xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 0fcececbac9880b092aeb56a41a16f1ec8ac1ae6)
1  //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This implements the TargetLoweringBase class.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "llvm/ADT/BitVector.h"
14  #include "llvm/ADT/STLExtras.h"
15  #include "llvm/ADT/SmallVector.h"
16  #include "llvm/ADT/StringExtras.h"
17  #include "llvm/ADT/StringRef.h"
18  #include "llvm/ADT/Triple.h"
19  #include "llvm/ADT/Twine.h"
20  #include "llvm/Analysis/Loads.h"
21  #include "llvm/Analysis/TargetTransformInfo.h"
22  #include "llvm/CodeGen/Analysis.h"
23  #include "llvm/CodeGen/ISDOpcodes.h"
24  #include "llvm/CodeGen/MachineBasicBlock.h"
25  #include "llvm/CodeGen/MachineFrameInfo.h"
26  #include "llvm/CodeGen/MachineFunction.h"
27  #include "llvm/CodeGen/MachineInstr.h"
28  #include "llvm/CodeGen/MachineInstrBuilder.h"
29  #include "llvm/CodeGen/MachineMemOperand.h"
30  #include "llvm/CodeGen/MachineOperand.h"
31  #include "llvm/CodeGen/MachineRegisterInfo.h"
32  #include "llvm/CodeGen/RuntimeLibcalls.h"
33  #include "llvm/CodeGen/StackMaps.h"
34  #include "llvm/CodeGen/TargetLowering.h"
35  #include "llvm/CodeGen/TargetOpcodes.h"
36  #include "llvm/CodeGen/TargetRegisterInfo.h"
37  #include "llvm/CodeGen/ValueTypes.h"
38  #include "llvm/IR/Attributes.h"
39  #include "llvm/IR/CallingConv.h"
40  #include "llvm/IR/DataLayout.h"
41  #include "llvm/IR/DerivedTypes.h"
42  #include "llvm/IR/Function.h"
43  #include "llvm/IR/GlobalValue.h"
44  #include "llvm/IR/GlobalVariable.h"
45  #include "llvm/IR/IRBuilder.h"
46  #include "llvm/IR/Module.h"
47  #include "llvm/IR/Type.h"
48  #include "llvm/Support/Casting.h"
49  #include "llvm/Support/CommandLine.h"
50  #include "llvm/Support/Compiler.h"
51  #include "llvm/Support/ErrorHandling.h"
52  #include "llvm/Support/MachineValueType.h"
53  #include "llvm/Support/MathExtras.h"
54  #include "llvm/Target/TargetMachine.h"
55  #include "llvm/Target/TargetOptions.h"
56  #include "llvm/Transforms/Utils/SizeOpts.h"
57  #include <algorithm>
58  #include <cassert>
59  #include <cstdint>
60  #include <cstring>
61  #include <iterator>
62  #include <string>
63  #include <tuple>
64  #include <utility>
65  
66  using namespace llvm;
67  
68  static cl::opt<bool> JumpIsExpensiveOverride(
69      "jump-is-expensive", cl::init(false),
70      cl::desc("Do not create extra branches to split comparison logic."),
71      cl::Hidden);
72  
73  static cl::opt<unsigned> MinimumJumpTableEntries
74    ("min-jump-table-entries", cl::init(4), cl::Hidden,
75     cl::desc("Set minimum number of entries to use a jump table."));
76  
77  static cl::opt<unsigned> MaximumJumpTableSize
78    ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79     cl::desc("Set maximum size of jump tables."));
80  
81  /// Minimum jump table density for normal functions.
82  static cl::opt<unsigned>
83      JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                       cl::desc("Minimum density for building a jump table in "
85                                "a normal function"));
86  
87  /// Minimum jump table density for -Os or -Oz functions.
88  static cl::opt<unsigned> OptsizeJumpTableDensity(
89      "optsize-jump-table-density", cl::init(40), cl::Hidden,
90      cl::desc("Minimum density for building a jump table in "
91               "an optsize function"));
92  
93  // FIXME: This option is only to test if the strict fp operation processed
94  // correctly by preventing mutating strict fp operation to normal fp operation
95  // during development. When the backend supports strict float operation, this
96  // option will be meaningless.
97  static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98         cl::desc("Don't mutate strict-float node to a legalize node"),
99         cl::init(false), cl::Hidden);
100  
101  static bool darwinHasSinCos(const Triple &TT) {
102    assert(TT.isOSDarwin() && "should be called with darwin triple");
103    // Don't bother with 32 bit x86.
104    if (TT.getArch() == Triple::x86)
105      return false;
106    // Macos < 10.9 has no sincos_stret.
107    if (TT.isMacOSX())
108      return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109    // iOS < 7.0 has no sincos_stret.
110    if (TT.isiOS())
111      return !TT.isOSVersionLT(7, 0);
112    // Any other darwin such as WatchOS/TvOS is new enough.
113    return true;
114  }
115  
116  void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117  #define HANDLE_LIBCALL(code, name) \
118    setLibcallName(RTLIB::code, name);
119  #include "llvm/IR/RuntimeLibcalls.def"
120  #undef HANDLE_LIBCALL
121    // Initialize calling conventions to their default.
122    for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123      setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124  
125    // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
126    if (TT.isPPC()) {
127      setLibcallName(RTLIB::ADD_F128, "__addkf3");
128      setLibcallName(RTLIB::SUB_F128, "__subkf3");
129      setLibcallName(RTLIB::MUL_F128, "__mulkf3");
130      setLibcallName(RTLIB::DIV_F128, "__divkf3");
131      setLibcallName(RTLIB::POWI_F128, "__powikf2");
132      setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133      setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134      setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135      setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136      setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137      setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138      setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
139      setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
140      setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
141      setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
142      setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
143      setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
144      setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
145      setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
146      setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
147      setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
148      setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
149      setLibcallName(RTLIB::UNE_F128, "__nekf2");
150      setLibcallName(RTLIB::OGE_F128, "__gekf2");
151      setLibcallName(RTLIB::OLT_F128, "__ltkf2");
152      setLibcallName(RTLIB::OLE_F128, "__lekf2");
153      setLibcallName(RTLIB::OGT_F128, "__gtkf2");
154      setLibcallName(RTLIB::UO_F128, "__unordkf2");
155    }
156  
157    // A few names are different on particular architectures or environments.
158    if (TT.isOSDarwin()) {
159      // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
160      // of the gnueabi-style __gnu_*_ieee.
161      // FIXME: What about other targets?
162      setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
163      setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
164  
165      // Some darwins have an optimized __bzero/bzero function.
166      switch (TT.getArch()) {
167      case Triple::x86:
168      case Triple::x86_64:
169        if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
170          setLibcallName(RTLIB::BZERO, "__bzero");
171        break;
172      case Triple::aarch64:
173      case Triple::aarch64_32:
174        setLibcallName(RTLIB::BZERO, "bzero");
175        break;
176      default:
177        break;
178      }
179  
180      if (darwinHasSinCos(TT)) {
181        setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
182        setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
183        if (TT.isWatchABI()) {
184          setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
185                                CallingConv::ARM_AAPCS_VFP);
186          setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
187                                CallingConv::ARM_AAPCS_VFP);
188        }
189      }
190    } else {
191      setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
192      setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
193    }
194  
195    if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
196        (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
197      setLibcallName(RTLIB::SINCOS_F32, "sincosf");
198      setLibcallName(RTLIB::SINCOS_F64, "sincos");
199      setLibcallName(RTLIB::SINCOS_F80, "sincosl");
200      setLibcallName(RTLIB::SINCOS_F128, "sincosl");
201      setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
202    }
203  
204    if (TT.isPS()) {
205      setLibcallName(RTLIB::SINCOS_F32, "sincosf");
206      setLibcallName(RTLIB::SINCOS_F64, "sincos");
207    }
208  
209    if (TT.isOSOpenBSD()) {
210      setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
211    }
212  }
213  
214  /// GetFPLibCall - Helper to return the right libcall for the given floating
215  /// point type, or UNKNOWN_LIBCALL if there is none.
216  RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
217                                     RTLIB::Libcall Call_F32,
218                                     RTLIB::Libcall Call_F64,
219                                     RTLIB::Libcall Call_F80,
220                                     RTLIB::Libcall Call_F128,
221                                     RTLIB::Libcall Call_PPCF128) {
222    return
223      VT == MVT::f32 ? Call_F32 :
224      VT == MVT::f64 ? Call_F64 :
225      VT == MVT::f80 ? Call_F80 :
226      VT == MVT::f128 ? Call_F128 :
227      VT == MVT::ppcf128 ? Call_PPCF128 :
228      RTLIB::UNKNOWN_LIBCALL;
229  }
230  
231  /// getFPEXT - Return the FPEXT_*_* value for the given types, or
232  /// UNKNOWN_LIBCALL if there is none.
233  RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
234    if (OpVT == MVT::f16) {
235      if (RetVT == MVT::f32)
236        return FPEXT_F16_F32;
237      if (RetVT == MVT::f64)
238        return FPEXT_F16_F64;
239      if (RetVT == MVT::f80)
240        return FPEXT_F16_F80;
241      if (RetVT == MVT::f128)
242        return FPEXT_F16_F128;
243    } else if (OpVT == MVT::f32) {
244      if (RetVT == MVT::f64)
245        return FPEXT_F32_F64;
246      if (RetVT == MVT::f128)
247        return FPEXT_F32_F128;
248      if (RetVT == MVT::ppcf128)
249        return FPEXT_F32_PPCF128;
250    } else if (OpVT == MVT::f64) {
251      if (RetVT == MVT::f128)
252        return FPEXT_F64_F128;
253      else if (RetVT == MVT::ppcf128)
254        return FPEXT_F64_PPCF128;
255    } else if (OpVT == MVT::f80) {
256      if (RetVT == MVT::f128)
257        return FPEXT_F80_F128;
258    }
259  
260    return UNKNOWN_LIBCALL;
261  }
262  
263  /// getFPROUND - Return the FPROUND_*_* value for the given types, or
264  /// UNKNOWN_LIBCALL if there is none.
