } 1331 1332 // Decide how to handle f64. If the target does not have native f64 support, 1333 // expand it to i64 and we will be generating soft float library calls. 1334 if (!isTypeLegal(MVT::f64)) { 1335 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1336 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1337 TransformToType[MVT::f64] = MVT::i64; 1338 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1339 } 1340 1341 // Decide how to handle f32. If the target does not have native f32 support, 1342 // expand it to i32 and we will be generating soft float library calls. 1343 if (!isTypeLegal(MVT::f32)) { 1344 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1345 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1346 TransformToType[MVT::f32] = MVT::i32; 1347 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1348 } 1349 1350 // Decide how to handle f16. If the target does not have native f16 support, 1351 // promote it to f32, because there are no f16 library calls (except for 1352 // conversions). 1353 if (!isTypeLegal(MVT::f16)) { 1354 // Allow targets to control how we legalize half. 1355 if (softPromoteHalfType()) { 1356 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; 1357 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; 1358 TransformToType[MVT::f16] = MVT::f32; 1359 ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf); 1360 } else { 1361 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1362 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1363 TransformToType[MVT::f16] = MVT::f32; 1364 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1365 } 1366 } 1367 1368 // Loop over all of the vector value types to see which need transformations. 1369 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1370 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1371 MVT VT = (MVT::SimpleValueType) i; 1372 if (isTypeLegal(VT)) 1373 continue; 1374 1375 MVT EltVT = VT.getVectorElementType(); 1376 ElementCount EC = VT.getVectorElementCount(); 1377 bool IsLegalWiderType = false; 1378 bool IsScalable = VT.isScalableVector(); 1379 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1380 switch (PreferredAction) { 1381 case TypePromoteInteger: { 1382 MVT::SimpleValueType EndVT = IsScalable ? 1383 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1384 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1385 // Try to promote the elements of integer vectors. If no legal 1386 // promotion was found, fall through to the widen-vector method. 1387 for (unsigned nVT = i + 1; 1388 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1389 MVT SVT = (MVT::SimpleValueType) nVT; 1390 // Promote vectors of integers to vectors with the same number 1391 // of elements, with a wider element type. 1392 if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() && 1393 SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) { 1394 TransformToType[i] = SVT; 1395 RegisterTypeForVT[i] = SVT; 1396 NumRegistersForVT[i] = 1; 1397 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1398 IsLegalWiderType = true; 1399 break; 1400 } 1401 } 1402 if (IsLegalWiderType) 1403 break; 1404 LLVM_FALLTHROUGH; 1405 } 1406 1407 case TypeWidenVector: 1408 if (isPowerOf2_32(EC.getKnownMinValue())) { 1409 // Try to widen the vector. 1410 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1411 MVT SVT = (MVT::SimpleValueType) nVT; 1412 if (SVT.getVectorElementType() == EltVT && 1413 SVT.isScalableVector() == IsScalable && 1414 SVT.getVectorElementCount().getKnownMinValue() > 1415 EC.getKnownMinValue() && 1416 isTypeLegal(SVT)) { 1417 TransformToType[i] = SVT; 1418 RegisterTypeForVT[i] = SVT; 1419 NumRegistersForVT[i] = 1; 1420 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1421 IsLegalWiderType = true; 1422 break; 1423 } 1424 } 1425 if (IsLegalWiderType) 1426 break; 1427 } else { 1428 // Only widen to the next power of 2 to keep consistency with EVT. 1429 MVT NVT = VT.getPow2VectorType(); 1430 if (isTypeLegal(NVT)) { 1431 TransformToType[i] = NVT; 1432 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1433 RegisterTypeForVT[i] = NVT; 1434 NumRegistersForVT[i] = 1; 1435 break; 1436 } 1437 } 1438 LLVM_FALLTHROUGH; 1439 1440 case TypeSplitVector: 1441 case TypeScalarizeVector: { 1442 MVT IntermediateVT; 1443 MVT RegisterVT; 1444 unsigned NumIntermediates; 1445 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1446 NumIntermediates, RegisterVT, this); 1447 NumRegistersForVT[i] = NumRegisters; 1448 assert(NumRegistersForVT[i] == NumRegisters && 1449 "NumRegistersForVT size cannot represent NumRegisters!"); 1450 RegisterTypeForVT[i] = RegisterVT; 1451 1452 MVT NVT = VT.getPow2VectorType(); 1453 if (NVT == VT) { 1454 // Type is already a power of 2. The default action is to split. 