xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 21817992b3314c908ab50f0bb88d2ee750b9c4ac)
1  //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This implements the TargetLoweringBase class.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/ADT/BitVector.h"
14  #include "llvm/ADT/STLExtras.h"
15  #include "llvm/ADT/SmallVector.h"
16  #include "llvm/ADT/StringExtras.h"
17  #include "llvm/ADT/StringRef.h"
18  #include "llvm/ADT/Twine.h"
19  #include "llvm/Analysis/Loads.h"
20  #include "llvm/Analysis/TargetTransformInfo.h"
21  #include "llvm/CodeGen/Analysis.h"
22  #include "llvm/CodeGen/ISDOpcodes.h"
23  #include "llvm/CodeGen/MachineBasicBlock.h"
24  #include "llvm/CodeGen/MachineFrameInfo.h"
25  #include "llvm/CodeGen/MachineFunction.h"
26  #include "llvm/CodeGen/MachineInstr.h"
27  #include "llvm/CodeGen/MachineInstrBuilder.h"
28  #include "llvm/CodeGen/MachineMemOperand.h"
29  #include "llvm/CodeGen/MachineOperand.h"
30  #include "llvm/CodeGen/MachineRegisterInfo.h"
31  #include "llvm/CodeGen/MachineValueType.h"
32  #include "llvm/CodeGen/RuntimeLibcalls.h"
33  #include "llvm/CodeGen/StackMaps.h"
34  #include "llvm/CodeGen/TargetLowering.h"
35  #include "llvm/CodeGen/TargetOpcodes.h"
36  #include "llvm/CodeGen/TargetRegisterInfo.h"
37  #include "llvm/CodeGen/ValueTypes.h"
38  #include "llvm/IR/Attributes.h"
39  #include "llvm/IR/CallingConv.h"
40  #include "llvm/IR/DataLayout.h"
41  #include "llvm/IR/DerivedTypes.h"
42  #include "llvm/IR/Function.h"
43  #include "llvm/IR/GlobalValue.h"
44  #include "llvm/IR/GlobalVariable.h"
45  #include "llvm/IR/IRBuilder.h"
46  #include "llvm/IR/Module.h"
47  #include "llvm/IR/Type.h"
48  #include "llvm/Support/Casting.h"
49  #include "llvm/Support/CommandLine.h"
50  #include "llvm/Support/Compiler.h"
51  #include "llvm/Support/ErrorHandling.h"
52  #include "llvm/Support/MathExtras.h"
53  #include "llvm/Target/TargetMachine.h"
54  #include "llvm/Target/TargetOptions.h"
55  #include "llvm/TargetParser/Triple.h"
56  #include "llvm/Transforms/Utils/SizeOpts.h"
57  #include <algorithm>
58  #include <cassert>
59  #include <cstdint>
60  #include <cstring>
61  #include <iterator>
62  #include <string>
63  #include <tuple>
64  #include <utility>
65  
66  using namespace llvm;
67  
68  static cl::opt<bool> JumpIsExpensiveOverride(
69      "jump-is-expensive", cl::init(false),
70      cl::desc("Do not create extra branches to split comparison logic."),
71      cl::Hidden);
72  
73  static cl::opt<unsigned> MinimumJumpTableEntries
74    ("min-jump-table-entries", cl::init(4), cl::Hidden,
75     cl::desc("Set minimum number of entries to use a jump table."));
76  
77  static cl::opt<unsigned> MaximumJumpTableSize
78    ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79     cl::desc("Set maximum size of jump tables."));
80  
81  /// Minimum jump table density for normal functions.
82  static cl::opt<unsigned>
83      JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                       cl::desc("Minimum density for building a jump table in "
85                                "a normal function"));
86  
87  /// Minimum jump table density for -Os or -Oz functions.
88  static cl::opt<unsigned> OptsizeJumpTableDensity(
89      "optsize-jump-table-density", cl::init(40), cl::Hidden,
90      cl::desc("Minimum density for building a jump table in "
91               "an optsize function"));
92  
93  // FIXME: This option is only to test if the strict fp operation processed
94  // correctly by preventing mutating strict fp operation to normal fp operation
95  // during development. When the backend supports strict float operation, this
96  // option will be meaningless.
97  static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98         cl::desc("Don't mutate strict-float node to a legalize node"),
99         cl::init(false), cl::Hidden);
100  
101  static bool darwinHasSinCos(const Triple &TT) {
102    assert(TT.isOSDarwin() && "should be called with darwin triple");
103    // Don't bother with 32 bit x86.
104    if (TT.getArch() == Triple::x86)
105      return false;
106    // Macos < 10.9 has no sincos_stret.
107    if (TT.isMacOSX())
108      return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109    // iOS < 7.0 has no sincos_stret.
110    if (TT.isiOS())
111      return !TT.isOSVersionLT(7, 0);
112    // Any other darwin such as WatchOS/TvOS is new enough.
113    return true;
114  }
115  
116  void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117  #define HANDLE_LIBCALL(code, name) \
118    setLibcallName(RTLIB::code, name);
119  #include "llvm/IR/RuntimeLibcalls.def"
120  #undef HANDLE_LIBCALL
121    // Initialize calling conventions to their default.
122    for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123      setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124  
125    // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126    if (TT.isPPC()) {
127      setLibcallName(RTLIB::ADD_F128, "__addkf3");
128      setLibcallName(RTLIB::SUB_F128, "__subkf3");
129      setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130      setLibcallName(RTLIB::DIV_F128, "__divkf3");
131      setLibcallName(RTLIB::POWI_F128, "__powikf2");
132      setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133      setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134      setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135      setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136      setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137      setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138      setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139      setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140      setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141      setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142      setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143      setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144      setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145      setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146      setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147      setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148      setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149      setLibcallName(RTLIB::UNE_F128, "__nekf2");
150      setLibcallName(RTLIB::OGE_F128, "__gekf2");
151      setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152      setLibcallName(RTLIB::OLE_F128, "__lekf2");
153      setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154      setLibcallName(RTLIB::UO_F128, "__unordkf2");
155    }
156  
157    // A few names are different on particular architectures or environments.
158    if (TT.isOSDarwin()) {
159      // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160      // of the gnueabi-style __gnu_*_ieee.
161      // FIXME: What about other targets?
162      setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163      setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
164  
165      // Some darwins have an optimized __bzero/bzero function.
166      switch (TT.getArch()) {
167      case Triple::x86:
168      case Triple::x86_64:
169        if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170          setLibcallName(RTLIB::BZERO, "__bzero");
171        break;
172      case Triple::aarch64:
173      case Triple::aarch64_32:
174        setLibcallName(RTLIB::BZERO, "bzero");
175        break;
176      default:
177        break;
178      }
179  
180      if (darwinHasSinCos(TT)) {
181        setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182        setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183        if (TT.isWatchABI()) {
184          setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185                                CallingConv::ARM_AAPCS_VFP);
186          setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187                                CallingConv::ARM_AAPCS_VFP);
188        }
189      }
190    } else {
191      setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192      setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
193    }
194  
195    if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196        (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197      setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198      setLibcallName(RTLIB::SINCOS_F64, "sincos");
199      setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200      setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201      setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
202    }
203  
204    if (TT.isPS()) {
205      setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206      setLibcallName(RTLIB::SINCOS_F64, "sincos");
207    }
208  
209    if (TT.isOSOpenBSD()) {
210      setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211    }
212  
213    if (TT.isOSWindows() && !TT.isOSCygMing()) {
214      setLibcallName(RTLIB::LDEXP_F32, nullptr);
215      setLibcallName(RTLIB::LDEXP_F80, nullptr);
216      setLibcallName(RTLIB::LDEXP_F128, nullptr);
217      setLibcallName(RTLIB::LDEXP_PPCF128, nullptr);
218  
219      setLibcallName(RTLIB::FREXP_F32, nullptr);
220      setLibcallName(RTLIB::FREXP_F80, nullptr);
221      setLibcallName(RTLIB::FREXP_F128, nullptr);
222      setLibcallName(RTLIB::FREXP_PPCF128, nullptr);
223    }
224  }
225  
226  /// GetFPLibCall - Helper to return the right libcall for the given floating
227  /// point type, or UNKNOWN_LIBCALL if there is none.
228  RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
229                                     RTLIB::Libcall Call_F32,
230                                     RTLIB::Libcall Call_F64,
231                                     RTLIB::Libcall Call_F80,
232                                     RTLIB::Libcall Call_F128,
233                                     RTLIB::Libcall Call_PPCF128) {
234    return
235      VT == MVT::f32 ? Call_F32 :
236      VT == MVT::f64 ? Call_F64 :
237      VT == MVT::f80 ? Call_F80 :
238      VT == MVT::f128 ? Call_F128 :
239      VT == MVT::ppcf128 ? Call_PPCF128 :
240      RTLIB::UNKNOWN_LIBCALL;
241  }
242  
243  /// getFPEXT - Return the FPEXT_*_* value for the given types, or
244  /// UNKNOWN_LIBCALL if there is none.
245  RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
246    if (OpVT == MVT::f16) {
247      if (RetVT == MVT::f32)
248        return FPEXT_F16_F32;
249      if (RetVT == MVT::f64)
250        return FPEXT_F16_F64;
251      if (RetVT == MVT::f80)
252        return FPEXT_F16_F80;
253      if (RetVT == MVT::f128)
254        return FPEXT_F16_F128;
255    } else if (OpVT == MVT::f32) {
256      if (RetVT == MVT::f64)
257        return FPEXT_F32_F64;
258      if (RetVT == MVT::f128)
259        return FPEXT_F32_F128;
260      if (RetVT == MVT::ppcf128)
261        return FPEXT_F32_PPCF128;
262    } else if (OpVT == MVT::f64) {
263      if (RetVT == MVT::f128)
264        return FPEXT_F64_F128;
265      else if (RetVT == MVT::ppcf128)
266        return FPEXT_F64_PPCF128;
267    } else if (OpVT == MVT::f80) {
268      if (RetVT == MVT::f128)
269        return FPEXT_F80_F128;
270    }
271  
272    return UNKNOWN_LIBCALL;
273  }
274  
275  /// getFPROUND - Return the FPROUND_*_* value for the given types, or
276  /// UNKNOWN_LIBCALL if there is none.
