xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Analysis.h"
23 #include "llvm/CodeGen/ISDOpcodes.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineMemOperand.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RuntimeLibcalls.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MachineValueType.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Target/TargetMachine.h"
55 #include "llvm/Target/TargetOptions.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstddef>
60 #include <cstdint>
61 #include <cstring>
62 #include <iterator>
63 #include <string>
64 #include <tuple>
65 #include <utility>
66 
67 using namespace llvm;
68 
69 static cl::opt<bool> JumpIsExpensiveOverride(
70     "jump-is-expensive", cl::init(false),
71     cl::desc("Do not create extra branches to split comparison logic."),
72     cl::Hidden);
73 
74 static cl::opt<unsigned> MinimumJumpTableEntries
75   ("min-jump-table-entries", cl::init(4), cl::Hidden,
76    cl::desc("Set minimum number of entries to use a jump table."));
77 
78 static cl::opt<unsigned> MaximumJumpTableSize
79   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
80    cl::desc("Set maximum size of jump tables."));
81 
82 /// Minimum jump table density for normal functions.
83 static cl::opt<unsigned>
84     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
85                      cl::desc("Minimum density for building a jump table in "
86                               "a normal function"));
87 
88 /// Minimum jump table density for -Os or -Oz functions.
89 static cl::opt<unsigned> OptsizeJumpTableDensity(
90     "optsize-jump-table-density", cl::init(40), cl::Hidden,
91     cl::desc("Minimum density for building a jump table in "
92              "an optsize function"));
93 
94 // FIXME: This option is only to test if the strict fp operation processed
95 // correctly by preventing mutating strict fp operation to normal fp operation
96 // during development. When the backend supports strict float operation, this
97 // option will be meaningless.
98 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
99        cl::desc("Don't mutate strict-float node to a legalize node"),
100        cl::init(false), cl::Hidden);
101 
102 static bool darwinHasSinCos(const Triple &TT) {
103   assert(TT.isOSDarwin() && "should be called with darwin triple");
104   // Don't bother with 32 bit x86.
105   if (TT.getArch() == Triple::x86)
106     return false;
107   // Macos < 10.9 has no sincos_stret.
108   if (TT.isMacOSX())
109     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
110   // iOS < 7.0 has no sincos_stret.
111   if (TT.isiOS())
112     return !TT.isOSVersionLT(7, 0);
113   // Any other darwin such as WatchOS/TvOS is new enough.
114   return true;
115 }
116 
117 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118 #define HANDLE_LIBCALL(code, name) \
119   setLibcallName(RTLIB::code, name);
120 #include "llvm/IR/RuntimeLibcalls.def"
121 #undef HANDLE_LIBCALL
122   // Initialize calling conventions to their default.
123   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125 
126   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127   if (TT.isPPC()) {
128     setLibcallName(RTLIB::ADD_F128, "__addkf3");
129     setLibcallName(RTLIB::SUB_F128, "__subkf3");
130     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
131     setLibcallName(RTLIB::DIV_F128, "__divkf3");
132     setLibcallName(RTLIB::POWI_F128, "__powikf2");
133     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
134     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
135     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
136     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
137     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
138     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
139     setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
140     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
141     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
142     setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
143     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
144     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
145     setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
146     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
147     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
148     setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
149     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
150     setLibcallName(RTLIB::UNE_F128, "__nekf2");
151     setLibcallName(RTLIB::OGE_F128, "__gekf2");
152     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
153     setLibcallName(RTLIB::OLE_F128, "__lekf2");
154     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
155     setLibcallName(RTLIB::UO_F128, "__unordkf2");
156   }
157 
158   // A few names are different on particular architectures or environments.
159   if (TT.isOSDarwin()) {
160     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
161     // of the gnueabi-style __gnu_*_ieee.
162     // FIXME: What about other targets?
163     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
164     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
165 
166     // Some darwins have an optimized __bzero/bzero function.
167     switch (TT.getArch()) {
168     case Triple::x86:
169     case Triple::x86_64:
170       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
171         setLibcallName(RTLIB::BZERO, "__bzero");
172       break;
173     case Triple::aarch64:
174     case Triple::aarch64_32:
175       setLibcallName(RTLIB::BZERO, "bzero");
176       break;
177     default:
178       break;
179     }
180 
181     if (darwinHasSinCos(TT)) {
182       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
183       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
184       if (TT.isWatchABI()) {
185         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
186                               CallingConv::ARM_AAPCS_VFP);
187         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
188                               CallingConv::ARM_AAPCS_VFP);
189       }
190     }
191   } else {
192     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
193     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
194   }
195 
196   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
197       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
198     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
199     setLibcallName(RTLIB::SINCOS_F64, "sincos");
200     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
201     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
202     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
203   }
204 
205   if (TT.isPS4CPU()) {
206     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
207     setLibcallName(RTLIB::SINCOS_F64, "sincos");
208   }
209 
210   if (TT.isOSOpenBSD()) {
211     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
212   }
213 }
214 
215 /// GetFPLibCall - Helper to return the right libcall for the given floating
216 /// point type, or UNKNOWN_LIBCALL if there is none.
217 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
218                                    RTLIB::Libcall Call_F32,
219                                    RTLIB::Libcall Call_F64,
220                                    RTLIB::Libcall Call_F80,
221                                    RTLIB::Libcall Call_F128,
222                                    RTLIB::Libcall Call_PPCF128) {
223   return
224     VT == MVT::f32 ? Call_F32 :
225     VT == MVT::f64 ? Call_F64 :
226     VT == MVT::f80 ? Call_F80 :
227     VT == MVT::f128 ? Call_F128 :
228     VT == MVT::ppcf128 ? Call_PPCF128 :
229     RTLIB::UNKNOWN_LIBCALL;
230 }
231 
232 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
233 /// UNKNOWN_LIBCALL if there is none.
234 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
235   if (OpVT == MVT::f16) {
236     if (RetVT == MVT::f32)
237       return FPEXT_F16_F32;
238     if (RetVT == MVT::f64)
239       return FPEXT_F16_F64;
240     if (RetVT == MVT::f80)
241       return FPEXT_F16_F80;
242     if (RetVT == MVT::f128)
243       return FPEXT_F16_F128;
244   } else if (OpVT == MVT::f32) {
245     if (RetVT == MVT::f64)
246       return FPEXT_F32_F64;
247     if (RetVT == MVT::f128)
248       return FPEXT_F32_F128;
249     if (RetVT == MVT::ppcf128)
250       return FPEXT_F32_PPCF128;
251   } else if (OpVT == MVT::f64) {
252     if (RetVT == MVT::f128)
253       return FPEXT_F64_F128;
254     else if (RetVT == MVT::ppcf128)
255       return FPEXT_F64_PPCF128;
256   } else if (OpVT == MVT::f80) {
257     if (RetVT == MVT::f128)
258       return FPEXT_F80_F128;
259   }
260 
261   return UNKNOWN_LIBCALL;
262 }
263 
264 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
265 /// UNKNOWN_LIBCALL if there is none.
266 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
267   if (RetVT == MVT::f16) {
268     if (OpVT == MVT::f32)
269       return FPROUND_F32_F16;
270     if (OpVT == MVT::f64)
271       return FPROUND_F64_F16;
272     if (OpVT == MVT::f80)
273       return FPROUND_F80_F16;
274     if (OpVT == MVT::f128)
275       return FPROUND_F128_F16;
276     if (OpVT == MVT::ppcf128)
277       return FPROUND_PPCF128_F16;
278   } else if (RetVT == MVT::f32) {
279     if (OpVT == MVT::f64)
280       return FPROUND_F64_F32;
281     if (OpVT == MVT::f80)
282       return FPROUND_F80_F32;
283     if (OpVT == MVT::f128)
284       return FPROUND_F128_F32;
285     if (OpVT == MVT::ppcf128)
286       return FPROUND_PPCF128_F32;
287   } else if (RetVT == MVT::f64) {
288     if (OpVT == MVT::f80)
289       return FPROUND_F80_F64;
290     if (OpVT == MVT::f128)
291       return FPROUND_F128_F64;
292     if (OpVT == MVT::ppcf128)
293       return FPROUND_PPCF128_F64;
294   } else if (RetVT == MVT::f80) {
295     if (OpVT == MVT::f128)
296       return FPROUND_F128_F80;
297   }
298 
299   return UNKNOWN_LIBCALL;
300 }
301 
302 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
303 /// UNKNOWN_LIBCALL if there is none.
304 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
305   if (OpVT == MVT::f16) {
306     if (RetVT == MVT::i32)
307       return FPTOSINT_F16_I32;
308     if (RetVT == MVT::i64)
309       return FPTOSINT_F16_I64;
310     if (RetVT == MVT::i128)
311       return FPTOSINT_F16_I128;
312   } else if (OpVT == MVT::f32) {
313     if (RetVT == MVT::i32)
314       return FPTOSINT_F32_I32;
315     if (RetVT == MVT::i64)
316       return FPTOSINT_F32_I64;
317     if (RetVT == MVT::i128)
318       return FPTOSINT_F32_I128;
319   } else if (OpVT == MVT::f64) {
320     if (RetVT == MVT::i32)
321       return FPTOSINT_F64_I32;
322     if (RetVT == MVT::i64)
323       return FPTOSINT_F64_I64;
324     if (RetVT == MVT::i128)
325       return FPTOSINT_F64_I128;
326   } else if (OpVT == MVT::f80) {
327     if (RetVT == MVT::i32)
328       return FPTOSINT_F80_I32;
329     if (RetVT == MVT::i64)
330       return FPTOSINT_F80_I64;
331     if (RetVT == MVT::i128)
332       return FPTOSINT_F80_I128;
333   } else if (OpVT == MVT::f128) {
334     if (RetVT == MVT::i32)
335       return FPTOSINT_F128_I32;
336     if (RetVT == MVT::i64)
337       return FPTOSINT_F128_I64;
338     if (RetVT == MVT::i128)
339       return FPTOSINT_F128_I128;
340   } else if (OpVT == MVT::ppcf128) {
341     if (RetVT == MVT::i32)
342       return FPTOSINT_PPCF128_I32;
343     if (RetVT == MVT::i64)
344       return FPTOSINT_PPCF128_I64;
345     if (RetVT == MVT::i128)
346       return FPTOSINT_PPCF128_I128;
347   }
348   return UNKNOWN_LIBCALL;
349 }
350 
351 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
352 /// UNKNOWN_LIBCALL if there is none.