265  RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
266    if (RetVT == MVT::f16) {
267      if (OpVT == MVT::f32)
268        return FPROUND_F32_F16;
269      if (OpVT == MVT::f64)
270        return FPROUND_F64_F16;
271      if (OpVT == MVT::f80)
272        return FPROUND_F80_F16;
273      if (OpVT == MVT::f128)
274        return FPROUND_F128_F16;
275      if (OpVT == MVT::ppcf128)
276        return FPROUND_PPCF128_F16;
277    } else if (RetVT == MVT::bf16) {
278      if (OpVT == MVT::f32)
279        return FPROUND_F32_BF16;
280      if (OpVT == MVT::f64)
281        return FPROUND_F64_BF16;
282    } else if (RetVT == MVT::f32) {
283      if (OpVT == MVT::f64)
284        return FPROUND_F64_F32;
285      if (OpVT == MVT::f80)
286        return FPROUND_F80_F32;
287      if (OpVT == MVT::f128)
288        return FPROUND_F128_F32;
289      if (OpVT == MVT::ppcf128)
290        return FPROUND_PPCF128_F32;
291    } else if (RetVT == MVT::f64) {
292      if (OpVT == MVT::f80)
293        return FPROUND_F80_F64;
294      if (OpVT == MVT::f128)
295        return FPROUND_F128_F64;
296      if (OpVT == MVT::ppcf128)
297        return FPROUND_PPCF128_F64;
298    } else if (RetVT == MVT::f80) {
299      if (OpVT == MVT::f128)
300        return FPROUND_F128_F80;
301    }
302  
303    return UNKNOWN_LIBCALL;
304  }
305  
306  /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
307  /// UNKNOWN_LIBCALL if there is none.
308  RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
309    if (OpVT == MVT::f16) {
310      if (RetVT == MVT::i32)
311        return FPTOSINT_F16_I32;
312      if (RetVT == MVT::i64)
313        return FPTOSINT_F16_I64;
314      if (RetVT == MVT::i128)
315        return FPTOSINT_F16_I128;
316    } else if (OpVT == MVT::f32) {
317      if (RetVT == MVT::i32)
318        return FPTOSINT_F32_I32;
319      if (RetVT == MVT::i64)
320        return FPTOSINT_F32_I64;
321      if (RetVT == MVT::i128)
322        return FPTOSINT_F32_I128;
323    } else if (OpVT == MVT::f64) {
324      if (RetVT == MVT::i32)
325        return FPTOSINT_F64_I32;
326      if (RetVT == MVT::i64)
327        return FPTOSINT_F64_I64;
328      if (RetVT == MVT::i128)
329        return FPTOSINT_F64_I128;
330    } else if (OpVT == MVT::f80) {
331      if (RetVT == MVT::i32)
332        return FPTOSINT_F80_I32;
333      if (RetVT == MVT::i64)
334        return FPTOSINT_F80_I64;
335      if (RetVT == MVT::i128)
336        return FPTOSINT_F80_I128;
337    } else if (OpVT == MVT::f128) {
338      if (RetVT == MVT::i32)
339        return FPTOSINT_F128_I32;
340      if (RetVT == MVT::i64)
341        return FPTOSINT_F128_I64;
342      if (RetVT == MVT::i128)
343        return FPTOSINT_F128_I128;
344    } else if (OpVT == MVT::ppcf128) {
345      if (RetVT == MVT::i32)
346        return FPTOSINT_PPCF128_I32;
347      if (RetVT == MVT::i64)
348        return FPTOSINT_PPCF128_I64;
349      if (RetVT == MVT::i128)
350        return FPTOSINT_PPCF128_I128;
351    }
352    return UNKNOWN_LIBCALL;
353  }
354  
355  /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
356  /// UNKNOWN_LIBCALL if there is none.
357  RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
358    if (OpVT == MVT::f16) {
359      if (RetVT == MVT::i32)
360        return FPTOUINT_F16_I32;
361      if (RetVT == MVT::i64)
362        return FPTOUINT_F16_I64;
363      if (RetVT == MVT::i128)
364        return FPTOUINT_F16_I128;
365    } else if (OpVT == MVT::f32) {
366      if (RetVT == MVT::i32)
367        return FPTOUINT_F32_I32;
368      if (RetVT == MVT::i64)
369        return FPTOUINT_F32_I64;
370      if (RetVT == MVT::i128)
371        return FPTOUINT_F32_I128;
372    } else if (OpVT == MVT::f64) {
373      if (RetVT == MVT::i32)
374        return FPTOUINT_F64_I32;
375      if (RetVT == MVT::i64)
376        return FPTOUINT_F64_I64;
377      if (RetVT == MVT::i128)
378        return FPTOUINT_F64_I128;
379    } else if (OpVT == MVT::f80) {
380      if (RetVT == MVT::i32)
381        return FPTOUINT_F80_I32;
382      if (RetVT == MVT::i64)
383        return FPTOUINT_F80_I64;
384      if (RetVT == MVT::i128)
385        return FPTOUINT_F80_I128;
386    } else if (OpVT == MVT::f128) {
387      if (RetVT == MVT::i32)
388        return FPTOUINT_F128_I32;
389      if (RetVT == MVT::i64)
390        return FPTOUINT_F128_I64;
391      if (RetVT == MVT::i128)
392        return FPTOUINT_F128_I128;
393    } else if (OpVT == MVT::ppcf128) {
394      if (RetVT == MVT::i32)
395        return FPTOUINT_PPCF128_I32;
396      if (RetVT == MVT::i64)
397        return FPTOUINT_PPCF128_I64;
398      if (RetVT == MVT::i128)
399        return FPTOUINT_PPCF128_I128;
400    }
401    return UNKNOWN_LIBCALL;
402  }
403  
404  /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
405  /// UNKNOWN_LIBCALL if there is none.
406  RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
407    if (OpVT == MVT::i32) {
408      if (RetVT == MVT::f16)
409        return SINTTOFP_I32_F16;
410      if (RetVT == MVT::f32)
411        return SINTTOFP_I32_F32;
412      if (RetVT == MVT::f64)
413        return SINTTOFP_I32_F64;
414      if (RetVT == MVT::f80)
415        return SINTTOFP_I32_F80;
416      if (RetVT == MVT::f128)
417        return SINTTOFP_I32_F128;
418      if (RetVT == MVT::ppcf128)
419        return SINTTOFP_I32_PPCF128;
420    } else if (OpVT == MVT::i64) {
421      if (RetVT == MVT::f16)
422        return SINTTOFP_I64_F16;
423      if (RetVT == MVT::f32)
424        return SINTTOFP_I64_F32;
425      if (RetVT == MVT::f64)
426        return SINTTOFP_I64_F64;
427      if (RetVT == MVT::f80)
428        return SINTTOFP_I64_F80;
429      if (RetVT == MVT::f128)
430        return SINTTOFP_I64_F128;
431      if (RetVT == MVT::ppcf128)
432        return SINTTOFP_I64_PPCF128;
433    } else if (OpVT == MVT::i128) {
434      if (RetVT == MVT::f16)
435        return SINTTOFP_I128_F16;
436      if (RetVT == MVT::f32)
437        return SINTTOFP_I128_F32;
438      if (RetVT == MVT::f64)
439        return SINTTOFP_I128_F64;
440      if (RetVT == MVT::f80)
441        return SINTTOFP_I128_F80;
442      if (RetVT == MVT::f128)
443        return SINTTOFP_I128_F128;
444      if (RetVT == MVT::ppcf128)
445        return SINTTOFP_I128_PPCF128;
446    }
447    return UNKNOWN_LIBCALL;
448  }
449  
450  /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
451  /// UNKNOWN_LIBCALL if there is none.