277  RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
278    if (RetVT == MVT::f16) {
279      if (OpVT == MVT::f32)
280        return FPROUND_F32_F16;
281      if (OpVT == MVT::f64)
282        return FPROUND_F64_F16;
283      if (OpVT == MVT::f80)
284        return FPROUND_F80_F16;
285      if (OpVT == MVT::f128)
286        return FPROUND_F128_F16;
287      if (OpVT == MVT::ppcf128)
288        return FPROUND_PPCF128_F16;
289    } else if (RetVT == MVT::bf16) {
290      if (OpVT == MVT::f32)
291        return FPROUND_F32_BF16;
292      if (OpVT == MVT::f64)
293        return FPROUND_F64_BF16;
294    } else if (RetVT == MVT::f32) {
295      if (OpVT == MVT::f64)
296        return FPROUND_F64_F32;
297      if (OpVT == MVT::f80)
298        return FPROUND_F80_F32;
299      if (OpVT == MVT::f128)
300        return FPROUND_F128_F32;
301      if (OpVT == MVT::ppcf128)
302        return FPROUND_PPCF128_F32;
303    } else if (RetVT == MVT::f64) {
304      if (OpVT == MVT::f80)
305        return FPROUND_F80_F64;
306      if (OpVT == MVT::f128)
307        return FPROUND_F128_F64;
308      if (OpVT == MVT::ppcf128)
309        return FPROUND_PPCF128_F64;
310    } else if (RetVT == MVT::f80) {
311      if (OpVT == MVT::f128)
312        return FPROUND_F128_F80;
313    }
314  
315    return UNKNOWN_LIBCALL;
316  }
317  
318  /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
319  /// UNKNOWN_LIBCALL if there is none.
320  RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
321    if (OpVT == MVT::f16) {
322      if (RetVT == MVT::i32)
323        return FPTOSINT_F16_I32;
324      if (RetVT == MVT::i64)
325        return FPTOSINT_F16_I64;
326      if (RetVT == MVT::i128)
327        return FPTOSINT_F16_I128;
328    } else if (OpVT == MVT::f32) {
329      if (RetVT == MVT::i32)
330        return FPTOSINT_F32_I32;
331      if (RetVT == MVT::i64)
332        return FPTOSINT_F32_I64;
333      if (RetVT == MVT::i128)
334        return FPTOSINT_F32_I128;
335    } else if (OpVT == MVT::f64) {
336      if (RetVT == MVT::i32)
337        return FPTOSINT_F64_I32;
338      if (RetVT == MVT::i64)
339        return FPTOSINT_F64_I64;
340      if (RetVT == MVT::i128)
341        return FPTOSINT_F64_I128;
342    } else if (OpVT == MVT::f80) {
343      if (RetVT == MVT::i32)
344        return FPTOSINT_F80_I32;
345      if (RetVT == MVT::i64)
346        return FPTOSINT_F80_I64;
347      if (RetVT == MVT::i128)
348        return FPTOSINT_F80_I128;
349    } else if (OpVT == MVT::f128) {
350      if (RetVT == MVT::i32)
351        return FPTOSINT_F128_I32;
352      if (RetVT == MVT::i64)
353        return FPTOSINT_F128_I64;
354      if (RetVT == MVT::i128)
355        return FPTOSINT_F128_I128;
356    } else if (OpVT == MVT::ppcf128) {
357      if (RetVT == MVT::i32)
358        return FPTOSINT_PPCF128_I32;
359      if (RetVT == MVT::i64)
360        return FPTOSINT_PPCF128_I64;
361      if (RetVT == MVT::i128)
362        return FPTOSINT_PPCF128_I128;
363    }
364    return UNKNOWN_LIBCALL;
365  }
366  
367  /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
368  /// UNKNOWN_LIBCALL if there is none.
369  RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
370    if (OpVT == MVT::f16) {
371      if (RetVT == MVT::i32)
372        return FPTOUINT_F16_I32;
373      if (RetVT == MVT::i64)
374        return FPTOUINT_F16_I64;
375      if (RetVT == MVT::i128)
376        return FPTOUINT_F16_I128;
377    } else if (OpVT == MVT::f32) {
378      if (RetVT == MVT::i32)
379        return FPTOUINT_F32_I32;
380      if (RetVT == MVT::i64)
381        return FPTOUINT_F32_I64;
382      if (RetVT == MVT::i128)
383        return FPTOUINT_F32_I128;
384    } else if (OpVT == MVT::f64) {
385      if (RetVT == MVT::i32)
386        return FPTOUINT_F64_I32;
387      if (RetVT == MVT::i64)
388        return FPTOUINT_F64_I64;
389      if (RetVT == MVT::i128)
390        return FPTOUINT_F64_I128;
391    } else if (OpVT == MVT::f80) {
392      if (RetVT == MVT::i32)
393        return FPTOUINT_F80_I32;
394      if (RetVT == MVT::i64)
395        return FPTOUINT_F80_I64;
396      if (RetVT == MVT::i128)
397        return FPTOUINT_F80_I128;
398    } else if (OpVT == MVT::f128) {
399      if (RetVT == MVT::i32)
400        return FPTOUINT_F128_I32;
401      if (RetVT == MVT::i64)
402        return FPTOUINT_F128_I64;
403      if (RetVT == MVT::i128)
404        return FPTOUINT_F128_I128;
405    } else if (OpVT == MVT::ppcf128) {
406      if (RetVT == MVT::i32)
407        return FPTOUINT_PPCF128_I32;
408      if (RetVT == MVT::i64)
409        return FPTOUINT_PPCF128_I64;
410      if (RetVT == MVT::i128)
411        return FPTOUINT_PPCF128_I128;
412    }
413    return UNKNOWN_LIBCALL;
414  }
415  
416  /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
417  /// UNKNOWN_LIBCALL if there is none.
418  RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
419    if (OpVT == MVT::i32) {
420      if (RetVT == MVT::f16)
421        return SINTTOFP_I32_F16;
422      if (RetVT == MVT::f32)
423        return SINTTOFP_I32_F32;
424      if (RetVT == MVT::f64)
425        return SINTTOFP_I32_F64;
426      if (RetVT == MVT::f80)
427        return SINTTOFP_I32_F80;
428      if (RetVT == MVT::f128)
429        return SINTTOFP_I32_F128;
430      if (RetVT == MVT::ppcf128)
431        return SINTTOFP_I32_PPCF128;
432    } else if (OpVT == MVT::i64) {
433      if (RetVT == MVT::f16)
434        return SINTTOFP_I64_F16;
435      if (RetVT == MVT::f32)
436        return SINTTOFP_I64_F32;
437      if (RetVT == MVT::f64)
438        return SINTTOFP_I64_F64;
439      if (RetVT == MVT::f80)
440        return SINTTOFP_I64_F80;
441      if (RetVT == MVT::f128)
442        return SINTTOFP_I64_F128;
443      if (RetVT == MVT::ppcf128)
444        return SINTTOFP_I64_PPCF128;
445    } else if (OpVT == MVT::i128) {
446      if (RetVT == MVT::f16)
447        return SINTTOFP_I128_F16;
448      if (RetVT == MVT::f32)
449        return SINTTOFP_I128_F32;
450      if (RetVT == MVT::f64)
451        return SINTTOFP_I128_F64;
452      if (RetVT == MVT::f80)
453        return SINTTOFP_I128_F80;
454      if (RetVT == MVT::f128)
455        return SINTTOFP_I128_F128;
456      if (RetVT == MVT::ppcf128)
457        return SINTTOFP_I128_PPCF128;
458    }
459    return UNKNOWN_LIBCALL;
460  }
461  
462  /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
463  /// UNKNOWN_LIBCALL if there is none.
464  RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
465    if (OpVT == MVT::i32) {
466      if (RetVT == MVT::f16)
467        return UINTTOFP_I32_F16;
468      if (RetVT == MVT::f32)
469        return UINTTOFP_I32_F32;
470      if (RetVT == MVT::f64)
471        return UINTTOFP_I32_F64;
472      if (RetVT == MVT::f80)
473        return UINTTOFP_I32_F80;
474      if (RetVT == MVT::f128)
475        return UINTTOFP_I32_F128;
476      if (RetVT == MVT::ppcf128)
477        return UINTTOFP_I32_PPCF128;
478    } else if (OpVT == MVT::i64) {
479      if (RetVT == MVT::f16)
480        return UINTTOFP_I64_F16;
481      if (RetVT == MVT::f32)
482        return UINTTOFP_I64_F32;
483      if (RetVT == MVT::f64)
484        return UINTTOFP_I64_F64;
485      if (RetVT == MVT::f80)
486        return UINTTOFP_I64_F80;
487      if (RetVT == MVT::f128)
488        return UINTTOFP_I64_F128;
489      if (RetVT == MVT::ppcf128)
490        return UINTTOFP_I64_PPCF128;
491    } else if (OpVT == MVT::i128) {
492      if (RetVT == MVT::f16)
493        return UINTTOFP_I128_F16;
494      if (RetVT == MVT::f32)
495        return UINTTOFP_I128_F32;
496      if (RetVT == MVT::f64)
497        return UINTTOFP_I128_F64;
498      if (RetVT == MVT::f80)
499        return UINTTOFP_I128_F80;
500      if (RetVT == MVT::f128)
501        return UINTTOFP_I128_F128;
502      if (RetVT == MVT::ppcf128)
503        return UINTTOFP_I128_PPCF128;
504    }
505    return UNKNOWN_LIBCALL;
506  }
507  
508  RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
509    return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
510                        POWI_PPCF128);
511  }
512  
513  RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
514    return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
515                        LDEXP_PPCF128);
516  }
517  
518  RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
519    return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
520                        FREXP_PPCF128);
521  }
522  
523  RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
524                                               AtomicOrdering Order,
525                                               uint64_t MemSize) {
526    unsigned ModeN, ModelN;
527    switch (MemSize) {
528    case 1:
529      ModeN = 0;
530      break;
531    case 2:
532      ModeN = 1;
533      break;
534    case 4:
535      ModeN = 2;
536      break;
537    case 8:
538      ModeN = 3;
539      break;
540    case 16:
541      ModeN = 4;
542      break;
543    default:
544      return RTLIB::UNKNOWN_LIBCALL;
545    }
546  
547    switch (Order) {
548    case AtomicOrdering::Monotonic:
549      ModelN = 0;
550      break;
551    case AtomicOrdering::Acquire:
552      ModelN = 1;
553      break;
554    case AtomicOrdering::Release:
555      ModelN = 2;
556      break;
557    case AtomicOrdering::AcquireRelease:
558    case AtomicOrdering::SequentiallyConsistent:
559      ModelN = 3;
560      break;
561    default:
562      return UNKNOWN_LIBCALL;
563    }
564  
565    return LC[ModeN][ModelN];
566  }
567  
568  RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
569                                          MVT VT) {
570    if (!VT.isScalarInteger())
571      return UNKNOWN_LIBCALL;
572    uint64_t MemSize = VT.getScalarSizeInBits() / 8;
573  
574  #define LCALLS(A, B)                                                           \
575    { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
576  #define LCALL5(A)                                                              \
577    LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
578    switch (Opc) {
579    case ISD::ATOMIC_CMP_SWAP: {
580      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
581      return getOutlineAtomicHelper(LC, Order, MemSize);
582    }
583    case ISD::ATOMIC_SWAP: {
584      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
585      return getOutlineAtomicHelper(LC, Order, MemSize);
586    }
587    case ISD::ATOMIC_LOAD_ADD: {
588      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
589      return getOutlineAtomicHelper(LC, Order, MemSize);
590    }
591    case ISD::ATOMIC_LOAD_OR: {
592      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
593      return getOutlineAtomicHelper(LC, Order, MemSize);
594    }
595    case ISD::ATOMIC_LOAD_CLR: {
596      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
597      return getOutlineAtomicHelper(LC, Order, MemSize);
598    }
599    case ISD::ATOMIC_LOAD_XOR: {
600      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
601      return getOutlineAtomicHelper(LC, Order, MemSize);
602    }
603    default:
604      return UNKNOWN_LIBCALL;
605    }
606  #undef LCALLS
607  #undef LCALL5
608  }
609  
610  RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
611  #define OP_TO_LIBCALL(Name, Enum)                                              \
612    case Name:                                                                   \
613      switch (VT.SimpleTy) {                                                     \
614      default:                                                                   \
615        return UNKNOWN_LIBCALL;                                                  \
616      case MVT::i8:                                                              \
617        return Enum##_1;                                                         \
618      case MVT::i16:                                                             \
619        return Enum##_2;                                                         \
620      case MVT::i32:                                                             \
621        return Enum##_4;                                                         \
622      case MVT::i64:                                                             \
623        return Enum##_8;                                                         \
624      case MVT::i128:                                                            \