353 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
354   if (OpVT == MVT::f16) {
355     if (RetVT == MVT::i32)
356       return FPTOUINT_F16_I32;
357     if (RetVT == MVT::i64)
358       return FPTOUINT_F16_I64;
359     if (RetVT == MVT::i128)
360       return FPTOUINT_F16_I128;
361   } else if (OpVT == MVT::f32) {
362     if (RetVT == MVT::i32)
363       return FPTOUINT_F32_I32;
364     if (RetVT == MVT::i64)
365       return FPTOUINT_F32_I64;
366     if (RetVT == MVT::i128)
367       return FPTOUINT_F32_I128;
368   } else if (OpVT == MVT::f64) {
369     if (RetVT == MVT::i32)
370       return FPTOUINT_F64_I32;
371     if (RetVT == MVT::i64)
372       return FPTOUINT_F64_I64;
373     if (RetVT == MVT::i128)
374       return FPTOUINT_F64_I128;
375   } else if (OpVT == MVT::f80) {
376     if (RetVT == MVT::i32)
377       return FPTOUINT_F80_I32;
378     if (RetVT == MVT::i64)
379       return FPTOUINT_F80_I64;
380     if (RetVT == MVT::i128)
381       return FPTOUINT_F80_I128;
382   } else if (OpVT == MVT::f128) {
383     if (RetVT == MVT::i32)
384       return FPTOUINT_F128_I32;
385     if (RetVT == MVT::i64)
386       return FPTOUINT_F128_I64;
387     if (RetVT == MVT::i128)
388       return FPTOUINT_F128_I128;
389   } else if (OpVT == MVT::ppcf128) {
390     if (RetVT == MVT::i32)
391       return FPTOUINT_PPCF128_I32;
392     if (RetVT == MVT::i64)
393       return FPTOUINT_PPCF128_I64;
394     if (RetVT == MVT::i128)
395       return FPTOUINT_PPCF128_I128;
396   }
397   return UNKNOWN_LIBCALL;
398 }
399 
400 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
401 /// UNKNOWN_LIBCALL if there is none.
402 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
403   if (OpVT == MVT::i32) {
404     if (RetVT == MVT::f16)
405       return SINTTOFP_I32_F16;
406     if (RetVT == MVT::f32)
407       return SINTTOFP_I32_F32;
408     if (RetVT == MVT::f64)
409       return SINTTOFP_I32_F64;
410     if (RetVT == MVT::f80)
411       return SINTTOFP_I32_F80;
412     if (RetVT == MVT::f128)
413       return SINTTOFP_I32_F128;
414     if (RetVT == MVT::ppcf128)
415       return SINTTOFP_I32_PPCF128;
416   } else if (OpVT == MVT::i64) {
417     if (RetVT == MVT::f16)
418       return SINTTOFP_I64_F16;
419     if (RetVT == MVT::f32)
420       return SINTTOFP_I64_F32;
421     if (RetVT == MVT::f64)
422       return SINTTOFP_I64_F64;
423     if (RetVT == MVT::f80)
424       return SINTTOFP_I64_F80;
425     if (RetVT == MVT::f128)
426       return SINTTOFP_I64_F128;
427     if (RetVT == MVT::ppcf128)
428       return SINTTOFP_I64_PPCF128;
429   } else if (OpVT == MVT::i128) {
430     if (RetVT == MVT::f16)
431       return SINTTOFP_I128_F16;
432     if (RetVT == MVT::f32)
433       return SINTTOFP_I128_F32;
434     if (RetVT == MVT::f64)
435       return SINTTOFP_I128_F64;
436     if (RetVT == MVT::f80)
437       return SINTTOFP_I128_F80;
438     if (RetVT == MVT::f128)
439       return SINTTOFP_I128_F128;
440     if (RetVT == MVT::ppcf128)
441       return SINTTOFP_I128_PPCF128;
442   }
443   return UNKNOWN_LIBCALL;
444 }
445 
446 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
447 /// UNKNOWN_LIBCALL if there is none.
448 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
449   if (OpVT == MVT::i32) {
450     if (RetVT == MVT::f16)
451       return UINTTOFP_I32_F16;
452     if (RetVT == MVT::f32)
453       return UINTTOFP_I32_F32;
454     if (RetVT == MVT::f64)
455       return UINTTOFP_I32_F64;
456     if (RetVT == MVT::f80)
457       return UINTTOFP_I32_F80;
458     if (RetVT == MVT::f128)
459       return UINTTOFP_I32_F128;
460     if (RetVT == MVT::ppcf128)
461       return UINTTOFP_I32_PPCF128;
462   } else if (OpVT == MVT::i64) {
463     if (RetVT == MVT::f16)
464       return UINTTOFP_I64_F16;
465     if (RetVT == MVT::f32)
466       return UINTTOFP_I64_F32;
467     if (RetVT == MVT::f64)
468       return UINTTOFP_I64_F64;
469     if (RetVT == MVT::f80)
470       return UINTTOFP_I64_F80;
471     if (RetVT == MVT::f128)
472       return UINTTOFP_I64_F128;
473     if (RetVT == MVT::ppcf128)
474       return UINTTOFP_I64_PPCF128;
475   } else if (OpVT == MVT::i128) {
476     if (RetVT == MVT::f16)
477       return UINTTOFP_I128_F16;
478     if (RetVT == MVT::f32)
479       return UINTTOFP_I128_F32;
480     if (RetVT == MVT::f64)
481       return UINTTOFP_I128_F64;
482     if (RetVT == MVT::f80)
483       return UINTTOFP_I128_F80;
484     if (RetVT == MVT::f128)
485       return UINTTOFP_I128_F128;
486     if (RetVT == MVT::ppcf128)
487       return UINTTOFP_I128_PPCF128;
488   }
489   return UNKNOWN_LIBCALL;
490 }
491 
492 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
493   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
494                       POWI_PPCF128);
495 }
496 
497 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
498                                         MVT VT) {
499   unsigned ModeN, ModelN;
500   switch (VT.SimpleTy) {
501   case MVT::i8:
502     ModeN = 0;
503     break;
504   case MVT::i16:
505     ModeN = 1;
506     break;
507   case MVT::i32:
508     ModeN = 2;
509     break;
510   case MVT::i64:
511     ModeN = 3;
512     break;
513   case MVT::i128:
514     ModeN = 4;
515     break;
516   default:
517     return UNKNOWN_LIBCALL;
518   }
519 
520   switch (Order) {
521   case AtomicOrdering::Monotonic:
522     ModelN = 0;
523     break;
524   case AtomicOrdering::Acquire:
525     ModelN = 1;
526     break;
527   case AtomicOrdering::Release:
528     ModelN = 2;
529     break;
530   case AtomicOrdering::AcquireRelease:
531   case AtomicOrdering::SequentiallyConsistent:
532     ModelN = 3;
533     break;
534   default:
535     return UNKNOWN_LIBCALL;
536   }
537 
538 #define LCALLS(A, B)                                                           \
539   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
540 #define LCALL5(A)                                                              \
541   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
542   switch (Opc) {
543   case ISD::ATOMIC_CMP_SWAP: {
544     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
545     return LC[ModeN][ModelN];
546   }
547   case ISD::ATOMIC_SWAP: {
548     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
549     return LC[ModeN][ModelN];
550   }
551   case ISD::ATOMIC_LOAD_ADD: {
552     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
553     return LC[ModeN][ModelN];
554   }
555   case ISD::ATOMIC_LOAD_OR: {
556     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
557     return LC[ModeN][ModelN];
558   }
559   case ISD::ATOMIC_LOAD_CLR: {
560     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
561     return LC[ModeN][ModelN];
562   }
563   case ISD::ATOMIC_LOAD_XOR: {
564     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
565     return LC[ModeN][ModelN];
566   }
567   default:
568     return UNKNOWN_LIBCALL;
569   }
570 #undef LCALLS
571 #undef LCALL5
572 }
573 
574 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
575 #define OP_TO_LIBCALL(Name, Enum)                                              \
576   case Name:                                                                   \
577     switch (VT.SimpleTy) {                                                     \
578     default:                                                                   \
579       return UNKNOWN_LIBCALL;                                                  \
580     case MVT::i8:                                                              \
581       return Enum##_1;                                                         \
582     case MVT::i16:                                                             \
583       return Enum##_2;                                                         \
584     case MVT::i32:                                                             \
585       return Enum##_4;                                                         \
586     case MVT::i64:                                                             \
587       return Enum##_8;                                                         \
588     case MVT::i128:                                                            \
589       return Enum##_16;                                                        \
590     }
591 
592   switch (Opc) {
593     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
594     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
595     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
596     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
597     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
598     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
599     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
600     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
601     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
602     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
603     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
604     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
605   }
606 
607 #undef OP_TO_LIBCALL
608 
609   return UNKNOWN_LIBCALL;
610 }
611 
612 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
613   switch (ElementSize) {
614   case 1:
615     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
616   case 2:
617     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
618   case 4:
619     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
620   case 8:
621     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
622   case 16:
623     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
624   default:
625     return UNKNOWN_LIBCALL;
626   }
627 }
628 
629 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
630   switch (ElementSize) {
631   case 1:
632     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
633   case 2:
634     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
635   case 4:
636     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
637   case 8:
638     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
639   case 16:
640     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
641   default:
642     return UNKNOWN_LIBCALL;
643   }
644 }
645 
646 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
647   switch (ElementSize) {
648   case 1:
649     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
650   case 2:
651     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
652   case 4:
653     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
654   case 8:
655     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
656   case 16:
657     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
658   default:
659     return UNKNOWN_LIBCALL;
660   }
661 }
662 
663 /// InitCmpLibcallCCs - Set default comparison libcall CC.