452  RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
453    if (OpVT == MVT::i32) {
454      if (RetVT == MVT::f16)
455        return UINTTOFP_I32_F16;
456      if (RetVT == MVT::f32)
457        return UINTTOFP_I32_F32;
458      if (RetVT == MVT::f64)
459        return UINTTOFP_I32_F64;
460      if (RetVT == MVT::f80)
461        return UINTTOFP_I32_F80;
462      if (RetVT == MVT::f128)
463        return UINTTOFP_I32_F128;
464      if (RetVT == MVT::ppcf128)
465        return UINTTOFP_I32_PPCF128;
466    } else if (OpVT == MVT::i64) {
467      if (RetVT == MVT::f16)
468        return UINTTOFP_I64_F16;
469      if (RetVT == MVT::f32)
470        return UINTTOFP_I64_F32;
471      if (RetVT == MVT::f64)
472        return UINTTOFP_I64_F64;
473      if (RetVT == MVT::f80)
474        return UINTTOFP_I64_F80;
475      if (RetVT == MVT::f128)
476        return UINTTOFP_I64_F128;
477      if (RetVT == MVT::ppcf128)
478        return UINTTOFP_I64_PPCF128;
479    } else if (OpVT == MVT::i128) {
480      if (RetVT == MVT::f16)
481        return UINTTOFP_I128_F16;
482      if (RetVT == MVT::f32)
483        return UINTTOFP_I128_F32;
484      if (RetVT == MVT::f64)
485        return UINTTOFP_I128_F64;
486      if (RetVT == MVT::f80)
487        return UINTTOFP_I128_F80;
488      if (RetVT == MVT::f128)
489        return UINTTOFP_I128_F128;
490      if (RetVT == MVT::ppcf128)
491        return UINTTOFP_I128_PPCF128;
492    }
493    return UNKNOWN_LIBCALL;
494  }
495  
496  RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
497    return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
498                        POWI_PPCF128);
499  }
500  
501  RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
502                                          MVT VT) {
503    unsigned ModeN, ModelN;
504    switch (VT.SimpleTy) {
505    case MVT::i8:
506      ModeN = 0;
507      break;
508    case MVT::i16:
509      ModeN = 1;
510      break;
511    case MVT::i32:
512      ModeN = 2;
513      break;
514    case MVT::i64:
515      ModeN = 3;
516      break;
517    case MVT::i128:
518      ModeN = 4;
519      break;
520    default:
521      return UNKNOWN_LIBCALL;
522    }
523  
524    switch (Order) {
525    case AtomicOrdering::Monotonic:
526      ModelN = 0;
527      break;
528    case AtomicOrdering::Acquire:
529      ModelN = 1;
530      break;
531    case AtomicOrdering::Release:
532      ModelN = 2;
533      break;
534    case AtomicOrdering::AcquireRelease:
535    case AtomicOrdering::SequentiallyConsistent:
536      ModelN = 3;
537      break;
538    default:
539      return UNKNOWN_LIBCALL;
540    }
541  
542  #define LCALLS(A, B)                                                           \
543    { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
544  #define LCALL5(A)                                                              \
545    LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
546    switch (Opc) {
547    case ISD::ATOMIC_CMP_SWAP: {
548      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
549      return LC[ModeN][ModelN];
550    }
551    case ISD::ATOMIC_SWAP: {
552      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
553      return LC[ModeN][ModelN];
554    }
555    case ISD::ATOMIC_LOAD_ADD: {
556      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
557      return LC[ModeN][ModelN];
558    }
559    case ISD::ATOMIC_LOAD_OR: {
560      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
561      return LC[ModeN][ModelN];
562    }
563    case ISD::ATOMIC_LOAD_CLR: {
564      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
565      return LC[ModeN][ModelN];
566    }
567    case ISD::ATOMIC_LOAD_XOR: {
568      const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
569      return LC[ModeN][ModelN];
570    }
571    default:
572      return UNKNOWN_LIBCALL;
573    }
574  #undef LCALLS
575  #undef LCALL5
576  }
577  
578  RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
579  #define OP_TO_LIBCALL(Name, Enum)                                              \
580    case Name:                                                                   \
581      switch (VT.SimpleTy) {                                                     \
582      default:                                                                   \
583        return UNKNOWN_LIBCALL;                                                  \
584      case MVT::i8:                                                              \
585        return Enum##_1;                                                         \
586      case MVT::i16:                                                             \
587        return Enum##_2;                                                         \
588      case MVT::i32:                                                             \
589        return Enum##_4;                                                         \
590      case MVT::i64:                                                             \
591        return Enum##_8;                                                         \
592      case MVT::i128:                                                            \
593        return Enum##_16;                                                        \
594      }
595  
596    switch (Opc) {
597      OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
598      OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
599      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
600      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
601      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
602      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
603      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
604      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
605      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
606      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
607      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
608      OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
609    }
610  
611  #undef OP_TO_LIBCALL
612  
613    return UNKNOWN_LIBCALL;
614  }
615  
616  RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
617    switch (ElementSize) {
618    case 1:
619      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
620    case 2:
621      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
622    case 4:
623      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
624    case 8:
625      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
626    case 16:
627      return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
628    default:
629      return UNKNOWN_LIBCALL;
630    }
631  }
632  
633  RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
634    switch (ElementSize) {
635    case 1:
636      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
637    case 2:
638      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
639    case 4:
640      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
641    case 8:
642      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
643    case 16:
644      return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
645    default:
646      return UNKNOWN_LIBCALL;
647    }
648  }
649  
650  RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
651    switch (ElementSize) {
652    case 1:
653      return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
654    case 2:
655      return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
656    case 4:
657      return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
658    case 8:
659      return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
660    case 16:
661      return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
662    default:
663      return UNKNOWN_LIBCALL;
664    }
665  }
666  
667  /// InitCmpLibcallCCs - Set default comparison libcall CC.
668  static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
669    std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
670    CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
671    CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
672    CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
673    CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
674    CCs[RTLIB::UNE_F32] = ISD::SETNE;
675    CCs[RTLIB::UNE_F64] = ISD::SETNE;
676    CCs[RTLIB::UNE_F128] = ISD::SETNE;
677    CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
678    CCs[RTLIB::OGE_F32] = ISD::SETGE;
679    CCs[RTLIB::OGE_F64] = ISD::SETGE;
680    CCs[RTLIB::OGE_F128] = ISD::SETGE;
681    CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
682    CCs[RTLIB::OLT_F32] = ISD::SETLT;
683    CCs[RTLIB::OLT_F64] = ISD::SETLT;
684    CCs[RTLIB::OLT_F128] = ISD::SETLT;
685    CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
686    CCs[RTLIB::OLE_F32] = ISD::SETLE;
687    CCs[RTLIB::OLE_F64] = ISD::SETLE;
688    CCs[RTLIB::OLE_F128] = ISD::SETLE;
689    CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
690    CCs[RTLIB::OGT_F32] = ISD::SETGT;
691    CCs[RTLIB::OGT_F64] = ISD::SETGT;
692    CCs[RTLIB::OGT_F128] = ISD::SETGT;
693    CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
694    CCs[RTLIB::UO_F32] = ISD::SETNE;
695    CCs[RTLIB::UO_F64] = ISD::SETNE;
696    CCs[RTLIB::UO_F128] = ISD::SETNE;
697    CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
698  }
699  
700  /// NOTE: The TargetMachine owns TLOF.
701  TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
702    initActions();
703  
704    // Perform these initializations only once.
705    MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
706        MaxLoadsPerMemcmp = 8;
707    MaxGluedStoresPerMemcpy = 0;
708    MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
709        MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
710    HasMultipleConditionRegisters = false;
711    HasExtractBitsInsn = false;
712    JumpIsExpensive = JumpIsExpensiveOverride;
713    PredictableSelectIsExpensive = false;
714    EnableExtLdPromotion = false;
715    StackPointerRegisterToSaveRestore = 0;
716    BooleanContents = UndefinedBooleanContent;
717    BooleanFloatContents = UndefinedBooleanContent;
718    BooleanVectorContents = UndefinedBooleanContent;
719    SchedPreferenceInfo = Sched::ILP;
720    GatherAllAliasesMaxDepth = 18;
721    IsStrictFPEnabled = DisableStrictNodeMutation;
722    MaxBytesForAlignment = 0;
723    // TODO: the default will be switched to 0 in the next commit, along
724    // with the Target-specific changes necessary.
725    MaxAtomicSizeInBitsSupported = 1024;
726  
727    // Assume that even with libcalls, no target supports wider than 128 bit
728    // division.
729    MaxDivRemBitWidthSupported = 128;
730  
731    MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
732  
733    MinCmpXchgSizeInBits = 0;
734    SupportsUnalignedAtomics = false;
735  
736    std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
737  
738    InitLibcalls(TM.getTargetTriple());
739    InitCmpLibcallCCs(CmpLibcallCCs);
740  }
741  
742  void TargetLoweringBase::initActions() {
743    // All operations default to being supported.
744    memset(OpActions, 0, sizeof(OpActions));
745    memset(LoadExtActions, 0, sizeof(LoadExtActions));
746    memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
747    memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
748    memset(CondCodeActions, 0, sizeof(CondCodeActions));
749    std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
750    std::fill(std::begin(TargetDAGCombineArray),
751              std::end(TargetDAGCombineArray), 0);
752  
753    // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
754    // remove this and targets should individually set these types if not legal.
755    for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
756                                     force_iteration_on_noniterable_enum)) {
757      for (MVT VT : {MVT::i2, MVT::i4})
758        OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
759    }
760    for (MVT AVT : MVT::all_valuetypes()) {
761      for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
762        setTruncStoreAction(AVT, VT, Expand);
763        setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
764        setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
765      }
766    }
767    for (unsigned IM = (unsigned)ISD::PRE_INC;
768         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
769      for (MVT VT : {MVT::i2, MVT::i4}) {
770        setIndexedLoadAction(IM, VT, Expand);
771        setIndexedStoreAction(IM, VT, Expand);
772        setIndexedMaskedLoadAction(IM, VT, Expand);
773        setIndexedMaskedStoreAction(IM, VT, Expand);
774      }
775    }
776  
777    for (MVT VT : MVT::fp_valuetypes()) {
778      MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
779      if (IntVT.isValid()) {
780        setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
781        AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
782      }
783    }
784  
785    // Set default actions for various operations.
786    for (MVT VT : MVT::all_valuetypes()) {
787      // Default all indexed load / store to expand.
788      for (unsigned IM = (unsigned)ISD::PRE_INC;
789           IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
790        setIndexedLoadAction(IM, VT, Expand);
791        setIndexedStoreAction(IM, VT, Expand);
792        setIndexedMaskedLoadAction(IM, VT, Expand);
793        setIndexedMaskedStoreAction(IM, VT, Expand);
794      }
795  
796      // Most backends expect to see the node which just returns the value loaded.
797      setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
798  
799      // These operations default to expand.