1455 TransformToType[i] = MVT::Other; 1456 if (PreferredAction == TypeScalarizeVector) 1457 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1458 else if (PreferredAction == TypeSplitVector) 1459 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1460 else if (EC.getKnownMinValue() > 1) 1461 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1462 else 1463 ValueTypeActions.setTypeAction(VT, EC.isScalable() 1464 ? TypeScalarizeScalableVector 1465 : TypeScalarizeVector); 1466 } else { 1467 TransformToType[i] = NVT; 1468 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1469 } 1470 break; 1471 } 1472 default: 1473 llvm_unreachable("Unknown vector legalization action!"); 1474 } 1475 } 1476 1477 // Determine the 'representative' register class for each value type. 1478 // An representative register class is the largest (meaning one which is 1479 // not a sub-register class / subreg register class) legal register class for 1480 // a group of value types. For example, on i386, i8, i16, and i32 1481 // representative would be GR32; while on x86_64 it's GR64. 1482 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1483 const TargetRegisterClass* RRC; 1484 uint8_t Cost; 1485 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1486 RepRegClassForVT[i] = RRC; 1487 RepRegClassCostForVT[i] = Cost; 1488 } 1489 } 1490 1491 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1492 EVT VT) const { 1493 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1494 return getPointerTy(DL).SimpleTy; 1495 } 1496 1497 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1498 return MVT::i32; // return the default value 1499 } 1500 1501 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1502 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1503 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1504 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1505 /// 1506 /// This method returns the number of registers needed, and the VT for each 1507 /// register. It also returns the VT and quantity of the intermediate values 1508 /// before they are promoted/expanded. 1509 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1510 EVT &IntermediateVT, 1511 unsigned &NumIntermediates, 1512 MVT &RegisterVT) const { 1513 ElementCount EltCnt = VT.getVectorElementCount(); 1514 1515 // If there is a wider vector type with the same element type as this one, 1516 // or a promoted vector type that has the same number of elements which 1517 // are wider, then we should convert to that legal vector type. 1518 // This handles things like <2 x float> -> <4 x float> and 1519 // <4 x i1> -> <4 x i32>. 1520 LegalizeTypeAction TA = getTypeAction(Context, VT); 1521 if (EltCnt.getKnownMinValue() != 1 && 1522 (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1523 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1524 if (isTypeLegal(RegisterEVT)) { 1525 IntermediateVT = RegisterEVT; 1526 RegisterVT = RegisterEVT.getSimpleVT(); 1527 NumIntermediates = 1; 1528 return 1; 1529 } 1530 } 1531 1532 // Figure out the right, legal destination reg to copy into. 1533 EVT EltTy = VT.getVectorElementType(); 1534 1535 unsigned NumVectorRegs = 1; 1536 1537 // Scalable vectors cannot be scalarized, so handle the legalisation of the 1538 // types like done elsewhere in SelectionDAG. 1539 if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.getKnownMinValue())) { 1540 LegalizeKind LK; 1541 EVT PartVT = VT; 1542 do { 1543 // Iterate until we've found a legal (part) type to hold VT. 1544 LK = getTypeConversion(Context, PartVT); 1545 PartVT = LK.second; 1546 } while (LK.first != TypeLegal); 1547 1548 NumIntermediates = VT.getVectorElementCount().getKnownMinValue() / 1549 PartVT.getVectorElementCount().getKnownMinValue(); 1550 1551 // FIXME: This code needs to be extended to handle more complex vector 1552 // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only 1553 // supported cases are vectors that are broken down into equal parts 1554 // such as nxv6i64 -> 3 x nxv2i64. 1555 assert((PartVT.getVectorElementCount() * NumIntermediates) == 1556 VT.getVectorElementCount() && 1557 "Expected an integer multiple of PartVT"); 1558 IntermediateVT = PartVT; 1559 RegisterVT = getRegisterType(Context, IntermediateVT); 1560 return NumIntermediates; 1561 } 1562 1563 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally 1564 // we could break down into LHS/RHS like LegalizeDAG does. 1565 if (!isPowerOf2_32(EltCnt.getKnownMinValue())) { 1566 NumVectorRegs = EltCnt.getKnownMinValue(); 1567 EltCnt = ElementCount::getFixed(1); 1568 } 1569 1570 // Divide the input until we get to a supported size. This will always 1571 // end with a scalar if the target doesn't support vectors. 