664 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
665   std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
666   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
667   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
668   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
669   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
670   CCs[RTLIB::UNE_F32] = ISD::SETNE;
671   CCs[RTLIB::UNE_F64] = ISD::SETNE;
672   CCs[RTLIB::UNE_F128] = ISD::SETNE;
673   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
674   CCs[RTLIB::OGE_F32] = ISD::SETGE;
675   CCs[RTLIB::OGE_F64] = ISD::SETGE;
676   CCs[RTLIB::OGE_F128] = ISD::SETGE;
677   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
678   CCs[RTLIB::OLT_F32] = ISD::SETLT;
679   CCs[RTLIB::OLT_F64] = ISD::SETLT;
680   CCs[RTLIB::OLT_F128] = ISD::SETLT;
681   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
682   CCs[RTLIB::OLE_F32] = ISD::SETLE;
683   CCs[RTLIB::OLE_F64] = ISD::SETLE;
684   CCs[RTLIB::OLE_F128] = ISD::SETLE;
685   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
686   CCs[RTLIB::OGT_F32] = ISD::SETGT;
687   CCs[RTLIB::OGT_F64] = ISD::SETGT;
688   CCs[RTLIB::OGT_F128] = ISD::SETGT;
689   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
690   CCs[RTLIB::UO_F32] = ISD::SETNE;
691   CCs[RTLIB::UO_F64] = ISD::SETNE;
692   CCs[RTLIB::UO_F128] = ISD::SETNE;
693   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
694 }
695 
696 /// NOTE: The TargetMachine owns TLOF.
697 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
698   initActions();
699 
700   // Perform these initializations only once.
701   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
702       MaxLoadsPerMemcmp = 8;
703   MaxGluedStoresPerMemcpy = 0;
704   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
705       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
706   HasMultipleConditionRegisters = false;
707   HasExtractBitsInsn = false;
708   JumpIsExpensive = JumpIsExpensiveOverride;
709   PredictableSelectIsExpensive = false;
710   EnableExtLdPromotion = false;
711   StackPointerRegisterToSaveRestore = 0;
712   BooleanContents = UndefinedBooleanContent;
713   BooleanFloatContents = UndefinedBooleanContent;
714   BooleanVectorContents = UndefinedBooleanContent;
715   SchedPreferenceInfo = Sched::ILP;
716   GatherAllAliasesMaxDepth = 18;
717   IsStrictFPEnabled = DisableStrictNodeMutation;
718   MaxBytesForAlignment = 0;
719   // TODO: the default will be switched to 0 in the next commit, along
720   // with the Target-specific changes necessary.
721   MaxAtomicSizeInBitsSupported = 1024;
722 
723   MinCmpXchgSizeInBits = 0;
724   SupportsUnalignedAtomics = false;
725 
726   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
727 
728   InitLibcalls(TM.getTargetTriple());
729   InitCmpLibcallCCs(CmpLibcallCCs);
730 }
731 
732 void TargetLoweringBase::initActions() {
733   // All operations default to being supported.
734   memset(OpActions, 0, sizeof(OpActions));
735   memset(LoadExtActions, 0, sizeof(LoadExtActions));
736   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
737   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
738   memset(CondCodeActions, 0, sizeof(CondCodeActions));
739   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
740   std::fill(std::begin(TargetDAGCombineArray),
741             std::end(TargetDAGCombineArray), 0);
742 
743   for (MVT VT : MVT::fp_valuetypes()) {
744     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
745     if (IntVT.isValid()) {
746       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
747       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
748     }
749   }
750 
751   // Set default actions for various operations.
752   for (MVT VT : MVT::all_valuetypes()) {
753     // Default all indexed load / store to expand.
754     for (unsigned IM = (unsigned)ISD::PRE_INC;
755          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
756       setIndexedLoadAction(IM, VT, Expand);
757       setIndexedStoreAction(IM, VT, Expand);
758       setIndexedMaskedLoadAction(IM, VT, Expand);
759       setIndexedMaskedStoreAction(IM, VT, Expand);
760     }
761 
762     // Most backends expect to see the node which just returns the value loaded.
763     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
764 
765     // These operations default to expand.
766     setOperationAction(ISD::FGETSIGN, VT, Expand);
767     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
768     setOperationAction(ISD::FMINNUM, VT, Expand);
769     setOperationAction(ISD::FMAXNUM, VT, Expand);
770     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
771     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
772     setOperationAction(ISD::FMINIMUM, VT, Expand);
773     setOperationAction(ISD::FMAXIMUM, VT, Expand);
774     setOperationAction(ISD::FMAD, VT, Expand);
775     setOperationAction(ISD::SMIN, VT, Expand);
776     setOperationAction(ISD::SMAX, VT, Expand);
777     setOperationAction(ISD::UMIN, VT, Expand);
778     setOperationAction(ISD::UMAX, VT, Expand);
779     setOperationAction(ISD::ABS, VT, Expand);
780     setOperationAction(ISD::FSHL, VT, Expand);
781     setOperationAction(ISD::FSHR, VT, Expand);
782     setOperationAction(ISD::SADDSAT, VT, Expand);
783     setOperationAction(ISD::UADDSAT, VT, Expand);
784     setOperationAction(ISD::SSUBSAT, VT, Expand);
785     setOperationAction(ISD::USUBSAT, VT, Expand);
786     setOperationAction(ISD::SSHLSAT, VT, Expand);
787     setOperationAction(ISD::USHLSAT, VT, Expand);
788     setOperationAction(ISD::SMULFIX, VT, Expand);
789     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
790     setOperationAction(ISD::UMULFIX, VT, Expand);
791     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
792     setOperationAction(ISD::SDIVFIX, VT, Expand);
793     setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
794     setOperationAction(ISD::UDIVFIX, VT, Expand);
795     setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
796     setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand);
797     setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand);
798 
799     // Overflow operations default to expand
800     setOperationAction(ISD::SADDO, VT, Expand);
801     setOperationAction(ISD::SSUBO, VT, Expand);
802     setOperationAction(ISD::UADDO, VT, Expand);
803     setOperationAction(ISD::USUBO, VT, Expand);
804     setOperationAction(ISD::SMULO, VT, Expand);
805     setOperationAction(ISD::UMULO, VT, Expand);
806 
807     // ADDCARRY operations default to expand
808     setOperationAction(ISD::ADDCARRY, VT, Expand);
809     setOperationAction(ISD::SUBCARRY, VT, Expand);
810     setOperationAction(ISD::SETCCCARRY, VT, Expand);
811     setOperationAction(ISD::SADDO_CARRY, VT, Expand);
812     setOperationAction(ISD::SSUBO_CARRY, VT, Expand);
813 
814     // ADDC/ADDE/SUBC/SUBE default to expand.
815     setOperationAction(ISD::ADDC, VT, Expand);
816     setOperationAction(ISD::ADDE, VT, Expand);
817     setOperationAction(ISD::SUBC, VT, Expand);
818     setOperationAction(ISD::SUBE, VT, Expand);
819 
820     // Absolute difference
821     setOperationAction(ISD::ABDS, VT, Expand);
822     setOperationAction(ISD::ABDU, VT, Expand);
823 
824     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
825     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
826     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
827 
828     setOperationAction(ISD::BITREVERSE, VT, Expand);
829     setOperationAction(ISD::PARITY, VT, Expand);
830 
831     // These library functions default to expand.
832     setOperationAction(ISD::FROUND, VT, Expand);
833     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
834     setOperationAction(ISD::FPOWI, VT, Expand);
835 
836     // These operations default to expand for vector types.
837     if (VT.isVector()) {
838       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
839       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
840       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
841       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
842       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
843       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
844     }
845 
846     // Constrained floating-point operations default to expand.
847 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
848     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
849 #include "llvm/IR/ConstrainedOps.def"
850 
851     // For most targets @llvm.get.dynamic.area.offset just returns 0.
852     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
853 
854     // Vector reduction default to expand.
855     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
856     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
857     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
858     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
859     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
860     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
861     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
862     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
863     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
864     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
865     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
866     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
867     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
868     setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand);
869     setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand);
870 
871     // Named vector shuffles default to expand.
872     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
873   }
874 
875   // Most targets ignore the @llvm.prefetch intrinsic.
876   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
877 
878   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
879   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
880 
881   // ConstantFP nodes default to expand.  Targets can either change this to
882   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
883   // to optimize expansions for certain constants.
884   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
885   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
886   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
887   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
888   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
889 
890   // These library functions default to expand.
891   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
892     setOperationAction(ISD::FCBRT,      VT, Expand);
893     setOperationAction(ISD::FLOG ,      VT, Expand);
894     setOperationAction(ISD::FLOG2,      VT, Expand);
895     setOperationAction(ISD::FLOG10,     VT, Expand);
896     setOperationAction(ISD::FEXP ,      VT, Expand);
897     setOperationAction(ISD::FEXP2,      VT, Expand);
898     setOperationAction(ISD::FFLOOR,     VT, Expand);
899     setOperationAction(ISD::FNEARBYINT, VT, Expand);
900     setOperationAction(ISD::FCEIL,      VT, Expand);
901     setOperationAction(ISD::FRINT,      VT, Expand);
902     setOperationAction(ISD::FTRUNC,     VT, Expand);
903     setOperationAction(ISD::LROUND,     VT, Expand);
904     setOperationAction(ISD::LLROUND,    VT, Expand);
905     setOperationAction(ISD::LRINT,      VT, Expand);
906     setOperationAction(ISD::LLRINT,     VT, Expand);
907   }
908 
909   // Default ISD::TRAP to expand (which turns it into abort).