625        return Enum##_16;                                                        \
626      }
627  
628    switch (Opc) {
629      OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
630      OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
631      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
632      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
633      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
634      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
635      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
636      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
637      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
638      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
639      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
640      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
641    }
642  
643  #undef OP_TO_LIBCALL
644  
645    return UNKNOWN_LIBCALL;
646  }
647  
648  RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
649    switch (ElementSize) {
650    case 1:
651      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
652    case 2:
653      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
654    case 4:
655      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
656    case 8:
657      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
658    case 16:
659      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
660    default:
661      return UNKNOWN_LIBCALL;
662    }
663  }
664  
665  RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
666    switch (ElementSize) {
667    case 1:
668      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
669    case 2:
670      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
671    case 4:
672      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
673    case 8:
674      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
675    case 16:
676      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
677    default:
678      return UNKNOWN_LIBCALL;
679    }
680  }
681  
682  RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
683    switch (ElementSize) {
684    case 1:
685      return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
686    case 2:
687      return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
688    case 4:
689      return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
690    case 8:
691      return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
692    case 16:
693      return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
694    default:
695      return UNKNOWN_LIBCALL;
696    }
697  }
698  
699  /// InitCmpLibcallCCs - Set default comparison libcall CC.
700  static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
701    std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
702    CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
703    CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
704    CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
705    CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
706    CCs[RTLIB::UNE_F32] = ISD::SETNE;
707    CCs[RTLIB::UNE_F64] = ISD::SETNE;
708    CCs[RTLIB::UNE_F128] = ISD::SETNE;
709    CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
710    CCs[RTLIB::OGE_F32] = ISD::SETGE;
711    CCs[RTLIB::OGE_F64] = ISD::SETGE;
712    CCs[RTLIB::OGE_F128] = ISD::SETGE;
713    CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
714    CCs[RTLIB::OLT_F32] = ISD::SETLT;
715    CCs[RTLIB::OLT_F64] = ISD::SETLT;
716    CCs[RTLIB::OLT_F128] = ISD::SETLT;
717    CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
718    CCs[RTLIB::OLE_F32] = ISD::SETLE;
719    CCs[RTLIB::OLE_F64] = ISD::SETLE;
720    CCs[RTLIB::OLE_F128] = ISD::SETLE;
721    CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
722    CCs[RTLIB::OGT_F32] = ISD::SETGT;
723    CCs[RTLIB::OGT_F64] = ISD::SETGT;
724    CCs[RTLIB::OGT_F128] = ISD::SETGT;
725    CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
726    CCs[RTLIB::UO_F32] = ISD::SETNE;
727    CCs[RTLIB::UO_F64] = ISD::SETNE;
728    CCs[RTLIB::UO_F128] = ISD::SETNE;
729    CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
730  }
731  
732  /// NOTE: The TargetMachine owns TLOF.
733  TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
734    initActions();
735  
736    // Perform these initializations only once.
737    MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
738        MaxLoadsPerMemcmp = 8;
739    MaxGluedStoresPerMemcpy = 0;
740    MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
741        MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
742    HasMultipleConditionRegisters = false;
743    HasExtractBitsInsn = false;
744    JumpIsExpensive = JumpIsExpensiveOverride;
745    PredictableSelectIsExpensive = false;
746    EnableExtLdPromotion = false;
747    StackPointerRegisterToSaveRestore = 0;
748    BooleanContents = UndefinedBooleanContent;
749    BooleanFloatContents = UndefinedBooleanContent;
750    BooleanVectorContents = UndefinedBooleanContent;
751    SchedPreferenceInfo = Sched::ILP;
752    GatherAllAliasesMaxDepth = 18;
753    IsStrictFPEnabled = DisableStrictNodeMutation;
754    MaxBytesForAlignment = 0;
755    MaxAtomicSizeInBitsSupported = 0;
756  
757    // Assume that even with libcalls, no target supports wider than 128 bit
758    // division.
759    MaxDivRemBitWidthSupported = 128;
760  
761    MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
762  
763    MinCmpXchgSizeInBits = 0;
764    SupportsUnalignedAtomics = false;
765  
766    std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
767  
768    InitLibcalls(TM.getTargetTriple());
769    InitCmpLibcallCCs(CmpLibcallCCs);
770  }
771  
772  void TargetLoweringBase::initActions() {
773    // All operations default to being supported.
774    memset(OpActions, 0, sizeof(OpActions));
775    memset(LoadExtActions, 0, sizeof(LoadExtActions));
776    memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
777    memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
778    memset(CondCodeActions, 0, sizeof(CondCodeActions));
779    std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
780    std::fill(std::begin(TargetDAGCombineArray),
781              std::end(TargetDAGCombineArray), 0);
782  
783    // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
784    // remove this and targets should individually set these types if not legal.
785    for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
786                                     force_iteration_on_noniterable_enum)) {
787      for (MVT VT : {MVT::i2, MVT::i4})
788        OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
789    }
790    for (MVT AVT : MVT::all_valuetypes()) {
791      for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
792        setTruncStoreAction(AVT, VT, Expand);
793        setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
794        setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
795      }
796    }
797    for (unsigned IM = (unsigned)ISD::PRE_INC;
798         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
799      for (MVT VT : {MVT::i2, MVT::i4}) {
800        setIndexedLoadAction(IM, VT, Expand);
801        setIndexedStoreAction(IM, VT, Expand);
802        setIndexedMaskedLoadAction(IM, VT, Expand);
803        setIndexedMaskedStoreAction(IM, VT, Expand);
804      }
805    }
806  
807    for (MVT VT : MVT::fp_valuetypes()) {
808      MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
809      if (IntVT.isValid()) {
810        setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
811        AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
812      }
813    }
814  
815    // Set default actions for various operations.
816    for (MVT VT : MVT::all_valuetypes()) {
817      // Default all indexed load / store to expand.
818      for (unsigned IM = (unsigned)ISD::PRE_INC;
819           IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
820        setIndexedLoadAction(IM, VT, Expand);
821        setIndexedStoreAction(IM, VT, Expand);
822        setIndexedMaskedLoadAction(IM, VT, Expand);
823        setIndexedMaskedStoreAction(IM, VT, Expand);
824      }
825  
826      // Most backends expect to see the node which just returns the value loaded.
827      setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
828  
829      // These operations default to expand.
830      setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
831                          ISD::FMINNUM,        ISD::FMAXNUM,
832                          ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
833                          ISD::FMINIMUM,       ISD::FMAXIMUM,
834                          ISD::FMAD,           ISD::SMIN,
835                          ISD::SMAX,           ISD::UMIN,
836                          ISD::UMAX,           ISD::ABS,
837                          ISD::FSHL,           ISD::FSHR,
838                          ISD::SADDSAT,        ISD::UADDSAT,
839                          ISD::SSUBSAT,        ISD::USUBSAT,
840                          ISD::SSHLSAT,        ISD::USHLSAT,
841                          ISD::SMULFIX,        ISD::SMULFIXSAT,
842                          ISD::UMULFIX,        ISD::UMULFIXSAT,
843                          ISD::SDIVFIX,        ISD::SDIVFIXSAT,
844                          ISD::UDIVFIX,        ISD::UDIVFIXSAT,
845                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
846                          ISD::IS_FPCLASS},
847                         VT, Expand);
848  
849      // Overflow operations default to expand
850      setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
851                          ISD::SMULO, ISD::UMULO},
852                         VT, Expand);
853  
854      // Carry-using overflow operations default to expand.
855      setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
856                          ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
857                         VT, Expand);
858  
859      // ADDC/ADDE/SUBC/SUBE default to expand.
860      setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
861                         Expand);
862  
863      // Halving adds
864      setOperationAction(
865          {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
866          Expand);
867  
868      // Absolute difference
869      setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
870  
871      // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
872      setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
873                         Expand);
874  
875      setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
876  
877      // These library functions default to expand.
878      setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT,
879                         Expand);
880  
881      // These operations default to expand for vector types.
882      if (VT.isVector())
883        setOperationAction(
884            {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG,
885             ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG,
886             ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT},
887            VT, Expand);
888  
889        // Constrained floating-point operations default to expand.
890  #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
891      setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
892  #include "llvm/IR/ConstrainedOps.def"
893  
894      // For most targets @llvm.get.dynamic.area.offset just returns 0.
895      setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
896  
897      // Vector reduction default to expand.
898      setOperationAction(
899          {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
900           ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
901           ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
902           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
903           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
904           ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
905          VT, Expand);
906  
907      // Named vector shuffles default to expand.
908      setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
909  
910      // VP operations default to expand.