1572 while (EltCnt.getKnownMinValue() > 1 && 1573 !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) { 1574 EltCnt = EltCnt.divideCoefficientBy(2); 1575 NumVectorRegs <<= 1; 1576 } 1577 1578 NumIntermediates = NumVectorRegs; 1579 1580 EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt); 1581 if (!isTypeLegal(NewVT)) 1582 NewVT = EltTy; 1583 IntermediateVT = NewVT; 1584 1585 MVT DestVT = getRegisterType(Context, NewVT); 1586 RegisterVT = DestVT; 1587 1588 if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16. 1589 TypeSize NewVTSize = NewVT.getSizeInBits(); 1590 // Convert sizes such as i33 to i64. 1591 if (!isPowerOf2_32(NewVTSize.getKnownMinSize())) 1592 NewVTSize = NewVTSize.coefficientNextPowerOf2(); 1593 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1594 } 1595 1596 // Otherwise, promotion or legal types use the same number of registers as 1597 // the vector decimated to the appropriate level. 1598 return NumVectorRegs; 1599 } 1600 1601 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1602 uint64_t NumCases, 1603 uint64_t Range, 1604 ProfileSummaryInfo *PSI, 1605 BlockFrequencyInfo *BFI) const { 1606 // FIXME: This function check the maximum table size and density, but the 1607 // minimum size is not checked. It would be nice if the minimum size is 1608 // also combined within this function. Currently, the minimum size check is 1609 // performed in findJumpTable() in SelectionDAGBuiler and 1610 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1611 const bool OptForSize = 1612 SI->getParent()->getParent()->hasOptSize() || 1613 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1614 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1615 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1616 1617 // Check whether the number of cases is small enough and 1618 // the range is dense enough for a jump table. 1619 return (OptForSize || Range <= MaxJumpTableSize) && 1620 (NumCases * 100 >= Range * MinDensity); 1621 } 1622 1623 /// Get the EVTs and ArgFlags collections that represent the legalized return 1624 /// type of the given function. This does not require a DAG or a return value, 1625 /// and is suitable for use before any DAGs for the function are constructed. 1626 /// TODO: Move this out of TargetLowering.cpp. 1627 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1628 AttributeList attr, 1629 SmallVectorImpl<ISD::OutputArg> &Outs, 1630 const TargetLowering &TLI, const DataLayout &DL) { 1631 SmallVector<EVT, 4> ValueVTs; 1632 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1633 unsigned NumValues = ValueVTs.size(); 1634 if (NumValues == 0) return; 1635 1636 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1637 EVT VT = ValueVTs[j]; 1638 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1639 1640 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1641 ExtendKind = ISD::SIGN_EXTEND; 1642 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1643 ExtendKind = ISD::ZERO_EXTEND; 1644 1645 // FIXME: C calling convention requires the return type to be promoted to 1646 // at least 32-bit. But this is not necessary for non-C calling 1647 // conventions. The frontend should mark functions whose return values 1648 // require promoting with signext or zeroext attributes. 1649 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1650 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1651 if (VT.bitsLT(MinVT)) 1652 VT = MinVT; 1653 } 1654 1655 unsigned NumParts = 1656 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1657 MVT PartVT = 1658 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1659 1660 // 'inreg' on function refers to return value 1661 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1662 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) 1663 Flags.setInReg(); 1664 1665 // Propagate extension type if any 1666 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1667 Flags.setSExt(); 1668 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1669 Flags.setZExt(); 1670 1671 for (unsigned i = 0; i < NumParts; ++i) 1672 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1673 } 1674 } 1675 1676 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1677 /// function arguments in the caller parameter area. This is the actual 1678 /// alignment, not its logarithm. 