910   setOperationAction(ISD::TRAP, MVT::Other, Expand);
911 
912   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
913   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
914   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
915 
916   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
917 }
918 
919 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
920                                                EVT) const {
921   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
922 }
923 
924 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
925                                          bool LegalTypes) const {
926   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
927   if (LHSTy.isVector())
928     return LHSTy;
929   MVT ShiftVT =
930       LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
931   // If any possible shift value won't fit in the prefered type, just use
932   // something safe. Assume it will be legalized when the shift is expanded.
933   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
934     ShiftVT = MVT::i32;
935   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
936          "ShiftVT is still too small!");
937   return ShiftVT;
938 }
939 
940 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
941   assert(isTypeLegal(VT));
942   switch (Op) {
943   default:
944     return false;
945   case ISD::SDIV:
946   case ISD::UDIV:
947   case ISD::SREM:
948   case ISD::UREM:
949     return true;
950   }
951 }
952 
953 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
954                                              unsigned DestAS) const {
955   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
956 }
957 
958 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
959   // If the command-line option was specified, ignore this request.
960   if (!JumpIsExpensiveOverride.getNumOccurrences())
961     JumpIsExpensive = isExpensive;
962 }
963 
964 TargetLoweringBase::LegalizeKind
965 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
966   // If this is a simple type, use the ComputeRegisterProp mechanism.
967   if (VT.isSimple()) {
968     MVT SVT = VT.getSimpleVT();
969     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
970     MVT NVT = TransformToType[SVT.SimpleTy];
971     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
972 
973     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
974             LA == TypeSoftPromoteHalf ||
975             (NVT.isVector() ||
976              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
977            "Promote may not follow Expand or Promote");
978 
979     if (LA == TypeSplitVector)
980       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
981     if (LA == TypeScalarizeVector)
982       return LegalizeKind(LA, SVT.getVectorElementType());
983     return LegalizeKind(LA, NVT);
984   }
985 
986   // Handle Extended Scalar Types.
987   if (!VT.isVector()) {
988     assert(VT.isInteger() && "Float types must be simple");
989     unsigned BitSize = VT.getSizeInBits();
990     // First promote to a power-of-two size, then expand if necessary.
991     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
992       EVT NVT = VT.getRoundIntegerType(Context);
993       assert(NVT != VT && "Unable to round integer VT");
994       LegalizeKind NextStep = getTypeConversion(Context, NVT);
995       // Avoid multi-step promotion.
996       if (NextStep.first == TypePromoteInteger)
997         return NextStep;
998       // Return rounded integer type.
999       return LegalizeKind(TypePromoteInteger, NVT);
1000     }
1001 
1002     return LegalizeKind(TypeExpandInteger,
1003                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1004   }
1005 
1006   // Handle vector types.
1007   ElementCount NumElts = VT.getVectorElementCount();
1008   EVT EltVT = VT.getVectorElementType();
1009 
1010   // Vectors with only one element are always scalarized.
1011   if (NumElts.isScalar())
1012     return LegalizeKind(TypeScalarizeVector, EltVT);
1013 
1014   // Try to widen vector elements until the element type is a power of two and
1015   // promote it to a legal type later on, for example:
1016   // <3 x i8> -> <4 x i8> -> <4 x i32>
1017   if (EltVT.isInteger()) {
1018     // Vectors with a number of elements that is not a power of two are always
1019     // widened, for example <3 x i8> -> <4 x i8>.
1020     if (!VT.isPow2VectorType()) {
1021       NumElts = NumElts.coefficientNextPowerOf2();
1022       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1023       return LegalizeKind(TypeWidenVector, NVT);
1024     }
1025 
1026     // Examine the element type.
1027     LegalizeKind LK = getTypeConversion(Context, EltVT);
1028 
1029     // If type is to be expanded, split the vector.
1030     //  <4 x i140> -> <2 x i140>
1031     if (LK.first == TypeExpandInteger) {
1032       if (VT.getVectorElementCount().isScalable())
1033         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1034       return LegalizeKind(TypeSplitVector,
1035                           VT.getHalfNumVectorElementsVT(Context));
1036     }
1037 
1038     // Promote the integer element types until a legal vector type is found
1039     // or until the element integer type is too big. If a legal type was not
1040     // found, fallback to the usual mechanism of widening/splitting the
1041     // vector.
1042     EVT OldEltVT = EltVT;
1043     while (true) {
1044       // Increase the bitwidth of the element to the next pow-of-two
1045       // (which is greater than 8 bits).
1046       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1047                   .getRoundIntegerType(Context);
1048 
1049       // Stop trying when getting a non-simple element type.
1050       // Note that vector elements may be greater than legal vector element
1051       // types. Example: X86 XMM registers hold 64bit element on 32bit
1052       // systems.
1053       if (!EltVT.isSimple())
1054         break;
1055 
1056       // Build a new vector type and check if it is legal.
1057       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1058       // Found a legal promoted vector type.
1059       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1060         return LegalizeKind(TypePromoteInteger,
1061                             EVT::getVectorVT(Context, EltVT, NumElts));
1062     }
1063 
1064     // Reset the type to the unexpanded type if we did not find a legal vector
1065     // type with a promoted vector element type.
1066     EltVT = OldEltVT;
1067   }
1068 
1069   // Try to widen the vector until a legal type is found.
1070   // If there is no wider legal type, split the vector.
1071   while (true) {
1072     // Round up to the next power of 2.
1073     NumElts = NumElts.coefficientNextPowerOf2();
1074 
1075     // If there is no simple vector type with this many elements then there
1076     // cannot be a larger legal vector type.  Note that this assumes that
1077     // there are no skipped intermediate vector types in the simple types.
1078     if (!EltVT.isSimple())
1079       break;
1080     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1081     if (LargerVector == MVT())
1082       break;
1083 
1084     // If this type is legal then widen the vector.
1085     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1086       return LegalizeKind(TypeWidenVector, LargerVector);
1087   }
1088 
1089   // Widen odd vectors to next power of two.
1090   if (!VT.isPow2VectorType()) {
1091     EVT NVT = VT.getPow2VectorType(Context);
1092     return LegalizeKind(TypeWidenVector, NVT);
1093   }
1094 
1095   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1096     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1097 
1098   // Vectors with illegal element types are expanded.
1099   EVT NVT = EVT::getVectorVT(Context, EltVT,
1100                              VT.getVectorElementCount().divideCoefficientBy(2));
1101   return LegalizeKind(TypeSplitVector, NVT);
1102 }
1103 
1104 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1105                                           unsigned &NumIntermediates,
1106                                           MVT &RegisterVT,
1107                                           TargetLoweringBase *TLI) {
1108   // Figure out the right, legal destination reg to copy into.
1109   ElementCount EC = VT.getVectorElementCount();
1110   MVT EltTy = VT.getVectorElementType();
1111 
1112   unsigned NumVectorRegs = 1;
1113 
1114   // Scalable vectors cannot be scalarized, so splitting or widening is
1115   // required.
1116   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1117     llvm_unreachable(
1118         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1119 
1120   // FIXME: We don't support non-power-of-2-sized vectors for now.
1121   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1122   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1123     // Split EC to unit size (scalable property is preserved).
1124     NumVectorRegs = EC.getKnownMinValue();
1125     EC = ElementCount::getFixed(1);
1126   }
1127 
1128   // Divide the input until we get to a supported size. This will
1129   // always end up with an EC that represent a scalar or a scalable
1130   // scalar.
1131   while (EC.getKnownMinValue() > 1 &&
1132          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1133     EC = EC.divideCoefficientBy(2);
1134     NumVectorRegs <<= 1;
1135   }
1136 
1137   NumIntermediates = NumVectorRegs;
1138 
1139   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1140   if (!TLI->isTypeLegal(NewVT))
1141     NewVT = EltTy;
1142   IntermediateVT = NewVT;
1143 
1144   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1145 
1146   // Convert sizes such as i33 to i64.
1147   if (!isPowerOf2_32(LaneSizeInBits))
1148     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1149 
1150   MVT DestVT = TLI->getRegisterType(NewVT);
1151   RegisterVT = DestVT;
1152   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1153     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1154 
1155   // Otherwise, promotion or legal types use the same number of registers as
1156   // the vector decimated to the appropriate level.
1157   return NumVectorRegs;
1158 }
1159 
1160 /// isLegalRC - Return true if the value types that can be represented by the
1161 /// specified register class are all legal.
1162 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1163                                    const TargetRegisterClass &RC) const {
1164   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1165     if (isTypeLegal(*I))
1166       return true;
1167   return false;
1168 }
1169 
1170 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1171 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1172 MachineBasicBlock *
1173 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1174                                    MachineBasicBlock *MBB) const {
1175   MachineInstr *MI = &InitialMI;
1176   MachineFunction &MF = *MI->getMF();
1177   MachineFrameInfo &MFI = MF.getFrameInfo();
1178 
1179   // We're handling multiple types of operands here:
1180   // PATCHPOINT MetaArgs - live-in, read only, direct
1181   // STATEPOINT Deopt Spill - live-through, read only, indirect
1182   // STATEPOINT Deopt Alloca - live-through, read only, direct
1183   // (We're currently conservative and mark the deopt slots read/write in
1184   // practice.)
1185   // STATEPOINT GC Spill - live-through, read/write, indirect
1186   // STATEPOINT GC Alloca - live-through, read/write, direct
1187   // The live-in vs live-through is handled already (the live through ones are
1188   // all stack slots), but we need to handle the different type of stackmap
1189   // operands and memory effects here.