800      setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
801                          ISD::FMINNUM,        ISD::FMAXNUM,
802                          ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
803                          ISD::FMINIMUM,       ISD::FMAXIMUM,
804                          ISD::FMAD,           ISD::SMIN,
805                          ISD::SMAX,           ISD::UMIN,
806                          ISD::UMAX,           ISD::ABS,
807                          ISD::FSHL,           ISD::FSHR,
808                          ISD::SADDSAT,        ISD::UADDSAT,
809                          ISD::SSUBSAT,        ISD::USUBSAT,
810                          ISD::SSHLSAT,        ISD::USHLSAT,
811                          ISD::SMULFIX,        ISD::SMULFIXSAT,
812                          ISD::UMULFIX,        ISD::UMULFIXSAT,
813                          ISD::SDIVFIX,        ISD::SDIVFIXSAT,
814                          ISD::UDIVFIX,        ISD::UDIVFIXSAT,
815                          ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
816                          ISD::IS_FPCLASS},
817                         VT, Expand);
818  
819      // Overflow operations default to expand
820      setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
821                          ISD::SMULO, ISD::UMULO},
822                         VT, Expand);
823  
824      // ADDCARRY operations default to expand
825      setOperationAction({ISD::ADDCARRY, ISD::SUBCARRY, ISD::SETCCCARRY,
826                          ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
827                         VT, Expand);
828  
829      // ADDC/ADDE/SUBC/SUBE default to expand.
830      setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
831                         Expand);
832  
833      // Halving adds
834      setOperationAction(
835          {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
836          Expand);
837  
838      // Absolute difference
839      setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
840  
841      // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
842      setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
843                         Expand);
844  
845      setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
846  
847      // These library functions default to expand.
848      setOperationAction({ISD::FROUND, ISD::FROUNDEVEN, ISD::FPOWI}, VT, Expand);
849  
850      // These operations default to expand for vector types.
851      if (VT.isVector())
852        setOperationAction({ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG,
853                            ISD::ANY_EXTEND_VECTOR_INREG,
854                            ISD::SIGN_EXTEND_VECTOR_INREG,
855                            ISD::ZERO_EXTEND_VECTOR_INREG, ISD::SPLAT_VECTOR},
856                           VT, Expand);
857  
858      // Constrained floating-point operations default to expand.
859  #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
860      setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
861  #include "llvm/IR/ConstrainedOps.def"
862  
863      // For most targets @llvm.get.dynamic.area.offset just returns 0.
864      setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
865  
866      // Vector reduction default to expand.
867      setOperationAction(
868          {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
869           ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
870           ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
871           ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
872           ISD::VECREDUCE_FMIN, ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
873          VT, Expand);
874  
875      // Named vector shuffles default to expand.
876      setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
877  
878      // VP_SREM/UREM default to expand.
879      // TODO: Expand all VP intrinsics.
880      setOperationAction(ISD::VP_SREM, VT, Expand);
881      setOperationAction(ISD::VP_UREM, VT, Expand);
882    }
883  
884    // Most targets ignore the @llvm.prefetch intrinsic.
885    setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
886  
887    // Most targets also ignore the @llvm.readcyclecounter intrinsic.
888    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
889  
890    // ConstantFP nodes default to expand.  Targets can either change this to
891    // Legal, in which case all fp constants are legal, or use isFPImmLegal()
892    // to optimize expansions for certain constants.
893    setOperationAction(ISD::ConstantFP,
894                       {MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
895                       Expand);
896  
897    // These library functions default to expand.
898    setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
899                        ISD::FEXP2, ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL,
900                        ISD::FRINT, ISD::FTRUNC, ISD::LROUND, ISD::LLROUND,
901                        ISD::LRINT, ISD::LLRINT},
902                       {MVT::f32, MVT::f64, MVT::f128}, Expand);
903  
904    // Default ISD::TRAP to expand (which turns it into abort).
905    setOperationAction(ISD::TRAP, MVT::Other, Expand);
906  
907    // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
908    // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
909    setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
910  
911    setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
912  }
913  
914  MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
915                                                 EVT) const {
916    return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
917  }
918  
919  EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
920                                           bool LegalTypes) const {
921    assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
922    if (LHSTy.isVector())
923      return LHSTy;
924    MVT ShiftVT =
925        LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
926    // If any possible shift value won't fit in the prefered type, just use
927    // something safe. Assume it will be legalized when the shift is expanded.
928    if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
929      ShiftVT = MVT::i32;
930    assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
931           "ShiftVT is still too small!");
932    return ShiftVT;
933  }
934  
935  bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
936    assert(isTypeLegal(VT));
937    switch (Op) {
938    default:
939      return false;
940    case ISD::SDIV:
941    case ISD::UDIV:
942    case ISD::SREM:
943    case ISD::UREM:
944      return true;
945    }
946  }
947  
948  bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
949                                               unsigned DestAS) const {
950    return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
951  }
952  
953  void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
954    // If the command-line option was specified, ignore this request.
955    if (!JumpIsExpensiveOverride.getNumOccurrences())
956      JumpIsExpensive = isExpensive;
957  }
958  
959  TargetLoweringBase::LegalizeKind
960  TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
961    // If this is a simple type, use the ComputeRegisterProp mechanism.
962    if (VT.isSimple()) {
963      MVT SVT = VT.getSimpleVT();
964      assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
965      MVT NVT = TransformToType[SVT.SimpleTy];
966      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
967  
968      assert((LA == TypeLegal || LA == TypeSoftenFloat ||
969              LA == TypeSoftPromoteHalf ||
970              (NVT.isVector() ||
971               ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
972             "Promote may not follow Expand or Promote");
973  
974      if (LA == TypeSplitVector)
975        return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
976      if (LA == TypeScalarizeVector)
977        return LegalizeKind(LA, SVT.getVectorElementType());
978      return LegalizeKind(LA, NVT);
979    }
980  
981    // Handle Extended Scalar Types.
982    if (!VT.isVector()) {
983      assert(VT.isInteger() && "Float types must be simple");
984      unsigned BitSize = VT.getSizeInBits();
985      // First promote to a power-of-two size, then expand if necessary.
986      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
987        EVT NVT = VT.getRoundIntegerType(Context);
988        assert(NVT != VT && "Unable to round integer VT");
989        LegalizeKind NextStep = getTypeConversion(Context, NVT);
990        // Avoid multi-step promotion.
991        if (NextStep.first == TypePromoteInteger)
992          return NextStep;
993        // Return rounded integer type.
994        return LegalizeKind(TypePromoteInteger, NVT);
995      }
996  
997      return LegalizeKind(TypeExpandInteger,
998                          EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
999    }
1000  
1001    // Handle vector types.
1002    ElementCount NumElts = VT.getVectorElementCount();
1003    EVT EltVT = VT.getVectorElementType();
1004  
1005    // Vectors with only one element are always scalarized.
1006    if (NumElts.isScalar())
1007      return LegalizeKind(TypeScalarizeVector, EltVT);
1008  
1009    // Try to widen vector elements until the element type is a power of two and
1010    // promote it to a legal type later on, for example:
1011    // <3 x i8> -> <4 x i8> -> <4 x i32>
1012    if (EltVT.isInteger()) {
1013      // Vectors with a number of elements that is not a power of two are always
1014      // widened, for example <3 x i8> -> <4 x i8>.
1015      if (!VT.isPow2VectorType()) {
1016        NumElts = NumElts.coefficientNextPowerOf2();
1017        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1018        return LegalizeKind(TypeWidenVector, NVT);
1019      }
1020  
1021      // Examine the element type.
1022      LegalizeKind LK = getTypeConversion(Context, EltVT);
1023  
1024      // If type is to be expanded, split the vector.
1025      //  <4 x i140> -> <2 x i140>
1026      if (LK.first == TypeExpandInteger) {
1027        if (VT.getVectorElementCount().isScalable())
1028          return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1029        return LegalizeKind(TypeSplitVector,
1030                            VT.getHalfNumVectorElementsVT(Context));
1031      }
1032  
1033      // Promote the integer element types until a legal vector type is found
1034      // or until the element integer type is too big. If a legal type was not
1035      // found, fallback to the usual mechanism of widening/splitting the
1036      // vector.
1037      EVT OldEltVT = EltVT;
1038      while (true) {
1039        // Increase the bitwidth of the element to the next pow-of-two
1040        // (which is greater than 8 bits).
1041        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1042                    .getRoundIntegerType(Context);
1043  
1044        // Stop trying when getting a non-simple element type.
1045        // Note that vector elements may be greater than legal vector element
1046        // types. Example: X86 XMM registers hold 64bit element on 32bit
1047        // systems.
1048        if (!EltVT.isSimple())
1049          break;
1050  
1051        // Build a new vector type and check if it is legal.
1052        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1053        // Found a legal promoted vector type.
1054        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1055          return LegalizeKind(TypePromoteInteger,
1056                              EVT::getVectorVT(Context, EltVT, NumElts));
1057      }
1058  
1059      // Reset the type to the unexpanded type if we did not find a legal vector
1060      // type with a promoted vector element type.
1061      EltVT = OldEltVT;
1062    }
1063  
1064    // Try to widen the vector until a legal type is found.
1065    // If there is no wider legal type, split the vector.
1066    while (true) {
1067      // Round up to the next power of 2.
1068      NumElts = NumElts.coefficientNextPowerOf2();
1069  
1070      // If there is no simple vector type with this many elements then there
1071      // cannot be a larger legal vector type.  Note that this assumes that
1072      // there are no skipped intermediate vector types in the simple types.
1073      if (!EltVT.isSimple())
1074        break;
1075      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1076      if (LargerVector == MVT())
1077        break;
1078  
1079      // If this type is legal then widen the vector.
1080      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1081        return LegalizeKind(TypeWidenVector, LargerVector);
1082    }
1083  
1084    // Widen odd vectors to next power of two.
1085    if (!VT.isPow2VectorType()) {
1086      EVT NVT = VT.getPow2VectorType(Context);
1087      return LegalizeKind(TypeWidenVector, NVT);
1088    }
1089  
1090    if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1091      return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1092  
1093    // Vectors with illegal element types are expanded.
1094    EVT NVT = EVT::getVectorVT(Context, EltVT,
1095                               VT.getVectorElementCount().divideCoefficientBy(2));
1096    return LegalizeKind(TypeSplitVector, NVT);
1097  }
1098  
1099  static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1100                                            unsigned &NumIntermediates,
1101                                            MVT &RegisterVT,
1102                                            TargetLoweringBase *TLI) {
1103    // Figure out the right, legal destination reg to copy into.