1679 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1680 const DataLayout &DL) const { 1681 return DL.getABITypeAlign(Ty).value(); 1682 } 1683 1684 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1685 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1686 Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { 1687 // Check if the specified alignment is sufficient based on the data layout. 1688 // TODO: While using the data layout works in practice, a better solution 1689 // would be to implement this check directly (make this a virtual function). 1690 // For example, the ABI alignment may change based on software platform while 1691 // this function should only be affected by hardware implementation. 1692 Type *Ty = VT.getTypeForEVT(Context); 1693 if (Alignment >= DL.getABITypeAlign(Ty)) { 1694 // Assume that an access that meets the ABI-specified alignment is fast. 1695 if (Fast != nullptr) 1696 *Fast = true; 1697 return true; 1698 } 1699 1700 // This is a misaligned access. 1701 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags, 1702 Fast); 1703 } 1704 1705 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1706 LLVMContext &Context, const DataLayout &DL, EVT VT, 1707 const MachineMemOperand &MMO, bool *Fast) const { 1708 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1709 MMO.getAlign(), MMO.getFlags(), Fast); 1710 } 1711 1712 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1713 const DataLayout &DL, EVT VT, 1714 unsigned AddrSpace, Align Alignment, 1715 MachineMemOperand::Flags Flags, 1716 bool *Fast) const { 1717 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1718 Flags, Fast); 1719 } 1720 1721 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1722 const DataLayout &DL, EVT VT, 1723 const MachineMemOperand &MMO, 1724 bool *Fast) const { 1725 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(), 1726 MMO.getFlags(), Fast); 1727 } 1728 1729 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1730 const DataLayout &DL, LLT Ty, 1731 const MachineMemOperand &MMO, 1732 bool *Fast) const { 1733 return allowsMemoryAccess(Context, DL, getMVTForLLT(Ty), MMO.getAddrSpace(), 1734 MMO.getAlign(), MMO.getFlags(), Fast); 1735 } 1736 1737 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { 1738 return BranchProbability(MinPercentageForPredictableBranch, 100); 1739 } 1740 1741 //===----------------------------------------------------------------------===// 1742 // TargetTransformInfo Helpers 1743 //===----------------------------------------------------------------------===// 1744 1745 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1746 enum InstructionOpcodes { 1747 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1748 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1749 #include "llvm/IR/Instruction.def" 1750 }; 1751 switch (static_cast<InstructionOpcodes>(Opcode)) { 1752 case Ret: return 0; 1753 case Br: return 0; 1754 case Switch: return 0; 1755 case IndirectBr: return 0; 1756 case Invoke: return 0; 1757 case CallBr: return 0; 1758 case Resume: return 0; 1759 case Unreachable: return 0; 1760 case CleanupRet: return 0; 1761 case CatchRet: return 0; 1762 case CatchPad: return 0; 1763 case CatchSwitch: return 0; 1764 case CleanupPad: return 0; 1765 case FNeg: return ISD::FNEG; 1766 case Add: return ISD::ADD; 1767 case FAdd: return ISD::FADD; 1768 case Sub: return ISD::SUB; 1769 case FSub: return ISD::FSUB; 1770 case Mul: return ISD::MUL; 1771 case FMul: return ISD::FMUL; 1772 case UDiv: return ISD::UDIV; 1773 case SDiv: return ISD::SDIV; 1774 case FDiv: return ISD::FDIV; 1775 case URem: return ISD::UREM; 1776 case SRem: return ISD::SREM; 1777 case FRem: return ISD::FREM; 1778 case Shl: return ISD::SHL; 1779 case LShr: return ISD::SRL; 1780 case AShr: return ISD::SRA; 1781 case And: return ISD::AND; 1782 case Or: return ISD::OR; 1783 case Xor: return ISD::XOR; 1784 case Alloca: return 0; 1785 case Load: return ISD::LOAD; 1786 case Store: return ISD::STORE; 1787 case GetElementPtr: return 0; 1788 case Fence: return 0; 1789 case AtomicCmpXchg: return 0; 1790 case AtomicRMW: return 0; 1791 case Trunc: return ISD::TRUNCATE; 1792 case ZExt: return ISD::ZERO_EXTEND; 1793 case SExt: return ISD::SIGN_EXTEND; 1794 case FPToUI: return ISD::FP_TO_UINT; 1795 case FPToSI: return ISD::FP_TO_SINT; 1796 case UIToFP: return ISD::UINT_TO_FP; 1797 case SIToFP: return ISD::SINT_TO_FP; 1798 case FPTrunc: return ISD::FP_ROUND; 1799 case FPExt: return ISD::FP_EXTEND; 1800 case PtrToInt: return ISD::BITCAST; 1801 case IntToPtr: return ISD::BITCAST; 1802 case