1190 
1191   if (llvm::none_of(MI->operands(),
1192                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1193     return MBB;
1194 
1195   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1196 
1197   // Inherit previous memory operands.
1198   MIB.cloneMemRefs(*MI);
1199 
1200   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1201     MachineOperand &MO = MI->getOperand(i);
1202     if (!MO.isFI()) {
1203       // Index of Def operand this Use it tied to.
1204       // Since Defs are coming before Uses, if Use is tied, then
1205       // index of Def must be smaller that index of that Use.
1206       // Also, Defs preserve their position in new MI.
1207       unsigned TiedTo = i;
1208       if (MO.isReg() && MO.isTied())
1209         TiedTo = MI->findTiedOperandIdx(i);
1210       MIB.add(MO);
1211       if (TiedTo < i)
1212         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1213       continue;
1214     }
1215 
1216     // foldMemoryOperand builds a new MI after replacing a single FI operand
1217     // with the canonical set of five x86 addressing-mode operands.
1218     int FI = MO.getIndex();
1219 
1220     // Add frame index operands recognized by stackmaps.cpp
1221     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1222       // indirect-mem-ref tag, size, #FI, offset.
1223       // Used for spills inserted by StatepointLowering.  This codepath is not
1224       // used for patchpoints/stackmaps at all, for these spilling is done via
1225       // foldMemoryOperand callback only.
1226       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1227       MIB.addImm(StackMaps::IndirectMemRefOp);
1228       MIB.addImm(MFI.getObjectSize(FI));
1229       MIB.add(MO);
1230       MIB.addImm(0);
1231     } else {
1232       // direct-mem-ref tag, #FI, offset.
1233       // Used by patchpoint, and direct alloca arguments to statepoints
1234       MIB.addImm(StackMaps::DirectMemRefOp);
1235       MIB.add(MO);
1236       MIB.addImm(0);
1237     }
1238 
1239     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1240 
1241     // Add a new memory operand for this FI.
1242     assert(MFI.getObjectOffset(FI) != -1);
1243 
1244     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1245     // PATCHPOINT should be updated to do the same. (TODO)
1246     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1247       auto Flags = MachineMemOperand::MOLoad;
1248       MachineMemOperand *MMO = MF.getMachineMemOperand(
1249           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1250           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1251       MIB->addMemOperand(MF, MMO);
1252     }
1253   }
1254   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1255   MI->eraseFromParent();
1256   return MBB;
1257 }
1258 
1259 /// findRepresentativeClass - Return the largest legal super-reg register class
1260 /// of the register class for the specified type and its associated "cost".
1261 // This function is in TargetLowering because it uses RegClassForVT which would
1262 // need to be moved to TargetRegisterInfo and would necessitate moving
1263 // isTypeLegal over as well - a massive change that would just require
1264 // TargetLowering having a TargetRegisterInfo class member that it would use.
1265 std::pair<const TargetRegisterClass *, uint8_t>
1266 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1267                                             MVT VT) const {
1268   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1269   if (!RC)
1270     return std::make_pair(RC, 0);
1271 
1272   // Compute the set of all super-register classes.
1273   BitVector SuperRegRC(TRI->getNumRegClasses());
1274   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1275     SuperRegRC.setBitsInMask(RCI.getMask());
1276 
1277   // Find the first legal register class with the largest spill size.
1278   const TargetRegisterClass *BestRC = RC;
1279   for (unsigned i : SuperRegRC.set_bits()) {
1280     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1281     // We want the largest possible spill size.
1282     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1283       continue;
1284     if (!isLegalRC(*TRI, *SuperRC))
1285       continue;
1286     BestRC = SuperRC;
1287   }
1288   return std::make_pair(BestRC, 1);
1289 }
1290 
1291 /// computeRegisterProperties - Once all of the register classes are added,
1292 /// this allows us to compute derived properties we expose.
1293 void TargetLoweringBase::computeRegisterProperties(
1294     const TargetRegisterInfo *TRI) {
1295   static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1296                 "Too many value types for ValueTypeActions to hold!");
1297 
1298   // Everything defaults to needing one register.
1299   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1300     NumRegistersForVT[i] = 1;
1301     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1302   }
1303   // ...except isVoid, which doesn't need any registers.
1304   NumRegistersForVT[MVT::isVoid] = 0;
1305 
1306   // Find the largest integer register class.
1307   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1308   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1309     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1310 
1311   // Every integer value type larger than this largest register takes twice as
1312   // many registers to represent as the previous ValueType.
1313   for (unsigned ExpandedReg = LargestIntReg + 1;
1314        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1315     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1316     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1317     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1318     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1319                                    TypeExpandInteger);
1320   }
1321 
1322   // Inspect all of the ValueType's smaller than the largest integer
1323   // register to see which ones need promotion.
1324   unsigned LegalIntReg = LargestIntReg;
1325   for (unsigned IntReg = LargestIntReg - 1;
1326        IntReg >= (unsigned)MVT::i1; --IntReg) {
1327     MVT IVT = (MVT::SimpleValueType)IntReg;
1328     if (isTypeLegal(IVT)) {
1329       LegalIntReg = IntReg;
1330     } else {
1331       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1332         (MVT::SimpleValueType)LegalIntReg;
1333       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1334     }
1335   }
1336 
1337   // ppcf128 type is really two f64's.
1338   if (!isTypeLegal(MVT::ppcf128)) {
1339     if (isTypeLegal(MVT::f64)) {
1340       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1341       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1342       TransformToType[MVT::ppcf128] = MVT::f64;
1343       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1344     } else {
1345       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1346       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1347       TransformToType[MVT::ppcf128] = MVT::i128;
1348       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1349     }
1350   }
1351 
1352   // Decide how to handle f128. If the target does not have native f128 support,
1353   // expand it to i128 and we will be generating soft float library calls.
1354   if (!isTypeLegal(MVT::f128)) {
1355     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1356     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1357     TransformToType[MVT::f128] = MVT::i128;
1358     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1359   }
1360 
1361   // Decide how to handle f64. If the target does not have native f64 support,
1362   // expand it to i64 and we will be generating soft float library calls.
1363   if (!isTypeLegal(MVT::f64)) {
1364     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1365     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1366     TransformToType[MVT::f64] = MVT::i64;
1367     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1368   }
1369 
1370   // Decide how to handle f32. If the target does not have native f32 support,
1371   // expand it to i32 and we will be generating soft float library calls.
1372   if (!isTypeLegal(MVT::f32)) {
1373     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1374     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1375     TransformToType[MVT::f32] = MVT::i32;
1376     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1377   }
1378 
1379   // Decide how to handle f16. If the target does not have native f16 support,
1380   // promote it to f32, because there are no f16 library calls (except for
1381   // conversions).
1382   if (!isTypeLegal(MVT::f16)) {
1383     // Allow targets to control how we legalize half.
1384     if (softPromoteHalfType()) {
1385       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1386       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1387       TransformToType[MVT::f16] = MVT::f32;
1388       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1389     } else {
1390       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1391       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1392       TransformToType[MVT::f16] = MVT::f32;
1393       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1394     }
1395   }
1396 
1397   // Loop over all of the vector value types to see which need transformations.
1398   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1399        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1400     MVT VT = (MVT::SimpleValueType) i;
1401     if (isTypeLegal(VT))
1402       continue;
1403 
1404     MVT EltVT = VT.getVectorElementType();
1405     ElementCount EC = VT.getVectorElementCount();
1406     bool IsLegalWiderType = false;
1407     bool IsScalable = VT.isScalableVector();
1408     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1409     switch (PreferredAction) {
1410     case TypePromoteInteger: {
1411       MVT::SimpleValueType EndVT = IsScalable ?
1412                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1413                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1414       // Try to promote the elements of integer vectors. If no legal
1415       // promotion was found, fall through to the widen-vector method.
1416       for (unsigned nVT = i + 1;
1417            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1418         MVT SVT = (MVT::SimpleValueType) nVT;
1419         // Promote vectors of integers to vectors with the same number
1420         // of elements, with a wider element type.
1421         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1422             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1423           TransformToType[i] = SVT;
1424           RegisterTypeForVT[i] = SVT;
1425           NumRegistersForVT[i] = 1;
1426           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1427           IsLegalWiderType = true;
1428           break;
1429         }
1430       }
1431       if (IsLegalWiderType)
1432         break;
1433       LLVM_FALLTHROUGH;
1434     }
1435 
1436     case TypeWidenVector:
1437       if (isPowerOf2_32(EC.getKnownMinValue())) {
1438         // Try to widen the vector.
1439         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1440           MVT SVT = (MVT::SimpleValueType) nVT;
1441           if (SVT.getVectorElementType() == EltVT &&
1442               SVT.isScalableVector() == IsScalable &&
1443               SVT.getVectorElementCount().getKnownMinValue() >
1444                   EC.getKnownMinValue() &&
1445               isTypeLegal(SVT)) {
1446             TransformToType[i] = SVT;
1447             RegisterTypeForVT[i] = SVT;
1448             NumRegistersForVT[i] = 1;
1449             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1450             IsLegalWiderType = true;
1451             break;
1452           }
1453         }
1454         if (IsLegalWiderType)
1455           break;
1456       } else {
1457         // Only widen to the next power of 2 to keep consistency with EVT.
1458         MVT NVT = VT.getPow2VectorType();
1459         if (isTypeLegal(NVT)) {
1460           TransformToType[i] = NVT;
1461           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1462           RegisterTypeForVT[i] = NVT;
1463           NumRegistersForVT[i] = 1;
1464           break;
1465         }
1466       }
1467       LLVM_FALLTHROUGH;
1468 
1469     case TypeSplitVector:
1470     case TypeScalarizeVector: {
1471       MVT IntermediateVT;
1472       MVT RegisterVT;
1473       unsigned NumIntermediates;
1474       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1475           NumIntermediates, RegisterVT, this);
1476       NumRegistersForVT[i] = NumRegisters;
1477       assert(NumRegistersForVT[i] == NumRegisters &&
1478              "NumRegistersForVT size cannot represent NumRegisters!");
1479       RegisterTypeForVT[i] = RegisterVT;
1480 
1481       MVT NVT = VT.getPow2VectorType();
1482       if (NVT == VT) {
1483         // Type is already a power of 2.  The default action is to split.