911  #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
912      setOperationAction(ISD::SDOPC, VT, Expand);
913  #include "llvm/IR/VPIntrinsics.def"
914  
915      // FP environment operations default to expand.
916      setOperationAction(ISD::GET_FPENV, VT, Expand);
917      setOperationAction(ISD::SET_FPENV, VT, Expand);
918      setOperationAction(ISD::RESET_FPENV, VT, Expand);
919    }
920  
921    // Most targets ignore the @llvm.prefetch intrinsic.
922    setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
923  
924    // Most targets also ignore the @llvm.readcyclecounter intrinsic.
925    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
926  
927    // ConstantFP nodes default to expand.  Targets can either change this to
928    // Legal, in which case all fp constants are legal, or use isFPImmLegal()
929    // to optimize expansions for certain constants.
930    setOperationAction(ISD::ConstantFP,
931                       {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
932                       Expand);
933  
934    // These library functions default to expand.
935    setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
936                        ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR, ISD::FNEARBYINT,
937                        ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, ISD::LROUND,
938                        ISD::LLROUND, ISD::LRINT, ISD::LLRINT, ISD::FROUNDEVEN},
939                       {MVT::f32, MVT::f64, MVT::f128}, Expand);
940  
941    // Default ISD::TRAP to expand (which turns it into abort).
942    setOperationAction(ISD::TRAP, MVT::Other, Expand);
943  
944    // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
945    // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
946    setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
947  
948    setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
949  
950    setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
951    setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
952  
953    for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
954      setOperationAction(ISD::GET_FPMODE, VT, Expand);
955      setOperationAction(ISD::SET_FPMODE, VT, Expand);
956    }
957    setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
958  }
959  
960  MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
961                                                 EVT) const {
962    return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
963  }
964  
965  EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
966                                           bool LegalTypes) const {
967    assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
968    if (LHSTy.isVector())
969      return LHSTy;
970    MVT ShiftVT =
971        LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
972    // If any possible shift value won't fit in the prefered type, just use
973    // something safe. Assume it will be legalized when the shift is expanded.
974    if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
975      ShiftVT = MVT::i32;
976    assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
977           "ShiftVT is still too small!");
978    return ShiftVT;
979  }
980  
981  bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
982    assert(isTypeLegal(VT));
983    switch (Op) {
984    default:
985      return false;
986    case ISD::SDIV:
987    case ISD::UDIV:
988    case ISD::SREM:
989    case ISD::UREM:
990      return true;
991    }
992  }
993  
994  bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
995                                               unsigned DestAS) const {
996    return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
997  }
998  
999  void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1000    // If the command-line option was specified, ignore this request.
1001    if (!JumpIsExpensiveOverride.getNumOccurrences())
1002      JumpIsExpensive = isExpensive;
1003  }
1004  
1005  TargetLoweringBase::LegalizeKind
1006  TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1007    // If this is a simple type, use the ComputeRegisterProp mechanism.
1008    if (VT.isSimple()) {
1009      MVT SVT = VT.getSimpleVT();
1010      assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1011      MVT NVT = TransformToType[SVT.SimpleTy];
1012      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1013  
1014      assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1015              LA == TypeSoftPromoteHalf ||
1016              (NVT.isVector() ||
1017               ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1018             "Promote may not follow Expand or Promote");
1019  
1020      if (LA == TypeSplitVector)
1021        return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1022      if (LA == TypeScalarizeVector)
1023        return LegalizeKind(LA, SVT.getVectorElementType());
1024      return LegalizeKind(LA, NVT);
1025    }
1026  
1027    // Handle Extended Scalar Types.
1028    if (!VT.isVector()) {
1029      assert(VT.isInteger() && "Float types must be simple");
1030      unsigned BitSize = VT.getSizeInBits();
1031      // First promote to a power-of-two size, then expand if necessary.
1032      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1033        EVT NVT = VT.getRoundIntegerType(Context);
1034        assert(NVT != VT && "Unable to round integer VT");
1035        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1036        // Avoid multi-step promotion.
1037        if (NextStep.first == TypePromoteInteger)
1038          return NextStep;
1039        // Return rounded integer type.
1040        return LegalizeKind(TypePromoteInteger, NVT);
1041      }
1042  
1043      return LegalizeKind(TypeExpandInteger,
1044                          EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1045    }
1046  
1047    // Handle vector types.
1048    ElementCount NumElts = VT.getVectorElementCount();
1049    EVT EltVT = VT.getVectorElementType();
1050  
1051    // Vectors with only one element are always scalarized.
1052    if (NumElts.isScalar())
1053      return LegalizeKind(TypeScalarizeVector, EltVT);
1054  
1055    // Try to widen vector elements until the element type is a power of two and
1056    // promote it to a legal type later on, for example:
1057    // <3 x i8> -> <4 x i8> -> <4 x i32>
1058    if (EltVT.isInteger()) {
1059      // Vectors with a number of elements that is not a power of two are always
1060      // widened, for example <3 x i8> -> <4 x i8>.
1061      if (!VT.isPow2VectorType()) {
1062        NumElts = NumElts.coefficientNextPowerOf2();
1063        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1064        return LegalizeKind(TypeWidenVector, NVT);
1065      }
1066  
1067      // Examine the element type.
1068      LegalizeKind LK = getTypeConversion(Context, EltVT);
1069  
1070      // If type is to be expanded, split the vector.
1071      //  <4 x i140> -> <2 x i140>
1072      if (LK.first == TypeExpandInteger) {
1073        if (VT.getVectorElementCount().isScalable())
1074          return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1075        return LegalizeKind(TypeSplitVector,
1076                            VT.getHalfNumVectorElementsVT(Context));
1077      }
1078  
1079      // Promote the integer element types until a legal vector type is found
1080      // or until the element integer type is too big. If a legal type was not
1081      // found, fallback to the usual mechanism of widening/splitting the
1082      // vector.
1083      EVT OldEltVT = EltVT;
1084      while (true) {
1085        // Increase the bitwidth of the element to the next pow-of-two
1086        // (which is greater than 8 bits).
1087        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1088                    .getRoundIntegerType(Context);
1089  
1090        // Stop trying when getting a non-simple element type.
1091        // Note that vector elements may be greater than legal vector element
1092        // types. Example: X86 XMM registers hold 64bit element on 32bit
1093        // systems.
1094        if (!EltVT.isSimple())
1095          break;
1096  
1097        // Build a new vector type and check if it is legal.
1098        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1099        // Found a legal promoted vector type.
1100        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1101          return LegalizeKind(TypePromoteInteger,
1102                              EVT::getVectorVT(Context, EltVT, NumElts));
1103      }
1104  
1105      // Reset the type to the unexpanded type if we did not find a legal vector
1106      // type with a promoted vector element type.
1107      EltVT = OldEltVT;
1108    }
1109  
1110    // Try to widen the vector until a legal type is found.
1111    // If there is no wider legal type, split the vector.
1112    while (true) {
1113      // Round up to the next power of 2.
1114      NumElts = NumElts.coefficientNextPowerOf2();
1115  
1116      // If there is no simple vector type with this many elements then there
1117      // cannot be a larger legal vector type.  Note that this assumes that
1118      // there are no skipped intermediate vector types in the simple types.
1119      if (!EltVT.isSimple())
1120        break;
1121      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1122      if (LargerVector == MVT())
1123        break;
1124  
1125      // If this type is legal then widen the vector.
1126      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1127        return LegalizeKind(TypeWidenVector, LargerVector);
1128    }
1129  
1130    // Widen odd vectors to next power of two.
1131    if (!VT.isPow2VectorType()) {
1132      EVT NVT = VT.getPow2VectorType(Context);
1133      return LegalizeKind(TypeWidenVector, NVT);
1134    }
1135  
1136    if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1137      return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1138  
1139    // Vectors with illegal element types are expanded.
1140    EVT NVT = EVT::getVectorVT(Context, EltVT,
1141                               VT.getVectorElementCount().divideCoefficientBy(2));
1142    return LegalizeKind(TypeSplitVector, NVT);
1143  }
1144  
1145  static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1146                                            unsigned &NumIntermediates,
1147                                            MVT &RegisterVT,
1148                                            TargetLoweringBase *TLI) {
1149    // Figure out the right, legal destination reg to copy into.
1150    ElementCount EC = VT.getVectorElementCount();
1151    MVT EltTy = VT.getVectorElementType();
1152  
1153    unsigned NumVectorRegs = 1;
1154  
1155    // Scalable vectors cannot be scalarized, so splitting or widening is
1156    // required.
1157    if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1158      llvm_unreachable(
1159          "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1160  
1161    // FIXME: We don't support non-power-of-2-sized vectors for now.
1162    // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1163    if (!isPowerOf2_32(EC.getKnownMinValue())) {
1164      // Split EC to unit size (scalable property is preserved).
1165      NumVectorRegs = EC.getKnownMinValue();
1166      EC = ElementCount::getFixed(1);
1167    }
1168  
1169    // Divide the input until we get to a supported size. This will
1170    // always end up with an EC that represent a scalar or a scalable
1171    // scalar.
1172    while (EC.getKnownMinValue() > 1 &&
1173           !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1174      EC = EC.divideCoefficientBy(2);
1175      NumVectorRegs <<= 1;
1176    }
1177  
1178    NumIntermediates = NumVectorRegs;
1179  
1180    MVT NewVT = MVT::getVectorVT(EltTy, EC);
1181    if (!TLI->isTypeLegal(NewVT))
1182      NewVT = EltTy;
1183    IntermediateVT = NewVT;
1184  
1185    unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1186  
1187    // Convert sizes such as i33 to i64.
1188    LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1189  
1190    MVT DestVT = TLI->getRegisterType(NewVT);
1191    RegisterVT = DestVT;
1192    if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1193      return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1194  
1195    // Otherwise, promotion or legal types use the same number of registers as
1196    // the vector decimated to the appropriate level.
1197    return NumVectorRegs;
1198  }
1199  
1200  /// isLegalRC - Return true if the value types that can be represented by the
1201  /// specified register class are all legal.
1202  bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1203                                     const TargetRegisterClass &RC) const {
1204    for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1205      if (isTypeLegal(*I))
1206        return true;
1207    return false;
1208  }
1209  
1210  /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1211  /// sequence of memory operands that is recognized by PrologEpilogInserter.