1104    ElementCount EC = VT.getVectorElementCount();
1105    MVT EltTy = VT.getVectorElementType();
1106  
1107    unsigned NumVectorRegs = 1;
1108  
1109    // Scalable vectors cannot be scalarized, so splitting or widening is
1110    // required.
1111    if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1112      llvm_unreachable(
1113          "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1114  
1115    // FIXME: We don't support non-power-of-2-sized vectors for now.
1116    // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1117    if (!isPowerOf2_32(EC.getKnownMinValue())) {
1118      // Split EC to unit size (scalable property is preserved).
1119      NumVectorRegs = EC.getKnownMinValue();
1120      EC = ElementCount::getFixed(1);
1121    }
1122  
1123    // Divide the input until we get to a supported size. This will
1124    // always end up with an EC that represent a scalar or a scalable
1125    // scalar.
1126    while (EC.getKnownMinValue() > 1 &&
1127           !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1128      EC = EC.divideCoefficientBy(2);
1129      NumVectorRegs <<= 1;
1130    }
1131  
1132    NumIntermediates = NumVectorRegs;
1133  
1134    MVT NewVT = MVT::getVectorVT(EltTy, EC);
1135    if (!TLI->isTypeLegal(NewVT))
1136      NewVT = EltTy;
1137    IntermediateVT = NewVT;
1138  
1139    unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1140  
1141    // Convert sizes such as i33 to i64.
1142    if (!isPowerOf2_32(LaneSizeInBits))
1143      LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
1144  
1145    MVT DestVT = TLI->getRegisterType(NewVT);
1146    RegisterVT = DestVT;
1147    if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1148      return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1149  
1150    // Otherwise, promotion or legal types use the same number of registers as
1151    // the vector decimated to the appropriate level.
1152    return NumVectorRegs;
1153  }
1154  
1155  /// isLegalRC - Return true if the value types that can be represented by the
1156  /// specified register class are all legal.
1157  bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1158                                     const TargetRegisterClass &RC) const {
1159    for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1160      if (isTypeLegal(*I))
1161        return true;
1162    return false;
1163  }
1164  
1165  /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1166  /// sequence of memory operands that is recognized by PrologEpilogInserter.
1167  MachineBasicBlock *
1168  TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1169                                     MachineBasicBlock *MBB) const {
1170    MachineInstr *MI = &InitialMI;
1171    MachineFunction &MF = *MI->getMF();
1172    MachineFrameInfo &MFI = MF.getFrameInfo();
1173  
1174    // We're handling multiple types of operands here:
1175    // PATCHPOINT MetaArgs - live-in, read only, direct
1176    // STATEPOINT Deopt Spill - live-through, read only, indirect
1177    // STATEPOINT Deopt Alloca - live-through, read only, direct
1178    // (We're currently conservative and mark the deopt slots read/write in
1179    // practice.)
1180    // STATEPOINT GC Spill - live-through, read/write, indirect
1181    // STATEPOINT GC Alloca - live-through, read/write, direct
1182    // The live-in vs live-through is handled already (the live through ones are
1183    // all stack slots), but we need to handle the different type of stackmap
1184    // operands and memory effects here.
1185  
1186    if (llvm::none_of(MI->operands(),
1187                      [](MachineOperand &Operand) { return Operand.isFI(); }))
1188      return MBB;
1189  
1190    MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1191  
1192    // Inherit previous memory operands.
1193    MIB.cloneMemRefs(*MI);
1194  
1195    for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1196      MachineOperand &MO = MI->getOperand(i);
1197      if (!MO.isFI()) {
1198        // Index of Def operand this Use it tied to.
1199        // Since Defs are coming before Uses, if Use is tied, then
1200        // index of Def must be smaller that index of that Use.
1201        // Also, Defs preserve their position in new MI.
1202        unsigned TiedTo = i;
1203        if (MO.isReg() && MO.isTied())
1204          TiedTo = MI->findTiedOperandIdx(i);
1205        MIB.add(MO);
1206        if (TiedTo < i)
1207          MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1208        continue;
1209      }
1210  
1211      // foldMemoryOperand builds a new MI after replacing a single FI operand
1212      // with the canonical set of five x86 addressing-mode operands.
1213      int FI = MO.getIndex();
1214  
1215      // Add frame index operands recognized by stackmaps.cpp
1216      if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1217        // indirect-mem-ref tag, size, #FI, offset.
1218        // Used for spills inserted by StatepointLowering.  This codepath is not
1219        // used for patchpoints/stackmaps at all, for these spilling is done via
1220        // foldMemoryOperand callback only.
1221        assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1222        MIB.addImm(StackMaps::IndirectMemRefOp);
1223        MIB.addImm(MFI.getObjectSize(FI));
1224        MIB.add(MO);
1225        MIB.addImm(0);
1226      } else {
1227        // direct-mem-ref tag, #FI, offset.
1228        // Used by patchpoint, and direct alloca arguments to statepoints
1229        MIB.addImm(StackMaps::DirectMemRefOp);
1230        MIB.add(MO);
1231        MIB.addImm(0);
1232      }
1233  
1234      assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1235  
1236      // Add a new memory operand for this FI.
1237      assert(MFI.getObjectOffset(FI) != -1);
1238  
1239      // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1240      // PATCHPOINT should be updated to do the same. (TODO)
1241      if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1242        auto Flags = MachineMemOperand::MOLoad;
1243        MachineMemOperand *MMO = MF.getMachineMemOperand(
1244            MachinePointerInfo::getFixedStack(MF, FI), Flags,
1245            MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1246        MIB->addMemOperand(MF, MMO);
1247      }
1248    }
1249    MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1250    MI->eraseFromParent();
1251    return MBB;
1252  }
1253  
1254  /// findRepresentativeClass - Return the largest legal super-reg register class
1255  /// of the register class for the specified type and its associated "cost".
1256  // This function is in TargetLowering because it uses RegClassForVT which would
1257  // need to be moved to TargetRegisterInfo and would necessitate moving
1258  // isTypeLegal over as well - a massive change that would just require
1259  // TargetLowering having a TargetRegisterInfo class member that it would use.
1260  std::pair<const TargetRegisterClass *, uint8_t>
1261  TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1262                                              MVT VT) const {
1263    const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1264    if (!RC)
1265      return std::make_pair(RC, 0);
1266  
1267    // Compute the set of all super-register classes.
1268    BitVector SuperRegRC(TRI->getNumRegClasses());
1269    for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1270      SuperRegRC.setBitsInMask(RCI.getMask());
1271  
1272    // Find the first legal register class with the largest spill size.
1273    const TargetRegisterClass *BestRC = RC;
1274    for (unsigned i : SuperRegRC.set_bits()) {
1275      const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1276      // We want the largest possible spill size.
1277      if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1278        continue;
1279      if (!isLegalRC(*TRI, *SuperRC))
1280        continue;
1281      BestRC = SuperRC;
1282    }
1283    return std::make_pair(BestRC, 1);
1284  }
1285  
1286  /// computeRegisterProperties - Once all of the register classes are added,
1287  /// this allows us to compute derived properties we expose.
1288  void TargetLoweringBase::computeRegisterProperties(
1289      const TargetRegisterInfo *TRI) {
1290    static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1291                  "Too many value types for ValueTypeActions to hold!");
1292  
1293    // Everything defaults to needing one register.
1294    for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1295      NumRegistersForVT[i] = 1;
1296      RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1297    }
1298    // ...except isVoid, which doesn't need any registers.
1299    NumRegistersForVT[MVT::isVoid] = 0;
1300  
1301    // Find the largest integer register class.
1302    unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1303    for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1304      assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1305  
1306    // Every integer value type larger than this largest register takes twice as
1307    // many registers to represent as the previous ValueType.
1308    for (unsigned ExpandedReg = LargestIntReg + 1;
1309         ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1310      NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1311      RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1312      TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1313      ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1314                                     TypeExpandInteger);
1315    }
1316  
1317    // Inspect all of the ValueType's smaller than the largest integer
1318    // register to see which ones need promotion.
1319    unsigned LegalIntReg = LargestIntReg;
1320    for (unsigned IntReg = LargestIntReg - 1;
1321         IntReg >= (unsigned)MVT::i1; --IntReg) {
1322      MVT IVT = (MVT::SimpleValueType)IntReg;
1323      if (isTypeLegal(IVT)) {
1324        LegalIntReg = IntReg;
1325      } else {
1326        RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1327          (MVT::SimpleValueType)LegalIntReg;
1328        ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1329      }
1330    }
1331  
1332    // ppcf128 type is really two f64's.
1333    if (!isTypeLegal(MVT::ppcf128)) {
1334      if (isTypeLegal(MVT::f64)) {
1335        NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1336        RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1337        TransformToType[MVT::ppcf128] = MVT::f64;
1338        ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1339      } else {
1340        NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1341        RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1342        TransformToType[MVT::ppcf128] = MVT::i128;
1343        ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1344      }
1345    }
1346  
1347    // Decide how to handle f128. If the target does not have native f128 support,
1348    // expand it to i128 and we will be generating soft float library calls.
1349    if (!isTypeLegal(MVT::f128)) {
1350      NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1351      RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1352      TransformToType[MVT::f128] = MVT::i128;
1353      ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1354    }
1355  
1356    // Decide how to handle f80. If the target does not have native f80 support,
1357    // expand it to i96 and we will be generating soft float library calls.
1358    if (!isTypeLegal(MVT::f80)) {
1359      NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1360      RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1361      TransformToType[MVT::f80] = MVT::i32;
1362      ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1363    }
1364  
1365    // Decide how to handle f64. If the target does not have native f64 support,
1366    // expand it to i64 and we will be generating soft float library calls.