1484         TransformToType[i] = MVT::Other;
1485         if (PreferredAction == TypeScalarizeVector)
1486           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1487         else if (PreferredAction == TypeSplitVector)
1488           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1489         else if (EC.getKnownMinValue() > 1)
1490           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1491         else
1492           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1493                                                  ? TypeScalarizeScalableVector
1494                                                  : TypeScalarizeVector);
1495       } else {
1496         TransformToType[i] = NVT;
1497         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1498       }
1499       break;
1500     }
1501     default:
1502       llvm_unreachable("Unknown vector legalization action!");
1503     }
1504   }
1505 
1506   // Determine the 'representative' register class for each value type.
1507   // An representative register class is the largest (meaning one which is
1508   // not a sub-register class / subreg register class) legal register class for
1509   // a group of value types. For example, on i386, i8, i16, and i32
1510   // representative would be GR32; while on x86_64 it's GR64.
1511   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1512     const TargetRegisterClass* RRC;
1513     uint8_t Cost;
1514     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1515     RepRegClassForVT[i] = RRC;
1516     RepRegClassCostForVT[i] = Cost;
1517   }
1518 }
1519 
1520 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1521                                            EVT VT) const {
1522   assert(!VT.isVector() && "No default SetCC type for vectors!");
1523   return getPointerTy(DL).SimpleTy;
1524 }
1525 
1526 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1527   return MVT::i32; // return the default value
1528 }
1529 
1530 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1531 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1532 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1533 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1534 ///
1535 /// This method returns the number of registers needed, and the VT for each
1536 /// register.  It also returns the VT and quantity of the intermediate values
1537 /// before they are promoted/expanded.
1538 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1539                                                     EVT VT, EVT &IntermediateVT,
1540                                                     unsigned &NumIntermediates,
1541                                                     MVT &RegisterVT) const {
1542   ElementCount EltCnt = VT.getVectorElementCount();
1543 
1544   // If there is a wider vector type with the same element type as this one,
1545   // or a promoted vector type that has the same number of elements which
1546   // are wider, then we should convert to that legal vector type.
1547   // This handles things like <2 x float> -> <4 x float> and
1548   // <4 x i1> -> <4 x i32>.
1549   LegalizeTypeAction TA = getTypeAction(Context, VT);
1550   if (!EltCnt.isScalar() &&
1551       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1552     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1553     if (isTypeLegal(RegisterEVT)) {
1554       IntermediateVT = RegisterEVT;
1555       RegisterVT = RegisterEVT.getSimpleVT();
1556       NumIntermediates = 1;
1557       return 1;
1558     }
1559   }
1560 
1561   // Figure out the right, legal destination reg to copy into.
1562   EVT EltTy = VT.getVectorElementType();
1563 
1564   unsigned NumVectorRegs = 1;
1565 
1566   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1567   // types like done elsewhere in SelectionDAG.
1568   if (EltCnt.isScalable()) {
1569     LegalizeKind LK;
1570     EVT PartVT = VT;
1571     do {
1572       // Iterate until we've found a legal (part) type to hold VT.
1573       LK = getTypeConversion(Context, PartVT);
1574       PartVT = LK.second;
1575     } while (LK.first != TypeLegal);
1576 
1577     if (!PartVT.isVector()) {
1578       report_fatal_error(
1579           "Don't know how to legalize this scalable vector type");
1580     }
1581 
1582     NumIntermediates =
1583         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1584                    PartVT.getVectorElementCount().getKnownMinValue());
1585     IntermediateVT = PartVT;
1586     RegisterVT = getRegisterType(Context, IntermediateVT);
1587     return NumIntermediates;
1588   }
1589 
1590   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1591   // we could break down into LHS/RHS like LegalizeDAG does.
1592   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1593     NumVectorRegs = EltCnt.getKnownMinValue();
1594     EltCnt = ElementCount::getFixed(1);
1595   }
1596 
1597   // Divide the input until we get to a supported size.  This will always
1598   // end with a scalar if the target doesn't support vectors.
1599   while (EltCnt.getKnownMinValue() > 1 &&
1600          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1601     EltCnt = EltCnt.divideCoefficientBy(2);
1602     NumVectorRegs <<= 1;
1603   }
1604 
1605   NumIntermediates = NumVectorRegs;
1606 
1607   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1608   if (!isTypeLegal(NewVT))
1609     NewVT = EltTy;
1610   IntermediateVT = NewVT;
1611 
1612   MVT DestVT = getRegisterType(Context, NewVT);
1613   RegisterVT = DestVT;
1614 
1615   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1616     TypeSize NewVTSize = NewVT.getSizeInBits();
1617     // Convert sizes such as i33 to i64.
1618     if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
1619       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1620     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1621   }
1622 
1623   // Otherwise, promotion or legal types use the same number of registers as
1624   // the vector decimated to the appropriate level.
1625   return NumVectorRegs;
1626 }
1627 
1628 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1629                                                 uint64_t NumCases,
1630                                                 uint64_t Range,
1631                                                 ProfileSummaryInfo *PSI,
1632                                                 BlockFrequencyInfo *BFI) const {
1633   // FIXME: This function check the maximum table size and density, but the
1634   // minimum size is not checked. It would be nice if the minimum size is
1635   // also combined within this function. Currently, the minimum size check is
1636   // performed in findJumpTable() in SelectionDAGBuiler and
1637   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1638   const bool OptForSize =
1639       SI->getParent()->getParent()->hasOptSize() ||
1640       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1641   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1642   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1643 
1644   // Check whether the number of cases is small enough and
1645   // the range is dense enough for a jump table.
1646   return (OptForSize || Range <= MaxJumpTableSize) &&
1647          (NumCases * 100 >= Range * MinDensity);
1648 }
1649 
1650 /// Get the EVTs and ArgFlags collections that represent the legalized return
1651 /// type of the given function.  This does not require a DAG or a return value,
1652 /// and is suitable for use before any DAGs for the function are constructed.
1653 /// TODO: Move this out of TargetLowering.cpp.
1654 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1655                          AttributeList attr,
1656                          SmallVectorImpl<ISD::OutputArg> &Outs,
1657                          const TargetLowering &TLI, const DataLayout &DL) {
1658   SmallVector<EVT, 4> ValueVTs;
1659   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1660   unsigned NumValues = ValueVTs.size();
1661   if (NumValues == 0) return;
1662 
1663   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1664     EVT VT = ValueVTs[j];
1665     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1666 
1667     if (attr.hasRetAttr(Attribute::SExt))
1668       ExtendKind = ISD::SIGN_EXTEND;
1669     else if (attr.hasRetAttr(Attribute::ZExt))
1670       ExtendKind = ISD::ZERO_EXTEND;
1671 
1672     // FIXME: C calling convention requires the return type to be promoted to
1673     // at least 32-bit. But this is not necessary for non-C calling
1674     // conventions. The frontend should mark functions whose return values
1675     // require promoting with signext or zeroext attributes.
1676     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1677       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1678       if (VT.bitsLT(MinVT))
1679         VT = MinVT;
1680     }
1681 
1682     unsigned NumParts =
1683         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1684     MVT PartVT =
1685         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1686 
1687     // 'inreg' on function refers to return value
1688     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1689     if (attr.hasRetAttr(Attribute::InReg))
1690       Flags.setInReg();
1691 
1692     // Propagate extension type if any
1693     if (attr.hasRetAttr(Attribute::SExt))
1694       Flags.setSExt();
1695     else if (attr.hasRetAttr(Attribute::ZExt))
1696       Flags.setZExt();
1697 
1698     for (unsigned i = 0; i < NumParts; ++i)
1699       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1700   }
1701 }
1702 
1703 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1704 /// function arguments in the caller parameter area.  This is the actual
1705 /// alignment, not its logarithm.
1706 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1707                                                    const DataLayout &DL) const {
1708   return DL.getABITypeAlign(Ty).value();
1709 }
1710 
1711 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1712     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1713     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
1714   // Check if the specified alignment is sufficient based on the data layout.
1715   // TODO: While using the data layout works in practice, a better solution
1716   // would be to implement this check directly (make this a virtual function).
1717   // For example, the ABI alignment may change based on software platform while
1718   // this function should only be affected by hardware implementation.
1719   Type *Ty = VT.getTypeForEVT(Context);
1720   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1721     // Assume that an access that meets the ABI-specified alignment is fast.
1722     if (Fast != nullptr)
1723       *Fast = true;
1724     return true;
1725   }
1726 
1727   // This is a misaligned access.