1212  MachineBasicBlock *
1213  TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1214                                     MachineBasicBlock *MBB) const {
1215    MachineInstr *MI = &InitialMI;
1216    MachineFunction &MF = *MI->getMF();
1217    MachineFrameInfo &MFI = MF.getFrameInfo();
1218  
1219    // We're handling multiple types of operands here:
1220    // PATCHPOINT MetaArgs - live-in, read only, direct
1221    // STATEPOINT Deopt Spill - live-through, read only, indirect
1222    // STATEPOINT Deopt Alloca - live-through, read only, direct
1223    // (We're currently conservative and mark the deopt slots read/write in
1224    // practice.)
1225    // STATEPOINT GC Spill - live-through, read/write, indirect
1226    // STATEPOINT GC Alloca - live-through, read/write, direct
1227    // The live-in vs live-through is handled already (the live through ones are
1228    // all stack slots), but we need to handle the different type of stackmap
1229    // operands and memory effects here.
1230  
1231    if (llvm::none_of(MI->operands(),
1232                      [](MachineOperand &Operand) { return Operand.isFI(); }))
1233      return MBB;
1234  
1235    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1236  
1237    // Inherit previous memory operands.
1238    MIB.cloneMemRefs(*MI);
1239  
1240    for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1241      MachineOperand &MO = MI->getOperand(i);
1242      if (!MO.isFI()) {
1243        // Index of Def operand this Use it tied to.
1244        // Since Defs are coming before Uses, if Use is tied, then
1245        // index of Def must be smaller that index of that Use.
1246        // Also, Defs preserve their position in new MI.
1247        unsigned TiedTo = i;
1248        if (MO.isReg() && MO.isTied())
1249          TiedTo = MI->findTiedOperandIdx(i);
1250        MIB.add(MO);
1251        if (TiedTo < i)
1252          MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1253        continue;
1254      }
1255  
1256      // foldMemoryOperand builds a new MI after replacing a single FI operand
1257      // with the canonical set of five x86 addressing-mode operands.
1258      int FI = MO.getIndex();
1259  
1260      // Add frame index operands recognized by stackmaps.cpp
1261      if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1262        // indirect-mem-ref tag, size, #FI, offset.
1263        // Used for spills inserted by StatepointLowering.  This codepath is not
1264        // used for patchpoints/stackmaps at all, for these spilling is done via
1265        // foldMemoryOperand callback only.
1266        assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1267        MIB.addImm(StackMaps::IndirectMemRefOp);
1268        MIB.addImm(MFI.getObjectSize(FI));
1269        MIB.add(MO);
1270        MIB.addImm(0);
1271      } else {
1272        // direct-mem-ref tag, #FI, offset.
1273        // Used by patchpoint, and direct alloca arguments to statepoints
1274        MIB.addImm(StackMaps::DirectMemRefOp);
1275        MIB.add(MO);
1276        MIB.addImm(0);
1277      }
1278  
1279      assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1280  
1281      // Add a new memory operand for this FI.
1282      assert(MFI.getObjectOffset(FI) != -1);
1283  
1284      // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1285      // PATCHPOINT should be updated to do the same. (TODO)
1286      if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1287        auto Flags = MachineMemOperand::MOLoad;
1288        MachineMemOperand *MMO = MF.getMachineMemOperand(
1289            MachinePointerInfo::getFixedStack(MF, FI), Flags,
1290            MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1291        MIB->addMemOperand(MF, MMO);
1292      }
1293    }
1294    MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1295    MI->eraseFromParent();
1296    return MBB;
1297  }
1298  
1299  /// findRepresentativeClass - Return the largest legal super-reg register class
1300  /// of the register class for the specified type and its associated "cost".
1301  // This function is in TargetLowering because it uses RegClassForVT which would
1302  // need to be moved to TargetRegisterInfo and would necessitate moving
1303  // isTypeLegal over as well - a massive change that would just require
1304  // TargetLowering having a TargetRegisterInfo class member that it would use.
1305  std::pair<const TargetRegisterClass *, uint8_t>
1306  TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1307                                              MVT VT) const {
1308    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1309    if (!RC)
1310      return std::make_pair(RC, 0);
1311  
1312    // Compute the set of all super-register classes.
1313    BitVector SuperRegRC(TRI->getNumRegClasses());
1314    for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1315      SuperRegRC.setBitsInMask(RCI.getMask());
1316  
1317    // Find the first legal register class with the largest spill size.
1318    const TargetRegisterClass *BestRC = RC;
1319    for (unsigned i : SuperRegRC.set_bits()) {
1320      const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1321      // We want the largest possible spill size.
1322      if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1323        continue;
1324      if (!isLegalRC(*TRI, *SuperRC))
1325        continue;
1326      BestRC = SuperRC;
1327    }
1328    return std::make_pair(BestRC, 1);
1329  }
1330  
1331  /// computeRegisterProperties - Once all of the register classes are added,
1332  /// this allows us to compute derived properties we expose.
1333  void TargetLoweringBase::computeRegisterProperties(
1334      const TargetRegisterInfo *TRI) {
1335    static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1336                  "Too many value types for ValueTypeActions to hold!");
1337  
1338    // Everything defaults to needing one register.
1339    for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1340      NumRegistersForVT[i] = 1;
1341      RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1342    }
1343    // ...except isVoid, which doesn't need any registers.
1344    NumRegistersForVT[MVT::isVoid] = 0;
1345  
1346    // Find the largest integer register class.
1347    unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1348    for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1349      assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1350  
1351    // Every integer value type larger than this largest register takes twice as
1352    // many registers to represent as the previous ValueType.
1353    for (unsigned ExpandedReg = LargestIntReg + 1;
1354         ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1355      NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1356      RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1357      TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1358      ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1359                                     TypeExpandInteger);
1360    }
1361  
1362    // Inspect all of the ValueType's smaller than the largest integer
1363    // register to see which ones need promotion.
1364    unsigned LegalIntReg = LargestIntReg;
1365    for (unsigned IntReg = LargestIntReg - 1;
1366         IntReg >= (unsigned)MVT::i1; --IntReg) {
1367      MVT IVT = (MVT::SimpleValueType)IntReg;
1368      if (isTypeLegal(IVT)) {
1369        LegalIntReg = IntReg;
1370      } else {
1371        RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1372          (MVT::SimpleValueType)LegalIntReg;
1373        ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1374      }
1375    }
1376  
1377    // ppcf128 type is really two f64's.
1378    if (!isTypeLegal(MVT::ppcf128)) {
1379      if (isTypeLegal(MVT::f64)) {
1380        NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1381        RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1382        TransformToType[MVT::ppcf128] = MVT::f64;
1383        ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1384      } else {
1385        NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1386        RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1387        TransformToType[MVT::ppcf128] = MVT::i128;
1388        ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1389      }
1390    }
1391  
1392    // Decide how to handle f128. If the target does not have native f128 support,
1393    // expand it to i128 and we will be generating soft float library calls.
1394    if (!isTypeLegal(MVT::f128)) {
1395      NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1396      RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1397      TransformToType[MVT::f128] = MVT::i128;
1398      ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1399    }
1400  
1401    // Decide how to handle f80. If the target does not have native f80 support,
1402    // expand it to i96 and we will be generating soft float library calls.
1403    if (!isTypeLegal(MVT::f80)) {
1404      NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1405      RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1406      TransformToType[MVT::f80] = MVT::i32;
1407      ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1408    }
1409  
1410    // Decide how to handle f64. If the target does not have native f64 support,
1411    // expand it to i64 and we will be generating soft float library calls.
1412    if (!isTypeLegal(MVT::f64)) {
1413      NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1414      RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1415      TransformToType[MVT::f64] = MVT::i64;
1416      ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1417    }
1418  
1419    // Decide how to handle f32. If the target does not have native f32 support,
1420    // expand it to i32 and we will be generating soft float library calls.
1421    if (!isTypeLegal(MVT::f32)) {
1422      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1423      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1424      TransformToType[MVT::f32] = MVT::i32;
1425      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1426    }
1427  
1428    // Decide how to handle f16. If the target does not have native f16 support,
1429    // promote it to f32, because there are no f16 library calls (except for
1430    // conversions).
1431    if (!isTypeLegal(MVT::f16)) {
1432      // Allow targets to control how we legalize half.
1433      if (softPromoteHalfType()) {
1434        NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1435        RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1436        TransformToType[MVT::f16] = MVT::f32;
1437        ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1438      } else {
1439        NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1440        RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1441        TransformToType[MVT::f16] = MVT::f32;
1442        ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1443      }
1444    }
1445  
1446    // Decide how to handle bf16. If the target does not have native bf16 support,
1447    // promote it to f32, because there are no bf16 library calls (except for
1448    // converting from f32 to bf16).
1449    if (!isTypeLegal(MVT::bf16)) {
1450      NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1451      RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1452      TransformToType[MVT::bf16] = MVT::f32;
1453      ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1454    }
1455  
1456    // Loop over all of the vector value types to see which need transformations.
1457    for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1458         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1459      MVT VT = (MVT::SimpleValueType) i;
1460      if (isTypeLegal(VT))
1461        continue;
1462  
1463      MVT EltVT = VT.getVectorElementType();
1464      ElementCount EC = VT.getVectorElementCount();
1465      bool IsLegalWiderType = false;
1466      bool IsScalable = VT.isScalableVector();
1467      LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1468      switch (PreferredAction) {
1469      case TypePromoteInteger: {
1470        MVT::SimpleValueType EndVT = IsScalable ?
1471                                     MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1472                                     MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1473        // Try to promote the elements of integer vectors. If no legal
1474        // promotion was found, fall through to the widen-vector method.
1475        for (unsigned nVT = i + 1;
1476             (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1477          MVT SVT = (MVT::SimpleValueType) nVT;
1478          // Promote vectors of integers to vectors with the same number
1479          // of elements, with a wider element type.
1480          if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1481              SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1482            TransformToType[i] = SVT;
1483            RegisterTypeForVT[i] = SVT;
1484            NumRegistersForVT[i] = 1;
1485            ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1486            IsLegalWiderType = true;
1487            break;
1488          }
1489        }
1490        if (IsLegalWiderType)
1491          break;
1492        [[fallthrough]];
1493      }
1494  
1495      case TypeWidenVector:
1496        if (isPowerOf2_32(EC.getKnownMinValue())) {
1497          // Try to widen the vector.
1498          for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1499            MVT SVT = (MVT::SimpleValueType) nVT;
1500            if (SVT.getVectorElementType() == EltVT &&
1501                SVT.isScalableVector() == IsScalable &&
1502                SVT.getVectorElementCount().getKnownMinValue() >
1503                    EC.getKnownMinValue() &&
1504                isTypeLegal(SVT)) {
1505              TransformToType[i] = SVT;
1506              RegisterTypeForVT[i] = SVT;
1507              NumRegistersForVT[i] = 1;
1508              ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1509              IsLegalWiderType = true;
1510              break;
1511            }
1512          }
1513          if (IsLegalWiderType)
1514            break;
1515        } else {
1516          // Only widen to the next power of 2 to keep consistency with EVT.