BitCast: return ISD::BITCAST; 1803 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1804 case ICmp: return ISD::SETCC; 1805 case FCmp: return ISD::SETCC; 1806 case PHI: return 0; 1807 case Call: return 0; 1808 case Select: return ISD::SELECT; 1809 case UserOp1: return 0; 1810 case UserOp2: return 0; 1811 case VAArg: return 0; 1812 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1813 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1814 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1815 case ExtractValue: return ISD::MERGE_VALUES; 1816 case InsertValue: return ISD::MERGE_VALUES; 1817 case LandingPad: return 0; 1818 case Freeze: return ISD::FREEZE; 1819 } 1820 1821 llvm_unreachable("Unknown instruction type encountered!"); 1822 } 1823 1824 std::pair<int, MVT> 1825 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1826 Type *Ty) const { 1827 LLVMContext &C = Ty->getContext(); 1828 EVT MTy = getValueType(DL, Ty); 1829 1830 int Cost = 1; 1831 // We keep legalizing the type until we find a legal kind. We assume that 1832 // the only operation that costs anything is the split. After splitting 1833 // we need to handle two types. 1834 while (true) { 1835 LegalizeKind LK = getTypeConversion(C, MTy); 1836 1837 if (LK.first == TypeLegal) 1838 return std::make_pair(Cost, MTy.getSimpleVT()); 1839 1840 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1841 Cost *= 2; 1842 1843 // Do not loop with f128 type. 1844 if (MTy == LK.second) 1845 return std::make_pair(Cost, MTy.getSimpleVT()); 1846 1847 // Keep legalizing the type. 1848 MTy = LK.second; 1849 } 1850 } 1851 1852 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, 1853 bool UseTLS) const { 1854 // compiler-rt provides a variable with a magic name. Targets that do not 1855 // link with compiler-rt may also provide such a variable. 1856 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1857 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1858 auto UnsafeStackPtr = 1859 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1860 1861 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1862 1863 if (!UnsafeStackPtr) { 1864 auto TLSModel = UseTLS ? 1865 GlobalValue::InitialExecTLSModel : 1866 GlobalValue::NotThreadLocal; 1867 // The global variable is not defined yet, define it ourselves. 1868 // We use the initial-exec TLS model because we do not support the 1869 // variable living anywhere other than in the main executable. 1870 UnsafeStackPtr = new GlobalVariable( 1871 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1872 UnsafeStackPtrVar, nullptr, TLSModel); 1873 } else { 1874 // The variable exists, check its type and attributes. 1875 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1876 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1877 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1878 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1879 (UseTLS ? "" : "not ") + "be thread-local"); 1880 } 1881 return UnsafeStackPtr; 1882 } 1883 1884 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 1885 if (!TM.getTargetTriple().isAndroid()) 1886 return getDefaultSafeStackPointerLocation(IRB, true); 1887 1888 // Android provides a libc function to retrieve the address of the current 1889 // thread's unsafe stack pointer. 1890 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1891 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1892 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1893 StackPtrTy->getPointerTo(0)); 1894 return IRB.CreateCall(Fn); 1895 } 1896 1897 //===----------------------------------------------------------------------===// 1898 // Loop Strength Reduction hooks 1899 //===----------------------------------------------------------------------===// 1900 1901 /// isLegalAddressingMode - Return true if the addressing mode represented 1902 /// by AM is legal for this target, for a load/store of the specified type. 1903 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1904 const AddrMode &AM, Type *Ty, 1905 unsigned AS, Instruction *I) const { 1906 // The default implementation of this implements a conservative RISCy, r+r and 1907 // r+i addr mode. 1908 1909 // Allows a sign-extended 16-bit immediate field. 1910 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1911 return false; 1912 1913 // No global is ever allowed as a base. 1914 if (AM.BaseGV) 1915 return false; 1916 1917 // Only support r+r, 1918 switch (AM.Scale) { 1919 case 0: // "r+i" or just "i", depending on HasBaseReg. 