1728   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1729 }
1730 
1731 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1732     LLVMContext &Context, const DataLayout &DL, EVT VT,
1733     const MachineMemOperand &MMO, bool *Fast) const {
1734   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1735                                         MMO.getAlign(), MMO.getFlags(), Fast);
1736 }
1737 
1738 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1739                                             const DataLayout &DL, EVT VT,
1740                                             unsigned AddrSpace, Align Alignment,
1741                                             MachineMemOperand::Flags Flags,
1742                                             bool *Fast) const {
1743   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1744                                         Flags, Fast);
1745 }
1746 
1747 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1748                                             const DataLayout &DL, EVT VT,
1749                                             const MachineMemOperand &MMO,
1750                                             bool *Fast) const {
1751   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1752                             MMO.getFlags(), Fast);
1753 }
1754 
1755 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1756                                             const DataLayout &DL, LLT Ty,
1757                                             const MachineMemOperand &MMO,
1758                                             bool *Fast) const {
1759   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1760   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1761                             MMO.getFlags(), Fast);
1762 }
1763 
1764 //===----------------------------------------------------------------------===//
1765 //  TargetTransformInfo Helpers
1766 //===----------------------------------------------------------------------===//
1767 
1768 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1769   enum InstructionOpcodes {
1770 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1771 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1772 #include "llvm/IR/Instruction.def"
1773   };
1774   switch (static_cast<InstructionOpcodes>(Opcode)) {
1775   case Ret:            return 0;
1776   case Br:             return 0;
1777   case Switch:         return 0;
1778   case IndirectBr:     return 0;
1779   case Invoke:         return 0;
1780   case CallBr:         return 0;
1781   case Resume:         return 0;
1782   case Unreachable:    return 0;
1783   case CleanupRet:     return 0;
1784   case CatchRet:       return 0;
1785   case CatchPad:       return 0;
1786   case CatchSwitch:    return 0;
1787   case CleanupPad:     return 0;
1788   case FNeg:           return ISD::FNEG;
1789   case Add:            return ISD::ADD;
1790   case FAdd:           return ISD::FADD;
1791   case Sub:            return ISD::SUB;
1792   case FSub:           return ISD::FSUB;
1793   case Mul:            return ISD::MUL;
1794   case FMul:           return ISD::FMUL;
1795   case UDiv:           return ISD::UDIV;
1796   case SDiv:           return ISD::SDIV;
1797   case FDiv:           return ISD::FDIV;
1798   case URem:           return ISD::UREM;
1799   case SRem:           return ISD::SREM;
1800   case FRem:           return ISD::FREM;
1801   case Shl:            return ISD::SHL;
1802   case LShr:           return ISD::SRL;
1803   case AShr:           return ISD::SRA;
1804   case And:            return ISD::AND;
1805   case Or:             return ISD::OR;
1806   case Xor:            return ISD::XOR;
1807   case Alloca:         return 0;
1808   case Load:           return ISD::LOAD;
1809   case Store:          return ISD::STORE;
1810   case GetElementPtr:  return 0;
1811   case Fence:          return 0;
1812   case AtomicCmpXchg:  return 0;
1813   case AtomicRMW:      return 0;
1814   case Trunc:          return ISD::TRUNCATE;
1815   case ZExt:           return ISD::ZERO_EXTEND;
1816   case SExt:           return ISD::SIGN_EXTEND;
1817   case FPToUI:         return ISD::FP_TO_UINT;
1818   case FPToSI:         return ISD::FP_TO_SINT;
1819   case UIToFP:         return ISD::UINT_TO_FP;
1820   case SIToFP:         return ISD::SINT_TO_FP;
1821   case FPTrunc:        return ISD::FP_ROUND;
1822   case FPExt:          return ISD::FP_EXTEND;
1823   case PtrToInt:       return ISD::BITCAST;
1824   case IntToPtr:       return ISD::BITCAST;
1825   case BitCast:        return ISD::BITCAST;
1826   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1827   case ICmp:           return ISD::SETCC;
1828   case FCmp:           return ISD::SETCC;
1829   case PHI:            return 0;
1830   case Call:           return 0;
1831   case Select:         return ISD::SELECT;
1832   case UserOp1:        return 0;
1833   case UserOp2:        return 0;
1834   case VAArg:          return 0;
1835   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1836   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1837   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1838   case ExtractValue:   return ISD::MERGE_VALUES;
1839   case InsertValue:    return ISD::MERGE_VALUES;
1840   case LandingPad:     return 0;
1841   case Freeze:         return ISD::FREEZE;
1842   }
1843 
1844   llvm_unreachable("Unknown instruction type encountered!");
1845 }
1846 
1847 std::pair<InstructionCost, MVT>
1848 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1849                                             Type *Ty) const {
1850   LLVMContext &C = Ty->getContext();
1851   EVT MTy = getValueType(DL, Ty);
1852 
1853   InstructionCost Cost = 1;
1854   // We keep legalizing the type until we find a legal kind. We assume that
1855   // the only operation that costs anything is the split. After splitting
1856   // we need to handle two types.
1857   while (true) {
1858     LegalizeKind LK = getTypeConversion(C, MTy);
1859 
1860     if (LK.first == TypeScalarizeScalableVector) {
1861       // Ensure we return a sensible simple VT here, since many callers of this
1862       // function require it.
1863       MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
1864       return std::make_pair(InstructionCost::getInvalid(), VT);
1865     }
1866 
1867     if (LK.first == TypeLegal)
1868       return std::make_pair(Cost, MTy.getSimpleVT());
1869 
1870     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1871       Cost *= 2;
1872 
1873     // Do not loop with f128 type.
1874     if (MTy == LK.second)
1875       return std::make_pair(Cost, MTy.getSimpleVT());
1876 
1877     // Keep legalizing the type.
1878     MTy = LK.second;
1879   }
1880 }
1881 
1882 Value *
1883 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1884                                                        bool UseTLS) const {
1885   // compiler-rt provides a variable with a magic name.  Targets that do not
1886   // link with compiler-rt may also provide such a variable.
1887   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1888   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1889   auto UnsafeStackPtr =
1890       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1891 
1892   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1893 
1894   if (!UnsafeStackPtr) {
1895     auto TLSModel = UseTLS ?
1896         GlobalValue::InitialExecTLSModel :
1897         GlobalValue::NotThreadLocal;
1898     // The global variable is not defined yet, define it ourselves.
1899     // We use the initial-exec TLS model because we do not support the
1900     // variable living anywhere other than in the main executable.
1901     UnsafeStackPtr = new GlobalVariable(
1902         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1903         UnsafeStackPtrVar, nullptr, TLSModel);
1904   } else {
1905     // The variable exists, check its type and attributes.
1906     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1907       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1908     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1909       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1910                          (UseTLS ? "" : "not ") + "be thread-local");
1911   }
1912   return UnsafeStackPtr;
1913 }
1914 
1915 Value *
1916 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1917   if (!TM.getTargetTriple().isAndroid())
1918     return getDefaultSafeStackPointerLocation(IRB, true);
1919 
1920   // Android provides a libc function to retrieve the address of the current
1921   // thread's unsafe stack pointer.
1922   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1923   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1924   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1925                                              StackPtrTy->getPointerTo(0));
1926   return IRB.CreateCall(Fn);
1927 }
1928 
1929 //===----------------------------------------------------------------------===//
1930 //  Loop Strength Reduction hooks
1931 //===----------------------------------------------------------------------===//
1932 
1933 /// isLegalAddressingMode - Return true if the addressing mode represented
1934 /// by AM is legal for this target, for a load/store of the specified type.
1935 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1936                                                const AddrMode &AM, Type *Ty,
1937                                                unsigned AS, Instruction *I) const {
1938   // The default implementation of this implements a conservative RISCy, r+r and
1939   // r+i addr mode.
1940 
1941   // Allows a sign-extended 16-bit immediate field.
1942   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1943     return false;
1944 
1945   // No global is ever allowed as a base.
1946   if (AM.BaseGV)
1947     return false;
1948 
1949   // Only support r+r,
1950   switch (AM.Scale) {
1951   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1952     break;
1953   case 1:
1954     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1955       return false;
1956     // Otherwise we have r+r or r+i.
1957     break;
1958   case 2:
1959     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1960       return false;
1961     // Allow 2*r as r+r.
1962     break;
1963   default: // Don't allow n * r
1964     return false;
1965   }
1966 
1967   return true;
1968 }
1969 
1970 //===----------------------------------------------------------------------===//
1971 //  Stack Protector
1972 //===----------------------------------------------------------------------===//
1973 
1974 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1975 // so that SelectionDAG handle SSP.
1976 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1977   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1978     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1979     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1980     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1981     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1982       G->setVisibility(GlobalValue::HiddenVisibility);
1983     return C;
1984   }
1985   return nullptr;
1986 }
1987 
1988 // Currently only support "standard" __stack_chk_guard.
1989 // TODO: add LOAD_STACK_GUARD support.
1990 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1991   if (!M.getNamedValue("__stack_chk_guard")) {
1992     auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1993                                   GlobalVariable::ExternalLinkage, nullptr,
1994                                   "__stack_chk_guard");
1995 
1996     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1997     if (TM.getRelocationModel() == Reloc::Static &&
1998         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1999         !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD()))
2000       GV->setDSOLocal(true);
2001   }
2002 }
2003 
2004 // Currently only support "standard" __stack_chk_guard.
2005 // TODO: add LOAD_STACK_GUARD support.
2006 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2007   return M.getNamedValue("__stack_chk_guard");
2008 }
2009 
2010 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2011   return nullptr;
2012 }
2013 
2014 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2015   return MinimumJumpTableEntries;
2016 }
2017 
2018 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2019   MinimumJumpTableEntries = Val;
2020 }
2021 
2022 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2023   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2024 }
2025 
2026 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2027   return MaximumJumpTableSize;
2028 }
2029 
2030 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2031   MaximumJumpTableSize = Val;
2032 }
2033 
2034 bool TargetLoweringBase::isJumpTableRelative() const {
2035   return getTargetMachine().isPositionIndependent();
2036 }
2037 
2038 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2039   if (TM.Options.LoopAlignment)
2040     return Align(TM.Options.LoopAlignment);
2041   return PrefLoopAlignment;
2042 }
2043 
2044 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2045     MachineBasicBlock *MBB) const {
2046   return MaxBytesForAlignment;
2047 }
2048 
2049 //===----------------------------------------------------------------------===//
2050 //  Reciprocal Estimates
2051 //===----------------------------------------------------------------------===//
2052 
2053 /// Get the reciprocal estimate attribute string for a function that will
2054 /// override the target defaults.
2055 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2056   const Function &F = MF.getFunction();
2057   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2058 }
2059 
2060 /// Construct a string for the given reciprocal operation of the given type.