1517          MVT NVT = VT.getPow2VectorType();
1518          if (isTypeLegal(NVT)) {
1519            TransformToType[i] = NVT;
1520            ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1521            RegisterTypeForVT[i] = NVT;
1522            NumRegistersForVT[i] = 1;
1523            break;
1524          }
1525        }
1526        [[fallthrough]];
1527  
1528      case TypeSplitVector:
1529      case TypeScalarizeVector: {
1530        MVT IntermediateVT;
1531        MVT RegisterVT;
1532        unsigned NumIntermediates;
1533        unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1534            NumIntermediates, RegisterVT, this);
1535        NumRegistersForVT[i] = NumRegisters;
1536        assert(NumRegistersForVT[i] == NumRegisters &&
1537               "NumRegistersForVT size cannot represent NumRegisters!");
1538        RegisterTypeForVT[i] = RegisterVT;
1539  
1540        MVT NVT = VT.getPow2VectorType();
1541        if (NVT == VT) {
1542          // Type is already a power of 2.  The default action is to split.
1543          TransformToType[i] = MVT::Other;
1544          if (PreferredAction == TypeScalarizeVector)
1545            ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1546          else if (PreferredAction == TypeSplitVector)
1547            ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1548          else if (EC.getKnownMinValue() > 1)
1549            ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1550          else
1551            ValueTypeActions.setTypeAction(VT, EC.isScalable()
1552                                                   ? TypeScalarizeScalableVector
1553                                                   : TypeScalarizeVector);
1554        } else {
1555          TransformToType[i] = NVT;
1556          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1557        }
1558        break;
1559      }
1560      default:
1561        llvm_unreachable("Unknown vector legalization action!");
1562      }
1563    }
1564  
1565    // Determine the 'representative' register class for each value type.
1566    // An representative register class is the largest (meaning one which is
1567    // not a sub-register class / subreg register class) legal register class for
1568    // a group of value types. For example, on i386, i8, i16, and i32
1569    // representative would be GR32; while on x86_64 it's GR64.
1570    for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1571      const TargetRegisterClass* RRC;
1572      uint8_t Cost;
1573      std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1574      RepRegClassForVT[i] = RRC;
1575      RepRegClassCostForVT[i] = Cost;
1576    }
1577  }
1578  
1579  EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1580                                             EVT VT) const {
1581    assert(!VT.isVector() && "No default SetCC type for vectors!");
1582    return getPointerTy(DL).SimpleTy;
1583  }
1584  
1585  MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1586    return MVT::i32; // return the default value
1587  }
1588  
1589  /// getVectorTypeBreakdown - Vector types are broken down into some number of
1590  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1591  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1592  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1593  ///
1594  /// This method returns the number of registers needed, and the VT for each
1595  /// register.  It also returns the VT and quantity of the intermediate values
1596  /// before they are promoted/expanded.
1597  unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1598                                                      EVT VT, EVT &IntermediateVT,
1599                                                      unsigned &NumIntermediates,
1600                                                      MVT &RegisterVT) const {
1601    ElementCount EltCnt = VT.getVectorElementCount();
1602  
1603    // If there is a wider vector type with the same element type as this one,
1604    // or a promoted vector type that has the same number of elements which
1605    // are wider, then we should convert to that legal vector type.
1606    // This handles things like <2 x float> -> <4 x float> and
1607    // <4 x i1> -> <4 x i32>.
1608    LegalizeTypeAction TA = getTypeAction(Context, VT);
1609    if (!EltCnt.isScalar() &&
1610        (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1611      EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1612      if (isTypeLegal(RegisterEVT)) {
1613        IntermediateVT = RegisterEVT;
1614        RegisterVT = RegisterEVT.getSimpleVT();
1615        NumIntermediates = 1;
1616        return 1;
1617      }
1618    }
1619  
1620    // Figure out the right, legal destination reg to copy into.
1621    EVT EltTy = VT.getVectorElementType();
1622  
1623    unsigned NumVectorRegs = 1;
1624  
1625    // Scalable vectors cannot be scalarized, so handle the legalisation of the
1626    // types like done elsewhere in SelectionDAG.
1627    if (EltCnt.isScalable()) {
1628      LegalizeKind LK;
1629      EVT PartVT = VT;
1630      do {
1631        // Iterate until we've found a legal (part) type to hold VT.
1632        LK = getTypeConversion(Context, PartVT);
1633        PartVT = LK.second;
1634      } while (LK.first != TypeLegal);
1635  
1636      if (!PartVT.isVector()) {
1637        report_fatal_error(
1638            "Don't know how to legalize this scalable vector type");
1639      }
1640  
1641      NumIntermediates =
1642          divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1643                     PartVT.getVectorElementCount().getKnownMinValue());
1644      IntermediateVT = PartVT;
1645      RegisterVT = getRegisterType(Context, IntermediateVT);
1646      return NumIntermediates;
1647    }
1648  
1649    // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1650    // we could break down into LHS/RHS like LegalizeDAG does.
1651    if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1652      NumVectorRegs = EltCnt.getKnownMinValue();
1653      EltCnt = ElementCount::getFixed(1);
1654    }
1655  
1656    // Divide the input until we get to a supported size.  This will always
1657    // end with a scalar if the target doesn't support vectors.
1658    while (EltCnt.getKnownMinValue() > 1 &&
1659           !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1660      EltCnt = EltCnt.divideCoefficientBy(2);
1661      NumVectorRegs <<= 1;
1662    }
1663  
1664    NumIntermediates = NumVectorRegs;
1665  
1666    EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1667    if (!isTypeLegal(NewVT))
1668      NewVT = EltTy;
1669    IntermediateVT = NewVT;
1670  
1671    MVT DestVT = getRegisterType(Context, NewVT);
1672    RegisterVT = DestVT;
1673  
1674    if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1675      TypeSize NewVTSize = NewVT.getSizeInBits();
1676      // Convert sizes such as i33 to i64.
1677      if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1678        NewVTSize = NewVTSize.coefficientNextPowerOf2();
1679      return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1680    }
1681  
1682    // Otherwise, promotion or legal types use the same number of registers as
1683    // the vector decimated to the appropriate level.
1684    return NumVectorRegs;
1685  }
1686  
1687  bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1688                                                  uint64_t NumCases,
1689                                                  uint64_t Range,
1690                                                  ProfileSummaryInfo *PSI,
1691                                                  BlockFrequencyInfo *BFI) const {
1692    // FIXME: This function check the maximum table size and density, but the
1693    // minimum size is not checked. It would be nice if the minimum size is
1694    // also combined within this function. Currently, the minimum size check is
1695    // performed in findJumpTable() in SelectionDAGBuiler and
1696    // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1697    const bool OptForSize =
1698        SI->getParent()->getParent()->hasOptSize() ||
1699        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1700    const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1701    const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1702  
1703    // Check whether the number of cases is small enough and
1704    // the range is dense enough for a jump table.
1705    return (OptForSize || Range <= MaxJumpTableSize) &&
1706           (NumCases * 100 >= Range * MinDensity);
1707  }
1708  
1709  MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1710                                                          EVT ConditionVT) const {
1711    return getRegisterType(Context, ConditionVT);
1712  }
1713  
1714  /// Get the EVTs and ArgFlags collections that represent the legalized return
1715  /// type of the given function.  This does not require a DAG or a return value,
1716  /// and is suitable for use before any DAGs for the function are constructed.
1717  /// TODO: Move this out of TargetLowering.cpp.
1718  void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1719                           AttributeList attr,
1720                           SmallVectorImpl<ISD::OutputArg> &Outs,
1721                           const TargetLowering &TLI, const DataLayout &DL) {
1722    SmallVector<EVT, 4> ValueVTs;
1723    ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1724    unsigned NumValues = ValueVTs.size();
1725    if (NumValues == 0) return;
1726  
1727    for (unsigned j = 0, f = NumValues; j != f; ++j) {
1728      EVT VT = ValueVTs[j];
1729      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1730  
1731      if (attr.hasRetAttr(Attribute::SExt))
1732        ExtendKind = ISD::SIGN_EXTEND;
1733      else if (attr.hasRetAttr(Attribute::ZExt))
1734        ExtendKind = ISD::ZERO_EXTEND;
1735  
1736      // FIXME: C calling convention requires the return type to be promoted to
1737      // at least 32-bit. But this is not necessary for non-C calling
1738      // conventions. The frontend should mark functions whose return values
1739      // require promoting with signext or zeroext attributes.
1740      if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1741        MVT MinVT = TLI.getRegisterType(MVT::i32);
1742        if (VT.bitsLT(MinVT))
1743          VT = MinVT;
1744      }
1745  
1746      unsigned NumParts =
1747          TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1748      MVT PartVT =
1749          TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1750  
1751      // 'inreg' on function refers to return value
1752      ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1753      if (attr.hasRetAttr(Attribute::InReg))
1754        Flags.setInReg();
1755  
1756      // Propagate extension type if any
1757      if (attr.hasRetAttr(Attribute::SExt))
1758        Flags.setSExt();
1759      else if (attr.hasRetAttr(Attribute::ZExt))
1760        Flags.setZExt();
1761  
1762      for (unsigned i = 0; i < NumParts; ++i)
1763        Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1764    }
1765  }
1766  
1767  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1768  /// function arguments in the caller parameter area.  This is the actual
1769  /// alignment, not its logarithm.
1770  uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1771                                                     const DataLayout &DL) const {
1772    return DL.getABITypeAlign(Ty).value();
1773  }
1774  
1775  bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1776      LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1777      Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1778    // Check if the specified alignment is sufficient based on the data layout.
1779    // TODO: While using the data layout works in practice, a better solution
1780    // would be to implement this check directly (make this a virtual function).
1781    // For example, the ABI alignment may change based on software platform while
1782    // this function should only be affected by hardware implementation.
1783    Type *Ty = VT.getTypeForEVT(Context);
1784    if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1785      // Assume that an access that meets the ABI-specified alignment is fast.
1786      if (Fast != nullptr)
1787        *Fast = 1;
1788      return true;
1789    }
1790  
1791    // This is a misaligned access.