1367    if (!isTypeLegal(MVT::f64)) {
1368      NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1369      RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1370      TransformToType[MVT::f64] = MVT::i64;
1371      ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1372    }
1373  
1374    // Decide how to handle f32. If the target does not have native f32 support,
1375    // expand it to i32 and we will be generating soft float library calls.
1376    if (!isTypeLegal(MVT::f32)) {
1377      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1378      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1379      TransformToType[MVT::f32] = MVT::i32;
1380      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1381    }
1382  
1383    // Decide how to handle f16. If the target does not have native f16 support,
1384    // promote it to f32, because there are no f16 library calls (except for
1385    // conversions).
1386    if (!isTypeLegal(MVT::f16)) {
1387      // Allow targets to control how we legalize half.
1388      if (softPromoteHalfType()) {
1389        NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1390        RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1391        TransformToType[MVT::f16] = MVT::f32;
1392        ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1393      } else {
1394        NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1395        RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1396        TransformToType[MVT::f16] = MVT::f32;
1397        ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1398      }
1399    }
1400  
1401    // Decide how to handle bf16. If the target does not have native bf16 support,
1402    // promote it to f32, because there are no bf16 library calls (except for
1403    // converting from f32 to bf16).
1404    if (!isTypeLegal(MVT::bf16)) {
1405      NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1406      RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1407      TransformToType[MVT::bf16] = MVT::f32;
1408      ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1409    }
1410  
1411    // Loop over all of the vector value types to see which need transformations.
1412    for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1413         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1414      MVT VT = (MVT::SimpleValueType) i;
1415      if (isTypeLegal(VT))
1416        continue;
1417  
1418      MVT EltVT = VT.getVectorElementType();
1419      ElementCount EC = VT.getVectorElementCount();
1420      bool IsLegalWiderType = false;
1421      bool IsScalable = VT.isScalableVector();
1422      LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1423      switch (PreferredAction) {
1424      case TypePromoteInteger: {
1425        MVT::SimpleValueType EndVT = IsScalable ?
1426                                     MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1427                                     MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1428        // Try to promote the elements of integer vectors. If no legal
1429        // promotion was found, fall through to the widen-vector method.
1430        for (unsigned nVT = i + 1;
1431             (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1432          MVT SVT = (MVT::SimpleValueType) nVT;
1433          // Promote vectors of integers to vectors with the same number
1434          // of elements, with a wider element type.
1435          if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1436              SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1437            TransformToType[i] = SVT;
1438            RegisterTypeForVT[i] = SVT;
1439            NumRegistersForVT[i] = 1;
1440            ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1441            IsLegalWiderType = true;
1442            break;
1443          }
1444        }
1445        if (IsLegalWiderType)
1446          break;
1447        [[fallthrough]];
1448      }
1449  
1450      case TypeWidenVector:
1451        if (isPowerOf2_32(EC.getKnownMinValue())) {
1452          // Try to widen the vector.
1453          for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1454            MVT SVT = (MVT::SimpleValueType) nVT;
1455            if (SVT.getVectorElementType() == EltVT &&
1456                SVT.isScalableVector() == IsScalable &&
1457                SVT.getVectorElementCount().getKnownMinValue() >
1458                    EC.getKnownMinValue() &&
1459                isTypeLegal(SVT)) {
1460              TransformToType[i] = SVT;
1461              RegisterTypeForVT[i] = SVT;
1462              NumRegistersForVT[i] = 1;
1463              ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1464              IsLegalWiderType = true;
1465              break;
1466            }
1467          }
1468          if (IsLegalWiderType)
1469            break;
1470        } else {
1471          // Only widen to the next power of 2 to keep consistency with EVT.
1472          MVT NVT = VT.getPow2VectorType();
1473          if (isTypeLegal(NVT)) {
1474            TransformToType[i] = NVT;
1475            ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1476            RegisterTypeForVT[i] = NVT;
1477            NumRegistersForVT[i] = 1;
1478            break;
1479          }
1480        }
1481        [[fallthrough]];
1482  
1483      case TypeSplitVector:
1484      case TypeScalarizeVector: {
1485        MVT IntermediateVT;
1486        MVT RegisterVT;
1487        unsigned NumIntermediates;
1488        unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1489            NumIntermediates, RegisterVT, this);
1490        NumRegistersForVT[i] = NumRegisters;
1491        assert(NumRegistersForVT[i] == NumRegisters &&
1492               "NumRegistersForVT size cannot represent NumRegisters!");
1493        RegisterTypeForVT[i] = RegisterVT;
1494  
1495        MVT NVT = VT.getPow2VectorType();
1496        if (NVT == VT) {
1497          // Type is already a power of 2.  The default action is to split.
1498          TransformToType[i] = MVT::Other;
1499          if (PreferredAction == TypeScalarizeVector)
1500            ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1501          else if (PreferredAction == TypeSplitVector)
1502            ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1503          else if (EC.getKnownMinValue() > 1)
1504            ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1505          else
1506            ValueTypeActions.setTypeAction(VT, EC.isScalable()
1507                                                   ? TypeScalarizeScalableVector
1508                                                   : TypeScalarizeVector);
1509        } else {
1510          TransformToType[i] = NVT;
1511          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1512        }
1513        break;
1514      }
1515      default:
1516        llvm_unreachable("Unknown vector legalization action!");
1517      }
1518    }
1519  
1520    // Determine the 'representative' register class for each value type.
1521    // An representative register class is the largest (meaning one which is
1522    // not a sub-register class / subreg register class) legal register class for
1523    // a group of value types. For example, on i386, i8, i16, and i32
1524    // representative would be GR32; while on x86_64 it's GR64.
1525    for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1526      const TargetRegisterClass* RRC;
1527      uint8_t Cost;
1528      std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1529      RepRegClassForVT[i] = RRC;
1530      RepRegClassCostForVT[i] = Cost;
1531    }
1532  }
1533  
1534  EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1535                                             EVT VT) const {
1536    assert(!VT.isVector() && "No default SetCC type for vectors!");
1537    return getPointerTy(DL).SimpleTy;
1538  }
1539  
1540  MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1541    return MVT::i32; // return the default value
1542  }
1543  
1544  /// getVectorTypeBreakdown - Vector types are broken down into some number of
1545  /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1546  /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1547  /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1548  ///
1549  /// This method returns the number of registers needed, and the VT for each
1550  /// register.  It also returns the VT and quantity of the intermediate values
1551  /// before they are promoted/expanded.
1552  unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1553                                                      EVT VT, EVT &IntermediateVT,
1554                                                      unsigned &NumIntermediates,
1555                                                      MVT &RegisterVT) const {
1556    ElementCount EltCnt = VT.getVectorElementCount();
1557  
1558    // If there is a wider vector type with the same element type as this one,
1559    // or a promoted vector type that has the same number of elements which
1560    // are wider, then we should convert to that legal vector type.
1561    // This handles things like <2 x float> -> <4 x float> and
1562    // <4 x i1> -> <4 x i32>.
1563    LegalizeTypeAction TA = getTypeAction(Context, VT);
1564    if (!EltCnt.isScalar() &&
1565        (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1566      EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1567      if (isTypeLegal(RegisterEVT)) {
1568        IntermediateVT = RegisterEVT;
1569        RegisterVT = RegisterEVT.getSimpleVT();
1570        NumIntermediates = 1;
1571        return 1;
1572      }
1573    }
1574  
1575    // Figure out the right, legal destination reg to copy into.
1576    EVT EltTy = VT.getVectorElementType();
1577  
1578    unsigned NumVectorRegs = 1;
1579  
1580    // Scalable vectors cannot be scalarized, so handle the legalisation of the
1581    // types like done elsewhere in SelectionDAG.
1582    if (EltCnt.isScalable()) {
1583      LegalizeKind LK;
1584      EVT PartVT = VT;
1585      do {
1586        // Iterate until we've found a legal (part) type to hold VT.
1587        LK = getTypeConversion(Context, PartVT);
1588        PartVT = LK.second;
1589      } while (LK.first != TypeLegal);
1590  
1591      if (!PartVT.isVector()) {
1592        report_fatal_error(
1593            "Don't know how to legalize this scalable vector type");
1594      }
1595  
1596      NumIntermediates =
1597          divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1598                     PartVT.getVectorElementCount().getKnownMinValue());
1599      IntermediateVT = PartVT;
1600      RegisterVT = getRegisterType(Context, IntermediateVT);
1601      return NumIntermediates;
1602    }
1603  
1604    // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1605    // we could break down into LHS/RHS like LegalizeDAG does.
1606    if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1607      NumVectorRegs = EltCnt.getKnownMinValue();
1608      EltCnt = ElementCount::getFixed(1);
1609    }
1610  
1611    // Divide the input until we get to a supported size.  This will always
1612    // end with a scalar if the target doesn't support vectors.
1613    while (EltCnt.getKnownMinValue() > 1 &&
1614           !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1615      EltCnt = EltCnt.divideCoefficientBy(2);
1616      NumVectorRegs <<= 1;
1617    }
1618  
1619    NumIntermediates = NumVectorRegs;
1620  
1621    EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1622    if (!isTypeLegal(NewVT))
1623      NewVT = EltTy;
1624    IntermediateVT = NewVT;
1625  
1626    MVT DestVT = getRegisterType(Context, NewVT);
1627    RegisterVT = DestVT;
1628  
1629    if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1630      TypeSize NewVTSize = NewVT.getSizeInBits();
1631      // Convert sizes such as i33 to i64.
1632      if (!isPowerOf2_32(NewVTSize.getKnownMinValue()))
1633        NewVTSize = NewVTSize.coefficientNextPowerOf2();
1634      return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1635    }
1636  
1637    // Otherwise, promotion or legal types use the same number of registers as
1638    // the vector decimated to the appropriate level.