2061 /// This string should match the corresponding option to the front-end's
2062 /// "-mrecip" flag assuming those strings have been passed through in an
2063 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2064 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2065   std::string Name = VT.isVector() ? "vec-" : "";
2066 
2067   Name += IsSqrt ? "sqrt" : "div";
2068 
2069   // TODO: Handle "half" or other float types?
2070   if (VT.getScalarType() == MVT::f64) {
2071     Name += "d";
2072   } else {
2073     assert(VT.getScalarType() == MVT::f32 &&
2074            "Unexpected FP type for reciprocal estimate");
2075     Name += "f";
2076   }
2077 
2078   return Name;
2079 }
2080 
2081 /// Return the character position and value (a single numeric character) of a
2082 /// customized refinement operation in the input string if it exists. Return
2083 /// false if there is no customized refinement step count.
2084 static bool parseRefinementStep(StringRef In, size_t &Position,
2085                                 uint8_t &Value) {
2086   const char RefStepToken = ':';
2087   Position = In.find(RefStepToken);
2088   if (Position == StringRef::npos)
2089     return false;
2090 
2091   StringRef RefStepString = In.substr(Position + 1);
2092   // Allow exactly one numeric character for the additional refinement
2093   // step parameter.
2094   if (RefStepString.size() == 1) {
2095     char RefStepChar = RefStepString[0];
2096     if (isDigit(RefStepChar)) {
2097       Value = RefStepChar - '0';
2098       return true;
2099     }
2100   }
2101   report_fatal_error("Invalid refinement step for -recip.");
2102 }
2103 
2104 /// For the input attribute string, return one of the ReciprocalEstimate enum
2105 /// status values (enabled, disabled, or not specified) for this operation on
2106 /// the specified data type.
2107 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2108   if (Override.empty())
2109     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2110 
2111   SmallVector<StringRef, 4> OverrideVector;
2112   Override.split(OverrideVector, ',');
2113   unsigned NumArgs = OverrideVector.size();
2114 
2115   // Check if "all", "none", or "default" was specified.
2116   if (NumArgs == 1) {
2117     // Look for an optional setting of the number of refinement steps needed
2118     // for this type of reciprocal operation.
2119     size_t RefPos;
2120     uint8_t RefSteps;
2121     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2122       // Split the string for further processing.
2123       Override = Override.substr(0, RefPos);
2124     }
2125 
2126     // All reciprocal types are enabled.
2127     if (Override == "all")
2128       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2129 
2130     // All reciprocal types are disabled.
2131     if (Override == "none")
2132       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2133 
2134     // Target defaults for enablement are used.
2135     if (Override == "default")
2136       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2137   }
2138 
2139   // The attribute string may omit the size suffix ('f'/'d').
2140   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2141   std::string VTNameNoSize = VTName;
2142   VTNameNoSize.pop_back();
2143   static const char DisabledPrefix = '!';
2144 
2145   for (StringRef RecipType : OverrideVector) {
2146     size_t RefPos;
2147     uint8_t RefSteps;
2148     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2149       RecipType = RecipType.substr(0, RefPos);
2150 
2151     // Ignore the disablement token for string matching.
2152     bool IsDisabled = RecipType[0] == DisabledPrefix;
2153     if (IsDisabled)
2154       RecipType = RecipType.substr(1);
2155 
2156     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2157       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2158                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2159   }
2160 
2161   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2162 }
2163 
2164 /// For the input attribute string, return the customized refinement step count
2165 /// for this operation on the specified data type. If the step count does not
2166 /// exist, return the ReciprocalEstimate enum value for unspecified.
2167 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2168   if (Override.empty())
2169     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2170 
2171   SmallVector<StringRef, 4> OverrideVector;
2172   Override.split(OverrideVector, ',');
2173   unsigned NumArgs = OverrideVector.size();
2174 
2175   // Check if "all", "default", or "none" was specified.
2176   if (NumArgs == 1) {
2177     // Look for an optional setting of the number of refinement steps needed
2178     // for this type of reciprocal operation.
2179     size_t RefPos;
2180     uint8_t RefSteps;
2181     if (!parseRefinementStep(Override, RefPos, RefSteps))
2182       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2183 
2184     // Split the string for further processing.
2185     Override = Override.substr(0, RefPos);
2186     assert(Override != "none" &&
2187            "Disabled reciprocals, but specifed refinement steps?");
2188 
2189     // If this is a general override, return the specified number of steps.
2190     if (Override == "all" || Override == "default")
2191       return RefSteps;
2192   }
2193 
2194   // The attribute string may omit the size suffix ('f'/'d').
2195   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2196   std::string VTNameNoSize = VTName;
2197   VTNameNoSize.pop_back();
2198 
2199   for (StringRef RecipType : OverrideVector) {
2200     size_t RefPos;
2201     uint8_t RefSteps;
2202     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2203       continue;
2204 
2205     RecipType = RecipType.substr(0, RefPos);
2206     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2207       return RefSteps;
2208   }
2209 
2210   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2211 }
2212 
2213 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2214                                                     MachineFunction &MF) const {
2215   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2216 }
2217 
2218 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2219                                                    MachineFunction &MF) const {
2220   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2221 }
2222 
2223 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2224                                                MachineFunction &MF) const {
2225   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2226 }
2227 
2228 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2229                                               MachineFunction &MF) const {
2230   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2231 }
2232 
2233 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2234   MF.getRegInfo().freezeReservedRegs(MF);
2235 }
2236 
2237 MachineMemOperand::Flags
2238 TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
2239                                            const DataLayout &DL) const {
2240   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2241   if (LI.isVolatile())
2242     Flags |= MachineMemOperand::MOVolatile;
2243 
2244   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2245     Flags |= MachineMemOperand::MONonTemporal;
2246 
2247   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2248     Flags |= MachineMemOperand::MOInvariant;
2249 
2250   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
2251     Flags |= MachineMemOperand::MODereferenceable;
2252 
2253   Flags |= getTargetMMOFlags(LI);
2254   return Flags;
2255 }
2256 
2257 MachineMemOperand::Flags
2258 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2259                                             const DataLayout &DL) const {
2260   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2261 
2262   if (SI.isVolatile())
2263     Flags |= MachineMemOperand::MOVolatile;
2264 
2265   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2266     Flags |= MachineMemOperand::MONonTemporal;
2267 
2268   // FIXME: Not preserving dereferenceable
2269   Flags |= getTargetMMOFlags(SI);
2270   return Flags;
2271 }
2272 
2273 MachineMemOperand::Flags
2274 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2275                                              const DataLayout &DL) const {
2276   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2277 
2278   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2279     if (RMW->isVolatile())
2280       Flags |= MachineMemOperand::MOVolatile;
2281   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2282     if (CmpX->isVolatile())
2283       Flags |= MachineMemOperand::MOVolatile;
2284   } else
2285     llvm_unreachable("not an atomic instruction");
2286 
2287   // FIXME: Not preserving dereferenceable
2288   Flags |= getTargetMMOFlags(AI);
2289   return Flags;
2290 }
2291 
2292 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2293                                                   Instruction *Inst,
2294                                                   AtomicOrdering Ord) const {
2295   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2296     return Builder.CreateFence(Ord);
2297   else
2298     return nullptr;
2299 }
2300 
2301 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2302                                                    Instruction *Inst,
2303                                                    AtomicOrdering Ord) const {
2304   if (isAcquireOrStronger(Ord))
2305     return Builder.CreateFence(Ord);
2306   else
2307     return nullptr;
2308 }
2309 
2310 //===----------------------------------------------------------------------===//
2311 //  GlobalISel Hooks
2312 //===----------------------------------------------------------------------===//
2313 
2314 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2315                                         const TargetTransformInfo *TTI) const {
2316   auto &MF = *MI.getMF();
2317   auto &MRI = MF.getRegInfo();
2318   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2319   // this helper function computes the maximum number of uses we should consider
2320   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2321   // break even in terms of code size when the original MI has 2 users vs
2322   // choosing to potentially spill. Any more than 2 users we we have a net code
2323   // size increase. This doesn't take into account register pressure though.
2324   auto maxUses = [](unsigned RematCost) {
2325     // A cost of 1 means remats are basically free.
2326     if (RematCost == 1)
2327       return UINT_MAX;
2328     if (RematCost == 2)
2329       return 2U;
2330 
2331     // Remat is too expensive, only sink if there's one user.
2332     if (RematCost > 2)
2333       return 1U;
2334     llvm_unreachable("Unexpected remat cost");
2335   };
2336 
2337   // Helper to walk through uses and terminate if we've reached a limit. Saves
2338   // us spending time traversing uses if all we want to know is if it's >= min.
2339   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
2340     unsigned NumUses = 0;
2341     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
2342     for (; UI != UE && NumUses < MaxUses; ++UI) {
2343       NumUses++;
2344     }
2345     // If we haven't reached the end yet then there are more than MaxUses users.
2346     return UI == UE;
2347   };
2348 
2349   switch (MI.getOpcode()) {
2350   default:
2351     return false;
2352   // Constants-like instructions should be close to their users.
2353   // We don't want long live-ranges for them.
2354   case TargetOpcode::G_CONSTANT:
2355   case TargetOpcode::G_FCONSTANT:
2356   case TargetOpcode::G_FRAME_INDEX:
2357   case TargetOpcode::G_INTTOPTR:
2358     return true;
2359   case TargetOpcode::G_GLOBAL_VALUE: {
2360     unsigned RematCost = TTI->getGISelRematGlobalCost();
2361     Register Reg = MI.getOperand(0).getReg();
2362     unsigned MaxUses = maxUses(RematCost);
2363     if (MaxUses == UINT_MAX)
2364       return true; // Remats are "free" so always localize.
2365     bool B = isUsesAtMost(Reg, MaxUses);
2366     return B;
2367   }
2368   }
2369 }
2370