1792    return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1793  }
1794  
1795  bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1796      LLVMContext &Context, const DataLayout &DL, EVT VT,
1797      const MachineMemOperand &MMO, unsigned *Fast) const {
1798    return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1799                                          MMO.getAlign(), MMO.getFlags(), Fast);
1800  }
1801  
1802  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1803                                              const DataLayout &DL, EVT VT,
1804                                              unsigned AddrSpace, Align Alignment,
1805                                              MachineMemOperand::Flags Flags,
1806                                              unsigned *Fast) const {
1807    return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1808                                          Flags, Fast);
1809  }
1810  
1811  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1812                                              const DataLayout &DL, EVT VT,
1813                                              const MachineMemOperand &MMO,
1814                                              unsigned *Fast) const {
1815    return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1816                              MMO.getFlags(), Fast);
1817  }
1818  
1819  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1820                                              const DataLayout &DL, LLT Ty,
1821                                              const MachineMemOperand &MMO,
1822                                              unsigned *Fast) const {
1823    EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1824    return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1825                              MMO.getFlags(), Fast);
1826  }
1827  
1828  //===----------------------------------------------------------------------===//
1829  //  TargetTransformInfo Helpers
1830  //===----------------------------------------------------------------------===//
1831  
1832  int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1833    enum InstructionOpcodes {
1834  #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1835  #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1836  #include "llvm/IR/Instruction.def"
1837    };
1838    switch (static_cast<InstructionOpcodes>(Opcode)) {
1839    case Ret:            return 0;
1840    case Br:             return 0;
1841    case Switch:         return 0;
1842    case IndirectBr:     return 0;
1843    case Invoke:         return 0;
1844    case CallBr:         return 0;
1845    case Resume:         return 0;
1846    case Unreachable:    return 0;
1847    case CleanupRet:     return 0;
1848    case CatchRet:       return 0;
1849    case CatchPad:       return 0;
1850    case CatchSwitch:    return 0;
1851    case CleanupPad:     return 0;
1852    case FNeg:           return ISD::FNEG;
1853    case Add:            return ISD::ADD;
1854    case FAdd:           return ISD::FADD;
1855    case Sub:            return ISD::SUB;
1856    case FSub:           return ISD::FSUB;
1857    case Mul:            return ISD::MUL;
1858    case FMul:           return ISD::FMUL;
1859    case UDiv:           return ISD::UDIV;
1860    case SDiv:           return ISD::SDIV;
1861    case FDiv:           return ISD::FDIV;
1862    case URem:           return ISD::UREM;
1863    case SRem:           return ISD::SREM;
1864    case FRem:           return ISD::FREM;
1865    case Shl:            return ISD::SHL;
1866    case LShr:           return ISD::SRL;
1867    case AShr:           return ISD::SRA;
1868    case And:            return ISD::AND;
1869    case Or:             return ISD::OR;
1870    case Xor:            return ISD::XOR;
1871    case Alloca:         return 0;
1872    case Load:           return ISD::LOAD;
1873    case Store:          return ISD::STORE;
1874    case GetElementPtr:  return 0;
1875    case Fence:          return 0;
1876    case AtomicCmpXchg:  return 0;
1877    case AtomicRMW:      return 0;
1878    case Trunc:          return ISD::TRUNCATE;
1879    case ZExt:           return ISD::ZERO_EXTEND;
1880    case SExt:           return ISD::SIGN_EXTEND;
1881    case FPToUI:         return ISD::FP_TO_UINT;
1882    case FPToSI:         return ISD::FP_TO_SINT;
1883    case UIToFP:         return ISD::UINT_TO_FP;
1884    case SIToFP:         return ISD::SINT_TO_FP;
1885    case FPTrunc:        return ISD::FP_ROUND;
1886    case FPExt:          return ISD::FP_EXTEND;
1887    case PtrToInt:       return ISD::BITCAST;
1888    case IntToPtr:       return ISD::BITCAST;
1889    case BitCast:        return ISD::BITCAST;
1890    case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1891    case ICmp:           return ISD::SETCC;
1892    case FCmp:           return ISD::SETCC;
1893    case PHI:            return 0;
1894    case Call:           return 0;
1895    case Select:         return ISD::SELECT;
1896    case UserOp1:        return 0;
1897    case UserOp2:        return 0;
1898    case VAArg:          return 0;
1899    case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1900    case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1901    case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1902    case ExtractValue:   return ISD::MERGE_VALUES;
1903    case InsertValue:    return ISD::MERGE_VALUES;
1904    case LandingPad:     return 0;
1905    case Freeze:         return ISD::FREEZE;
1906    }
1907  
1908    llvm_unreachable("Unknown instruction type encountered!");
1909  }
1910  
1911  Value *
1912  TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1913                                                         bool UseTLS) const {
1914    // compiler-rt provides a variable with a magic name.  Targets that do not
1915    // link with compiler-rt may also provide such a variable.
1916    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1917    const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1918    auto UnsafeStackPtr =
1919        dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1920  
1921    Type *StackPtrTy = PointerType::getUnqual(M->getContext());
1922  
1923    if (!UnsafeStackPtr) {
1924      auto TLSModel = UseTLS ?
1925          GlobalValue::InitialExecTLSModel :
1926          GlobalValue::NotThreadLocal;
1927      // The global variable is not defined yet, define it ourselves.
1928      // We use the initial-exec TLS model because we do not support the
1929      // variable living anywhere other than in the main executable.
1930      UnsafeStackPtr = new GlobalVariable(
1931          *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1932          UnsafeStackPtrVar, nullptr, TLSModel);
1933    } else {
1934      // The variable exists, check its type and attributes.
1935      if (UnsafeStackPtr->getValueType() != StackPtrTy)
1936        report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1937      if (UseTLS != UnsafeStackPtr->isThreadLocal())
1938        report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1939                           (UseTLS ? "" : "not ") + "be thread-local");
1940    }
1941    return UnsafeStackPtr;
1942  }
1943  
1944  Value *
1945  TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1946    if (!TM.getTargetTriple().isAndroid())
1947      return getDefaultSafeStackPointerLocation(IRB, true);
1948  
1949    // Android provides a libc function to retrieve the address of the current
1950    // thread's unsafe stack pointer.
1951    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1952    auto *PtrTy = PointerType::getUnqual(M->getContext());
1953    FunctionCallee Fn =
1954        M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
1955    return IRB.CreateCall(Fn);
1956  }
1957  
1958  //===----------------------------------------------------------------------===//
1959  //  Loop Strength Reduction hooks
1960  //===----------------------------------------------------------------------===//
1961  
1962  /// isLegalAddressingMode - Return true if the addressing mode represented
1963  /// by AM is legal for this target, for a load/store of the specified type.
1964  bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1965                                                 const AddrMode &AM, Type *Ty,
1966                                                 unsigned AS, Instruction *I) const {
1967    // The default implementation of this implements a conservative RISCy, r+r and
1968    // r+i addr mode.
1969  
1970    // Allows a sign-extended 16-bit immediate field.
1971    if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1972      return false;
1973  
1974    // No global is ever allowed as a base.
1975    if (AM.BaseGV)
1976      return false;
1977  
1978    // Only support r+r,
1979    switch (AM.Scale) {
1980    case 0:  // "r+i" or just "i", depending on HasBaseReg.
1981      break;
1982    case 1:
1983      if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1984        return false;
1985      // Otherwise we have r+r or r+i.
1986      break;
1987    case 2:
1988      if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1989        return false;
1990      // Allow 2*r as r+r.
1991      break;
1992    default: // Don't allow n * r
1993      return false;
1994    }
1995  
1996    return true;
1997  }
1998  
1999  //===----------------------------------------------------------------------===//
2000  //  Stack Protector
2001  //===----------------------------------------------------------------------===//
2002  
2003  // For OpenBSD return its special guard variable. Otherwise return nullptr,
2004  // so that SelectionDAG handle SSP.
2005  Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
2006    if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2007      Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2008      PointerType *PtrTy = PointerType::getUnqual(M.getContext());
2009      Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
2010      if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
2011        G->setVisibility(GlobalValue::HiddenVisibility);
2012      return C;
2013    }
2014    return nullptr;
2015  }
2016  
2017  // Currently only support "standard" __stack_chk_guard.
2018  // TODO: add LOAD_STACK_GUARD support.
2019  void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
2020    if (!M.getNamedValue("__stack_chk_guard")) {
2021      auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2022                                    false, GlobalVariable::ExternalLinkage,
2023                                    nullptr, "__stack_chk_guard");
2024  
2025      // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2026      if (M.getDirectAccessExternalData() &&
2027          !TM.getTargetTriple().isWindowsGNUEnvironment() &&
2028          !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD()) &&
2029          (!TM.getTargetTriple().isOSDarwin() ||
2030           TM.getRelocationModel() == Reloc::Static))
2031        GV->setDSOLocal(true);
2032    }
2033  }
2034  
2035  // Currently only support "standard" __stack_chk_guard.
2036  // TODO: add LOAD_STACK_GUARD support.
2037  Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2038    return M.getNamedValue("__stack_chk_guard");
2039  }
2040  
2041  Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2042    return nullptr;
2043  }
2044  
2045  unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2046    return MinimumJumpTableEntries;
2047  }
2048  
2049  void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2050    MinimumJumpTableEntries = Val;
2051  }
2052  
2053  unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2054    return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2055  }
2056  
2057  unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2058    return MaximumJumpTableSize;
2059  }
2060  
2061  void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2062    MaximumJumpTableSize = Val;
2063  }
2064  
2065  bool TargetLoweringBase::isJumpTableRelative() const {
2066    return getTargetMachine().isPositionIndependent();
2067  }
2068  
2069  Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2070    if (TM.Options.LoopAlignment)
2071      return Align(TM.Options.LoopAlignment);
2072    return PrefLoopAlignment;
2073  }
2074  
2075  unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2076      MachineBasicBlock *MBB) const {
2077    return MaxBytesForAlignment;
2078  }
2079  
2080  //===----------------------------------------------------------------------===//
2081  //  Reciprocal Estimates
2082  //===----------------------------------------------------------------------===//
2083  
2084  /// Get the reciprocal estimate attribute string for a function that will
2085  /// override the target defaults.
2086  static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2087    const Function &F = MF.getFunction();
2088    return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2089  }
2090  
2091  /// Construct a string for the given reciprocal operation of the given type.
2092  /// This string should match the corresponding option to the front-end's
2093  /// "-mrecip" flag assuming those strings have been passed through in an
2094  /// attribute string. For example, "vec-divf" for a division of a vXf32.
2095  static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2096    std::string Name = VT.isVector() ? "vec-" : "";
2097  
2098    Name += IsSqrt ? "sqrt" : "div";
2099  
2100    // TODO: Handle other float types?