1920 break; 1921 case 1: 1922 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1923 return false; 1924 // Otherwise we have r+r or r+i. 1925 break; 1926 case 2: 1927 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1928 return false; 1929 // Allow 2*r as r+r. 1930 break; 1931 default: // Don't allow n * r 1932 return false; 1933 } 1934 1935 return true; 1936 } 1937 1938 //===----------------------------------------------------------------------===// 1939 // Stack Protector 1940 //===----------------------------------------------------------------------===// 1941 1942 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1943 // so that SelectionDAG handle SSP. 1944 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { 1945 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1946 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1947 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1948 Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy); 1949 if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C)) 1950 G->setVisibility(GlobalValue::HiddenVisibility); 1951 return C; 1952 } 1953 return nullptr; 1954 } 1955 1956 // Currently only support "standard" __stack_chk_guard. 1957 // TODO: add LOAD_STACK_GUARD support. 1958 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1959 if (!M.getNamedValue("__stack_chk_guard")) { 1960 auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1961 GlobalVariable::ExternalLinkage, nullptr, 1962 "__stack_chk_guard"); 1963 if (TM.getRelocationModel() == Reloc::Static && 1964 !TM.getTargetTriple().isWindowsGNUEnvironment() && 1965 !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD())) 1966 GV->setDSOLocal(true); 1967 } 1968 } 1969 1970 // Currently only support "standard" __stack_chk_guard. 1971 // TODO: add LOAD_STACK_GUARD support. 1972 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1973 return M.getNamedValue("__stack_chk_guard"); 1974 } 1975 1976 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1977 return nullptr; 1978 } 1979 1980 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1981 return MinimumJumpTableEntries; 1982 } 1983 1984 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 1985 MinimumJumpTableEntries = Val; 1986 } 1987 1988 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 1989 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 1990 } 1991 1992 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 1993 return MaximumJumpTableSize; 1994 } 1995 1996 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 1997 MaximumJumpTableSize = Val; 1998 } 1999 2000 bool TargetLoweringBase::isJumpTableRelative() const { 2001 return getTargetMachine().isPositionIndependent(); 2002 } 2003 2004 //===----------------------------------------------------------------------===// 2005 // Reciprocal Estimates 2006 //===----------------------------------------------------------------------===// 2007 2008 /// Get the reciprocal estimate attribute string for a function that will 2009 /// override the target defaults. 2010 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 2011 const Function &F = MF.getFunction(); 2012 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 2013 } 2014 2015 /// Construct a string for the given reciprocal operation of the given type. 2016 /// This string should match the corresponding option to the front-end's 2017 /// "-mrecip" flag assuming those strings have been passed through in an 2018 /// attribute string. For example, "vec-divf" for a division of a vXf32. 2019 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 2020 std::string Name = VT.isVector() ? "vec-" : ""; 2021 2022 Name += IsSqrt ? "sqrt" : "div"; 2023 2024 // TODO: Handle "half" or other float types? 2025 if (VT.getScalarType() == MVT::f64) { 2026 Name += "d"; 2027 } else { 2028 assert(VT.getScalarType() == MVT::f32 && 2029 "Unexpected FP type for reciprocal estimate"); 2030 Name += "f"; 2031 } 2032 2033 return Name; 2034 } 2035 2036 /// Return the character position and value (a single numeric character) of a 2037 /// customized refinement operation in the input string if it exists. Return 2038 /// false if there is no customized refinement step count. 2039 static bool parseRefinementStep(StringRef In, size_t &Position, 2040 uint8_t &Value) { 2041 const char RefStepToken = ':'; 2042 Position = In.find(RefStepToken); 2043 if (Position == StringRef::npos) 2044 return false; 2045 2046 StringRef RefStepString = In.substr(Position + 1); 2047 // Allow exactly one numeric character for the additional refinement 2048 // step parameter. 