1639    return NumVectorRegs;
1640  }
1641  
1642  bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1643                                                  uint64_t NumCases,
1644                                                  uint64_t Range,
1645                                                  ProfileSummaryInfo *PSI,
1646                                                  BlockFrequencyInfo *BFI) const {
1647    // FIXME: This function check the maximum table size and density, but the
1648    // minimum size is not checked. It would be nice if the minimum size is
1649    // also combined within this function. Currently, the minimum size check is
1650    // performed in findJumpTable() in SelectionDAGBuiler and
1651    // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1652    const bool OptForSize =
1653        SI->getParent()->getParent()->hasOptSize() ||
1654        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1655    const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1656    const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1657  
1658    // Check whether the number of cases is small enough and
1659    // the range is dense enough for a jump table.
1660    return (OptForSize || Range <= MaxJumpTableSize) &&
1661           (NumCases * 100 >= Range * MinDensity);
1662  }
1663  
1664  MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1665                                                          EVT ConditionVT) const {
1666    return getRegisterType(Context, ConditionVT);
1667  }
1668  
1669  /// Get the EVTs and ArgFlags collections that represent the legalized return
1670  /// type of the given function.  This does not require a DAG or a return value,
1671  /// and is suitable for use before any DAGs for the function are constructed.
1672  /// TODO: Move this out of TargetLowering.cpp.
1673  void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1674                           AttributeList attr,
1675                           SmallVectorImpl<ISD::OutputArg> &Outs,
1676                           const TargetLowering &TLI, const DataLayout &DL) {
1677    SmallVector<EVT, 4> ValueVTs;
1678    ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1679    unsigned NumValues = ValueVTs.size();
1680    if (NumValues == 0) return;
1681  
1682    for (unsigned j = 0, f = NumValues; j != f; ++j) {
1683      EVT VT = ValueVTs[j];
1684      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1685  
1686      if (attr.hasRetAttr(Attribute::SExt))
1687        ExtendKind = ISD::SIGN_EXTEND;
1688      else if (attr.hasRetAttr(Attribute::ZExt))
1689        ExtendKind = ISD::ZERO_EXTEND;
1690  
1691      // FIXME: C calling convention requires the return type to be promoted to
1692      // at least 32-bit. But this is not necessary for non-C calling
1693      // conventions. The frontend should mark functions whose return values
1694      // require promoting with signext or zeroext attributes.
1695      if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1696        MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1697        if (VT.bitsLT(MinVT))
1698          VT = MinVT;
1699      }
1700  
1701      unsigned NumParts =
1702          TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1703      MVT PartVT =
1704          TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1705  
1706      // 'inreg' on function refers to return value
1707      ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1708      if (attr.hasRetAttr(Attribute::InReg))
1709        Flags.setInReg();
1710  
1711      // Propagate extension type if any
1712      if (attr.hasRetAttr(Attribute::SExt))
1713        Flags.setSExt();
1714      else if (attr.hasRetAttr(Attribute::ZExt))
1715        Flags.setZExt();
1716  
1717      for (unsigned i = 0; i < NumParts; ++i)
1718        Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1719    }
1720  }
1721  
1722  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1723  /// function arguments in the caller parameter area.  This is the actual
1724  /// alignment, not its logarithm.
1725  uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1726                                                     const DataLayout &DL) const {
1727    return DL.getABITypeAlign(Ty).value();
1728  }
1729  
1730  bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1731      LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1732      Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1733    // Check if the specified alignment is sufficient based on the data layout.
1734    // TODO: While using the data layout works in practice, a better solution
1735    // would be to implement this check directly (make this a virtual function).
1736    // For example, the ABI alignment may change based on software platform while
1737    // this function should only be affected by hardware implementation.
1738    Type *Ty = VT.getTypeForEVT(Context);
1739    if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1740      // Assume that an access that meets the ABI-specified alignment is fast.
1741      if (Fast != nullptr)
1742        *Fast = 1;
1743      return true;
1744    }
1745  
1746    // This is a misaligned access.
1747    return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1748  }
1749  
1750  bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1751      LLVMContext &Context, const DataLayout &DL, EVT VT,
1752      const MachineMemOperand &MMO, unsigned *Fast) const {
1753    return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1754                                          MMO.getAlign(), MMO.getFlags(), Fast);
1755  }
1756  
1757  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1758                                              const DataLayout &DL, EVT VT,
1759                                              unsigned AddrSpace, Align Alignment,
1760                                              MachineMemOperand::Flags Flags,
1761                                              unsigned *Fast) const {
1762    return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1763                                          Flags, Fast);
1764  }
1765  
1766  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1767                                              const DataLayout &DL, EVT VT,
1768                                              const MachineMemOperand &MMO,
1769                                              unsigned *Fast) const {
1770    return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1771                              MMO.getFlags(), Fast);
1772  }
1773  
1774  bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1775                                              const DataLayout &DL, LLT Ty,
1776                                              const MachineMemOperand &MMO,
1777                                              unsigned *Fast) const {
1778    EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1779    return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1780                              MMO.getFlags(), Fast);
1781  }
1782  
1783  //===----------------------------------------------------------------------===//
1784  //  TargetTransformInfo Helpers
1785  //===----------------------------------------------------------------------===//
1786  
1787  int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1788    enum InstructionOpcodes {
1789  #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1790  #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1791  #include "llvm/IR/Instruction.def"
1792    };
1793    switch (static_cast<InstructionOpcodes>(Opcode)) {
1794    case Ret:            return 0;
1795    case Br:             return 0;
1796    case Switch:         return 0;
1797    case IndirectBr:     return 0;
1798    case Invoke:         return 0;
1799    case CallBr:         return 0;
1800    case Resume:         return 0;
1801    case Unreachable:    return 0;
1802    case CleanupRet:     return 0;
1803    case CatchRet:       return 0;
1804    case CatchPad:       return 0;
1805    case CatchSwitch:    return 0;
1806    case CleanupPad:     return 0;
1807    case FNeg:           return ISD::FNEG;
1808    case Add:            return ISD::ADD;
1809    case FAdd:           return ISD::FADD;
1810    case Sub:            return ISD::SUB;
1811    case FSub:           return ISD::FSUB;
1812    case Mul:            return ISD::MUL;
1813    case FMul:           return ISD::FMUL;
1814    case UDiv:           return ISD::UDIV;
1815    case SDiv:           return ISD::SDIV;
1816    case FDiv:           return ISD::FDIV;
1817    case URem:           return ISD::UREM;
1818    case SRem:           return ISD::SREM;
1819    case FRem:           return ISD::FREM;
1820    case Shl:            return ISD::SHL;
1821    case LShr:           return ISD::SRL;
1822    case AShr:           return ISD::SRA;
1823    case And:            return ISD::AND;
1824    case Or:             return ISD::OR;
1825    case Xor:            return ISD::XOR;
1826    case Alloca:         return 0;
1827    case Load:           return ISD::LOAD;
1828    case Store:          return ISD::STORE;
1829    case GetElementPtr:  return 0;
1830    case Fence:          return 0;
1831    case AtomicCmpXchg:  return 0;
1832    case AtomicRMW:      return 0;
1833    case Trunc:          return ISD::TRUNCATE;
1834    case ZExt:           return ISD::ZERO_EXTEND;
1835    case SExt:           return ISD::SIGN_EXTEND;
1836    case FPToUI:         return ISD::FP_TO_UINT;
1837    case FPToSI:         return ISD::FP_TO_SINT;
1838    case UIToFP:         return ISD::UINT_TO_FP;
1839    case SIToFP:         return ISD::SINT_TO_FP;
1840    case FPTrunc:        return ISD::FP_ROUND;
1841    case FPExt:          return ISD::FP_EXTEND;
1842    case PtrToInt:       return ISD::BITCAST;
1843    case IntToPtr:       return ISD::BITCAST;
1844    case BitCast:        return ISD::BITCAST;
1845    case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1846    case ICmp:           return ISD::SETCC;
1847    case FCmp:           return ISD::SETCC;
1848    case PHI:            return 0;
1849    case Call:           return 0;
1850    case Select:         return ISD::SELECT;
1851    case UserOp1:        return 0;
1852    case UserOp2:        return 0;
1853    case VAArg:          return 0;
1854    case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1855    case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1856    case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1857    case ExtractValue:   return ISD::MERGE_VALUES;
1858    case InsertValue:    return ISD::MERGE_VALUES;
1859    case LandingPad:     return 0;
1860    case Freeze:         return ISD::FREEZE;
1861    }
1862  
1863    llvm_unreachable("Unknown instruction type encountered!");
1864  }
1865  
1866  Value *
1867  TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1868                                                         bool UseTLS) const {
1869    // compiler-rt provides a variable with a magic name.  Targets that do not
1870    // link with compiler-rt may also provide such a variable.
1871    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1872    const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1873    auto UnsafeStackPtr =
1874        dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1875  
1876    Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1877  
1878    if (!UnsafeStackPtr) {
1879      auto TLSModel = UseTLS ?
1880          GlobalValue::InitialExecTLSModel :
1881          GlobalValue::NotThreadLocal;
1882      // The global variable is not defined yet, define it ourselves.
1883      // We use the initial-exec TLS model because we do not support the
1884      // variable living anywhere other than in the main executable.
1885      UnsafeStackPtr = new GlobalVariable(
1886          *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1887          UnsafeStackPtrVar, nullptr, TLSModel);
1888    } else {
1889      // The variable exists, check its type and attributes.