2101    if (VT.getScalarType() == MVT::f64) {
2102      Name += "d";
2103    } else if (VT.getScalarType() == MVT::f16) {
2104      Name += "h";
2105    } else {
2106      assert(VT.getScalarType() == MVT::f32 &&
2107             "Unexpected FP type for reciprocal estimate");
2108      Name += "f";
2109    }
2110  
2111    return Name;
2112  }
2113  
2114  /// Return the character position and value (a single numeric character) of a
2115  /// customized refinement operation in the input string if it exists. Return
2116  /// false if there is no customized refinement step count.
2117  static bool parseRefinementStep(StringRef In, size_t &Position,
2118                                  uint8_t &Value) {
2119    const char RefStepToken = ':';
2120    Position = In.find(RefStepToken);
2121    if (Position == StringRef::npos)
2122      return false;
2123  
2124    StringRef RefStepString = In.substr(Position + 1);
2125    // Allow exactly one numeric character for the additional refinement
2126    // step parameter.
2127    if (RefStepString.size() == 1) {
2128      char RefStepChar = RefStepString[0];
2129      if (isDigit(RefStepChar)) {
2130        Value = RefStepChar - '0';
2131        return true;
2132      }
2133    }
2134    report_fatal_error("Invalid refinement step for -recip.");
2135  }
2136  
2137  /// For the input attribute string, return one of the ReciprocalEstimate enum
2138  /// status values (enabled, disabled, or not specified) for this operation on
2139  /// the specified data type.
2140  static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2141    if (Override.empty())
2142      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2143  
2144    SmallVector<StringRef, 4> OverrideVector;
2145    Override.split(OverrideVector, ',');
2146    unsigned NumArgs = OverrideVector.size();
2147  
2148    // Check if "all", "none", or "default" was specified.
2149    if (NumArgs == 1) {
2150      // Look for an optional setting of the number of refinement steps needed
2151      // for this type of reciprocal operation.
2152      size_t RefPos;
2153      uint8_t RefSteps;
2154      if (parseRefinementStep(Override, RefPos, RefSteps)) {
2155        // Split the string for further processing.
2156        Override = Override.substr(0, RefPos);
2157      }
2158  
2159      // All reciprocal types are enabled.
2160      if (Override == "all")
2161        return TargetLoweringBase::ReciprocalEstimate::Enabled;
2162  
2163      // All reciprocal types are disabled.
2164      if (Override == "none")
2165        return TargetLoweringBase::ReciprocalEstimate::Disabled;
2166  
2167      // Target defaults for enablement are used.
2168      if (Override == "default")
2169        return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2170    }
2171  
2172    // The attribute string may omit the size suffix ('f'/'d').
2173    std::string VTName = getReciprocalOpName(IsSqrt, VT);
2174    std::string VTNameNoSize = VTName;
2175    VTNameNoSize.pop_back();
2176    static const char DisabledPrefix = '!';
2177  
2178    for (StringRef RecipType : OverrideVector) {
2179      size_t RefPos;
2180      uint8_t RefSteps;
2181      if (parseRefinementStep(RecipType, RefPos, RefSteps))
2182        RecipType = RecipType.substr(0, RefPos);
2183  
2184      // Ignore the disablement token for string matching.
2185      bool IsDisabled = RecipType[0] == DisabledPrefix;
2186      if (IsDisabled)
2187        RecipType = RecipType.substr(1);
2188  
2189      if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2190        return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2191                          : TargetLoweringBase::ReciprocalEstimate::Enabled;
2192    }
2193  
2194    return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2195  }
2196  
2197  /// For the input attribute string, return the customized refinement step count
2198  /// for this operation on the specified data type. If the step count does not
2199  /// exist, return the ReciprocalEstimate enum value for unspecified.
2200  static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2201    if (Override.empty())
2202      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2203  
2204    SmallVector<StringRef, 4> OverrideVector;
2205    Override.split(OverrideVector, ',');
2206    unsigned NumArgs = OverrideVector.size();
2207  
2208    // Check if "all", "default", or "none" was specified.
2209    if (NumArgs == 1) {
2210      // Look for an optional setting of the number of refinement steps needed
2211      // for this type of reciprocal operation.
2212      size_t RefPos;
2213      uint8_t RefSteps;
2214      if (!parseRefinementStep(Override, RefPos, RefSteps))
2215        return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2216  
2217      // Split the string for further processing.
2218      Override = Override.substr(0, RefPos);
2219      assert(Override != "none" &&
2220             "Disabled reciprocals, but specifed refinement steps?");
2221  
2222      // If this is a general override, return the specified number of steps.
2223      if (Override == "all" || Override == "default")
2224        return RefSteps;
2225    }
2226  
2227    // The attribute string may omit the size suffix ('f'/'d').
2228    std::string VTName = getReciprocalOpName(IsSqrt, VT);
2229    std::string VTNameNoSize = VTName;
2230    VTNameNoSize.pop_back();
2231  
2232    for (StringRef RecipType : OverrideVector) {
2233      size_t RefPos;
2234      uint8_t RefSteps;
2235      if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2236        continue;
2237  
2238      RecipType = RecipType.substr(0, RefPos);
2239      if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2240        return RefSteps;
2241    }
2242  
2243    return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2244  }
2245  
2246  int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2247                                                      MachineFunction &MF) const {
2248    return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2249  }
2250  
2251  int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2252                                                     MachineFunction &MF) const {
2253    return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2254  }
2255  
2256  int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2257                                                 MachineFunction &MF) const {
2258    return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2259  }
2260  
2261  int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2262                                                MachineFunction &MF) const {
2263    return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2264  }
2265  
2266  bool TargetLoweringBase::isLoadBitCastBeneficial(
2267      EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2268      const MachineMemOperand &MMO) const {
2269    // Single-element vectors are scalarized, so we should generally avoid having
2270    // any memory operations on such types, as they would get scalarized too.
2271    if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2272        BitcastVT.getVectorNumElements() == 1)
2273      return false;
2274  
2275    // Don't do if we could do an indexed load on the original type, but not on
2276    // the new one.
2277    if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2278      return true;
2279  
2280    MVT LoadMVT = LoadVT.getSimpleVT();
2281  
2282    // Don't bother doing this if it's just going to be promoted again later, as
2283    // doing so might interfere with other combines.
2284    if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2285        getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2286      return false;
2287  
2288    unsigned Fast = 0;
2289    return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2290                              MMO, &Fast) &&
2291           Fast;
2292  }
2293  
2294  void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2295    MF.getRegInfo().freezeReservedRegs(MF);
2296  }
2297  
2298  MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2299      const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2300      const TargetLibraryInfo *LibInfo) const {
2301    MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2302    if (LI.isVolatile())
2303      Flags |= MachineMemOperand::MOVolatile;
2304  
2305    if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2306      Flags |= MachineMemOperand::MONonTemporal;
2307  
2308    if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2309      Flags |= MachineMemOperand::MOInvariant;
2310  
2311    if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2312                                           LI.getAlign(), DL, &LI, AC,
2313                                           /*DT=*/nullptr, LibInfo))
2314      Flags |= MachineMemOperand::MODereferenceable;
2315  
2316    Flags |= getTargetMMOFlags(LI);
2317    return Flags;
2318  }
2319  
2320  MachineMemOperand::Flags
2321  TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2322                                              const DataLayout &DL) const {
2323    MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2324  
2325    if (SI.isVolatile())
2326      Flags |= MachineMemOperand::MOVolatile;
2327  
2328    if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2329      Flags |= MachineMemOperand::MONonTemporal;
2330  
2331    // FIXME: Not preserving dereferenceable
2332    Flags |= getTargetMMOFlags(SI);
2333    return Flags;
2334  }
2335  
2336  MachineMemOperand::Flags
2337  TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2338                                               const DataLayout &DL) const {
2339    auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2340  
2341    if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2342      if (RMW->isVolatile())
2343        Flags |= MachineMemOperand::MOVolatile;
2344    } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2345      if (CmpX->isVolatile())
2346        Flags |= MachineMemOperand::MOVolatile;
2347    } else
2348      llvm_unreachable("not an atomic instruction");
2349  
2350    // FIXME: Not preserving dereferenceable
2351    Flags |= getTargetMMOFlags(AI);
2352    return Flags;
2353  }
2354  
2355  Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2356                                                    Instruction *Inst,
2357                                                    AtomicOrdering Ord) const {
2358    if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2359      return Builder.CreateFence(Ord);
2360    else
2361      return nullptr;
2362  }
2363  
2364  Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2365                                                     Instruction *Inst,
2366                                                     AtomicOrdering Ord) const {
2367    if (isAcquireOrStronger(Ord))
2368      return Builder.CreateFence(Ord);
2369    else
2370      return nullptr;
2371  }
2372  
2373  //===----------------------------------------------------------------------===//
2374  //  GlobalISel Hooks
2375  //===----------------------------------------------------------------------===//
2376  
2377  bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2378                                          const TargetTransformInfo *TTI) const {
2379    auto &MF = *MI.getMF();
2380    auto &MRI = MF.getRegInfo();
2381    // Assuming a spill and reload of a value has a cost of 1 instruction each,
2382    // this helper function computes the maximum number of uses we should consider
2383    // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2384    // break even in terms of code size when the original MI has 2 users vs
2385    // choosing to potentially spill. Any more than 2 users we we have a net code
2386    // size increase. This doesn't take into account register pressure though.
2387    auto maxUses = [](unsigned RematCost) {
2388      // A cost of 1 means remats are basically free.
2389      if (RematCost == 1)
2390        return std::numeric_limits<unsigned>::max();
2391      if (RematCost == 2)
2392        return 2U;
2393  
2394      // Remat is too expensive, only sink if there's one user.
2395      if (RematCost > 2)
2396        return 1U;
2397      llvm_unreachable("Unexpected remat cost");
2398    };
2399  
2400    switch (MI.getOpcode()) {
2401    default:
2402      return false;
2403    // Constants-like instructions should be close to their users.
2404    // We don't want long live-ranges for them.
2405    case TargetOpcode::G_CONSTANT:
2406    case TargetOpcode::G_FCONSTANT:
2407    case TargetOpcode::G_FRAME_INDEX:
2408    case TargetOpcode::G_INTTOPTR:
2409      return true;
2410    case TargetOpcode::G_GLOBAL_VALUE: {
2411      unsigned RematCost = TTI->getGISelRematGlobalCost();
2412      Register Reg = MI.getOperand(0).getReg();
2413      unsigned MaxUses = maxUses(RematCost);
2414      if (MaxUses == UINT_MAX)
2415        return true; // Remats are "free" so always localize.
2416      return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2417    }
2418    }
2419  }
2420