2049 if (RefStepString.size() == 1) { 2050 char RefStepChar = RefStepString[0]; 2051 if (isDigit(RefStepChar)) { 2052 Value = RefStepChar - '0'; 2053 return true; 2054 } 2055 } 2056 report_fatal_error("Invalid refinement step for -recip."); 2057 } 2058 2059 /// For the input attribute string, return one of the ReciprocalEstimate enum 2060 /// status values (enabled, disabled, or not specified) for this operation on 2061 /// the specified data type. 2062 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 2063 if (Override.empty()) 2064 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2065 2066 SmallVector<StringRef, 4> OverrideVector; 2067 Override.split(OverrideVector, ','); 2068 unsigned NumArgs = OverrideVector.size(); 2069 2070 // Check if "all", "none", or "default" was specified. 2071 if (NumArgs == 1) { 2072 // Look for an optional setting of the number of refinement steps needed 2073 // for this type of reciprocal operation. 2074 size_t RefPos; 2075 uint8_t RefSteps; 2076 if (parseRefinementStep(Override, RefPos, RefSteps)) { 2077 // Split the string for further processing. 2078 Override = Override.substr(0, RefPos); 2079 } 2080 2081 // All reciprocal types are enabled. 2082 if (Override == "all") 2083 return TargetLoweringBase::ReciprocalEstimate::Enabled; 2084 2085 // All reciprocal types are disabled. 2086 if (Override == "none") 2087 return TargetLoweringBase::ReciprocalEstimate::Disabled; 2088 2089 // Target defaults for enablement are used. 2090 if (Override == "default") 2091 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2092 } 2093 2094 // The attribute string may omit the size suffix ('f'/'d'). 2095 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2096 std::string VTNameNoSize = VTName; 2097 VTNameNoSize.pop_back(); 2098 static const char DisabledPrefix = '!'; 2099 2100 for (StringRef RecipType : OverrideVector) { 2101 size_t RefPos; 2102 uint8_t RefSteps; 2103 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 2104 RecipType = RecipType.substr(0, RefPos); 2105 2106 // Ignore the disablement token for string matching. 2107 bool IsDisabled = RecipType[0] == DisabledPrefix; 2108 if (IsDisabled) 2109 RecipType = RecipType.substr(1); 2110 2111 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2112 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 2113 : TargetLoweringBase::ReciprocalEstimate::Enabled; 2114 } 2115 2116 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2117 } 2118 2119 /// For the input attribute string, return the customized refinement step count 2120 /// for this operation on the specified data type. If the step count does not 2121 /// exist, return the ReciprocalEstimate enum value for unspecified. 2122 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 2123 if (Override.empty()) 2124 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2125 2126 SmallVector<StringRef, 4> OverrideVector; 2127 Override.split(OverrideVector, ','); 2128 unsigned NumArgs = OverrideVector.size(); 2129 2130 // Check if "all", "default", or "none" was specified. 2131 if (NumArgs == 1) { 2132 // Look for an optional setting of the number of refinement steps needed 2133 // for this type of reciprocal operation. 2134 size_t RefPos; 2135 uint8_t RefSteps; 2136 if (!parseRefinementStep(Override, RefPos, RefSteps)) 2137 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2138 2139 // Split the string for further processing. 2140 Override = Override.substr(0, RefPos); 2141 assert(Override != "none" && 2142 "Disabled reciprocals, but specifed refinement steps?"); 2143 2144 // If this is a general override, return the specified number of steps. 2145 if (Override == "all" || Override == "default") 2146 return RefSteps; 2147 } 2148 2149 // The attribute string may omit the size suffix ('f'/'d'). 2150 std::string VTName = getReciprocalOpName(IsSqrt, VT); 2151 std::string VTNameNoSize = VTName; 2152 VTNameNoSize.pop_back(); 2153 2154 for (StringRef RecipType : OverrideVector) { 2155 size_t RefPos; 2156 uint8_t RefSteps; 2157 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 2158 continue; 2159 2160 RecipType = RecipType.substr(0, RefPos); 2161 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 2162 return RefSteps; 2163 } 2164 2165 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 2166 } 2167 2168 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 2169 MachineFunction &MF) const { 2170 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 2171 } 2172 2173 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 2174 MachineFunction &MF) const { 2175 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 2176 } 2177 2178 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 2179 MachineFunction &MF) const { 2180 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 2181 } 2182 2183 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2184 MachineFunction &MF) const { 2185 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2186 } 2187 2188 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2189 MF.getRegInfo().freezeReservedRegs(MF); 2190 } 2191 2192 MachineMemOperand::Flags 2193 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI, 2194 const DataLayout &DL) const { 2195 MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad; 2196 if (LI.isVolatile()) 2197 Flags |= MachineMemOperand::MOVolatile; 2198 2199 if (LI.hasMetadata(LLVMContext::MD_nontemporal)) 2200 Flags |= MachineMemOperand::MONonTemporal; 2201 2202 if (LI.hasMetadata(LLVMContext::MD_invariant_load)) 2203 Flags |= MachineMemOperand::MOInvariant; 2204 2205 if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL)) 2206 Flags |= MachineMemOperand::MODereferenceable; 2207 2208 Flags |= getTargetMMOFlags(LI); 2209 return Flags; 2210 } 2211 2212 MachineMemOperand::Flags 2213 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI, 2214 const DataLayout &DL) const { 2215 MachineMemOperand::Flags Flags = MachineMemOperand::MOStore; 2216 2217 if (SI.isVolatile()) 2218 Flags |= MachineMemOperand::MOVolatile; 2219 2220 if (SI.hasMetadata(LLVMContext::MD_nontemporal)) 2221 Flags |= MachineMemOperand::MONonTemporal; 2222 2223 // FIXME: Not preserving dereferenceable 2224 Flags |= getTargetMMOFlags(SI); 2225 return Flags; 2226 } 2227 2228 MachineMemOperand::Flags 2229 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI, 2230 const DataLayout &DL) const { 2231 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 2232 2233 if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) { 2234 if (RMW->isVolatile()) 2235 Flags |= MachineMemOperand::MOVolatile; 2236 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) { 2237 if (CmpX->isVolatile()) 2238 Flags |= MachineMemOperand::MOVolatile; 2239 } else 2240 llvm_unreachable("not an atomic instruction"); 2241 2242 // FIXME: Not preserving dereferenceable 2243 Flags |= getTargetMMOFlags(AI); 2244 return Flags; 2245 } 2246 2247 //===----------------------------------------------------------------------===// 2248 // GlobalISel Hooks 2249 //===----------------------------------------------------------------------===// 2250 2251 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI, 2252 const TargetTransformInfo *TTI) const { 2253 auto &MF = *MI.getMF(); 2254 auto &MRI = MF.getRegInfo(); 2255 // Assuming a spill and reload of a value has a cost of 1 instruction each, 2256 // this helper function computes the maximum number of uses we should consider 2257 // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We 2258 // break even in terms of code size when the original MI has 2 users vs 2259 // choosing to potentially spill. Any more than 2 users we we have a net code 2260 // size increase. This doesn't take into account register pressure though. 2261 auto maxUses = [](unsigned RematCost) { 2262 // A cost of 1 means remats are basically free. 2263 if (RematCost == 1) 2264 return UINT_MAX; 2265 if (RematCost == 2) 2266 return 2U; 2267 2268 // Remat is too expensive, only sink if there's one user. 2269 if (RematCost > 2) 2270 return 1U; 2271 llvm_unreachable("Unexpected remat cost"); 2272 }; 2273 2274 // Helper to walk through uses and terminate if we've reached a limit. Saves 2275 // us spending time traversing uses if all we want to know is if it's >= min. 2276 auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) { 2277 unsigned NumUses = 0; 2278 auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end(); 2279 for (; UI != UE && NumUses < MaxUses; ++UI) { 2280 NumUses++; 2281 } 2282 // If we haven't reached the end yet then there are more than MaxUses users. 2283 return UI == UE; 2284 }; 2285 2286 switch (MI.getOpcode()) { 2287 default: 2288 return false; 2289 // Constants-like instructions should be close to their users. 2290 // We don't want long live-ranges for them. 2291 case TargetOpcode::G_CONSTANT: 2292 case TargetOpcode::G_FCONSTANT: 2293 case TargetOpcode::G_FRAME_INDEX: 2294 case TargetOpcode::G_INTTOPTR: 2295 return true; 2296 case TargetOpcode::G_GLOBAL_VALUE: { 2297 unsigned RematCost = TTI->getGISelRematGlobalCost(); 2298 Register Reg = MI.getOperand(0).getReg(); 2299 unsigned MaxUses = maxUses(RematCost); 2300 if (MaxUses == UINT_MAX) 2301 return true; // Remats are "free" so always localize. 2302 bool B = isUsesAtMost(Reg, MaxUses); 2303 return B; 2304 } 2305 } 2306 } 2307