1890      if (UnsafeStackPtr->getValueType() != StackPtrTy)
1891        report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1892      if (UseTLS != UnsafeStackPtr->isThreadLocal())
1893        report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1894                           (UseTLS ? "" : "not ") + "be thread-local");
1895    }
1896    return UnsafeStackPtr;
1897  }
1898  
1899  Value *
1900  TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1901    if (!TM.getTargetTriple().isAndroid())
1902      return getDefaultSafeStackPointerLocation(IRB, true);
1903  
1904    // Android provides a libc function to retrieve the address of the current
1905    // thread's unsafe stack pointer.
1906    Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1907    Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1908    FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1909                                               StackPtrTy->getPointerTo(0));
1910    return IRB.CreateCall(Fn);
1911  }
1912  
1913  //===----------------------------------------------------------------------===//
1914  //  Loop Strength Reduction hooks
1915  //===----------------------------------------------------------------------===//
1916  
1917  /// isLegalAddressingMode - Return true if the addressing mode represented
1918  /// by AM is legal for this target, for a load/store of the specified type.
1919  bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1920                                                 const AddrMode &AM, Type *Ty,
1921                                                 unsigned AS, Instruction *I) const {
1922    // The default implementation of this implements a conservative RISCy, r+r and
1923    // r+i addr mode.
1924  
1925    // Allows a sign-extended 16-bit immediate field.
1926    if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1927      return false;
1928  
1929    // No global is ever allowed as a base.
1930    if (AM.BaseGV)
1931      return false;
1932  
1933    // Only support r+r,
1934    switch (AM.Scale) {
1935    case 0:  // "r+i" or just "i", depending on HasBaseReg.
1936      break;
1937    case 1:
1938      if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1939        return false;
1940      // Otherwise we have r+r or r+i.
1941      break;
1942    case 2:
1943      if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1944        return false;
1945      // Allow 2*r as r+r.
1946      break;
1947    default: // Don't allow n * r
1948      return false;
1949    }
1950  
1951    return true;
1952  }
1953  
1954  //===----------------------------------------------------------------------===//
1955  //  Stack Protector
1956  //===----------------------------------------------------------------------===//
1957  
1958  // For OpenBSD return its special guard variable. Otherwise return nullptr,
1959  // so that SelectionDAG handle SSP.
1960  Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1961    if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1962      Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1963      PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1964      Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1965      if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1966        G->setVisibility(GlobalValue::HiddenVisibility);
1967      return C;
1968    }
1969    return nullptr;
1970  }
1971  
1972  // Currently only support "standard" __stack_chk_guard.
1973  // TODO: add LOAD_STACK_GUARD support.
1974  void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1975    if (!M.getNamedValue("__stack_chk_guard")) {
1976      auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1977                                    GlobalVariable::ExternalLinkage, nullptr,
1978                                    "__stack_chk_guard");
1979  
1980      // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1981      if (TM.getRelocationModel() == Reloc::Static &&
1982          !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1983          !(TM.getTargetTriple().isPPC64() && TM.getTargetTriple().isOSFreeBSD()))
1984        GV->setDSOLocal(true);
1985    }
1986  }
1987  
1988  // Currently only support "standard" __stack_chk_guard.
1989  // TODO: add LOAD_STACK_GUARD support.
1990  Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1991    return M.getNamedValue("__stack_chk_guard");
1992  }
1993  
1994  Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1995    return nullptr;
1996  }
1997  
1998  unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1999    return MinimumJumpTableEntries;
2000  }
2001  
2002  void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2003    MinimumJumpTableEntries = Val;
2004  }
2005  
2006  unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2007    return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2008  }
2009  
2010  unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2011    return MaximumJumpTableSize;
2012  }
2013  
2014  void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2015    MaximumJumpTableSize = Val;
2016  }
2017  
2018  bool TargetLoweringBase::isJumpTableRelative() const {
2019    return getTargetMachine().isPositionIndependent();
2020  }
2021  
2022  Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2023    if (TM.Options.LoopAlignment)
2024      return Align(TM.Options.LoopAlignment);
2025    return PrefLoopAlignment;
2026  }
2027  
2028  unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2029      MachineBasicBlock *MBB) const {
2030    return MaxBytesForAlignment;
2031  }
2032  
2033  //===----------------------------------------------------------------------===//
2034  //  Reciprocal Estimates
2035  //===----------------------------------------------------------------------===//
2036  
2037  /// Get the reciprocal estimate attribute string for a function that will
2038  /// override the target defaults.
2039  static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2040    const Function &F = MF.getFunction();
2041    return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2042  }
2043  
2044  /// Construct a string for the given reciprocal operation of the given type.
2045  /// This string should match the corresponding option to the front-end's
2046  /// "-mrecip" flag assuming those strings have been passed through in an
2047  /// attribute string. For example, "vec-divf" for a division of a vXf32.
2048  static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2049    std::string Name = VT.isVector() ? "vec-" : "";
2050  
2051    Name += IsSqrt ? "sqrt" : "div";
2052  
2053    // TODO: Handle other float types?
2054    if (VT.getScalarType() == MVT::f64) {
2055      Name += "d";
2056    } else if (VT.getScalarType() == MVT::f16) {
2057      Name += "h";
2058    } else {
2059      assert(VT.getScalarType() == MVT::f32 &&
2060             "Unexpected FP type for reciprocal estimate");
2061      Name += "f";
2062    }
2063  
2064    return Name;
2065  }
2066  
2067  /// Return the character position and value (a single numeric character) of a
2068  /// customized refinement operation in the input string if it exists. Return
2069  /// false if there is no customized refinement step count.
2070  static bool parseRefinementStep(StringRef In, size_t &Position,
2071                                  uint8_t &Value) {
2072    const char RefStepToken = ':';
2073    Position = In.find(RefStepToken);
2074    if (Position == StringRef::npos)
2075      return false;
2076  
2077    StringRef RefStepString = In.substr(Position + 1);
2078    // Allow exactly one numeric character for the additional refinement
2079    // step parameter.
2080    if (RefStepString.size() == 1) {
2081      char RefStepChar = RefStepString[0];
2082      if (isDigit(RefStepChar)) {
2083        Value = RefStepChar - '0';
2084        return true;
2085      }
2086    }
2087    report_fatal_error("Invalid refinement step for -recip.");
2088  }
2089  
2090  /// For the input attribute string, return one of the ReciprocalEstimate enum
2091  /// status values (enabled, disabled, or not specified) for this operation on
2092  /// the specified data type.
2093  static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2094    if (Override.empty())
2095      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2096  
2097    SmallVector<StringRef, 4> OverrideVector;
2098    Override.split(OverrideVector, ',');
2099    unsigned NumArgs = OverrideVector.size();
2100  
2101    // Check if "all", "none", or "default" was specified.
2102    if (NumArgs == 1) {
2103      // Look for an optional setting of the number of refinement steps needed
2104      // for this type of reciprocal operation.
2105      size_t RefPos;
2106      uint8_t RefSteps;
2107      if (parseRefinementStep(Override, RefPos, RefSteps)) {
2108        // Split the string for further processing.
2109        Override = Override.substr(0, RefPos);
2110      }
2111  
2112      // All reciprocal types are enabled.
2113      if (Override == "all")
2114        return TargetLoweringBase::ReciprocalEstimate::Enabled;
2115  
2116      // All reciprocal types are disabled.
2117      if (Override == "none")
2118        return TargetLoweringBase::ReciprocalEstimate::Disabled;
2119  
2120      // Target defaults for enablement are used.
2121      if (Override == "default")
2122        return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2123    }
2124  
2125    // The attribute string may omit the size suffix ('f'/'d').
2126    std::string VTName = getReciprocalOpName(IsSqrt, VT);
2127    std::string VTNameNoSize = VTName;
2128    VTNameNoSize.pop_back();
2129    static const char DisabledPrefix = '!';
2130  
2131    for (StringRef RecipType : OverrideVector) {
2132      size_t RefPos;
2133      uint8_t RefSteps;
2134      if (parseRefinementStep(RecipType, RefPos, RefSteps))
2135        RecipType = RecipType.substr(0, RefPos);
2136  
2137      // Ignore the disablement token for string matching.
2138      bool IsDisabled = RecipType[0] == DisabledPrefix;
2139      if (IsDisabled)
2140        RecipType = RecipType.substr(1);
2141  
2142      if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2143        return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2144                          : TargetLoweringBase::ReciprocalEstimate::Enabled;
2145    }
2146  
2147    return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2148  }
2149  
2150  /// For the input attribute string, return the customized refinement step count
2151  /// for this operation on the specified data type. If the step count does not
2152  /// exist, return the ReciprocalEstimate enum value for unspecified.
2153  static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2154    if (Override.empty())
2155      return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2156  
2157    SmallVector<StringRef, 4> OverrideVector;
2158    Override.split(OverrideVector, ',');
2159    unsigned NumArgs = OverrideVector.size();
2160  
2161    // Check if "all", "default", or "none" was specified.
2162    if (NumArgs == 1) {
2163      // Look for an optional setting of the number of refinement steps needed
2164      // for this type of reciprocal operation.
2165      size_t RefPos;
2166      uint8_t RefSteps;
2167      if (!parseRefinementStep(Override, RefPos, RefSteps))
2168        return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2169  
2170      // Split the string for further processing.
2171      Override = Override.substr(0, RefPos);
2172      assert(Override != "none" &&
2173             "Disabled reciprocals, but specifed refinement steps?");
2174  
2175      // If this is a general override, return the specified number of steps.
2176      if (Override == "all" || Override == "default")
2177        return RefSteps;
2178    }
2179  
2180    // The attribute string may omit the size suffix ('f'/'d').
2181    std::string VTName = getReciprocalOpName(IsSqrt, VT);
2182    std::string VTNameNoSize = VTName;
2183    VTNameNoSize.pop_back();
2184  
2185    for (StringRef RecipType : OverrideVector) {
2186      size_t RefPos;
2187      uint8_t RefSteps;
2188      if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2189        continue;
2190  
2191      RecipType = RecipType.substr(0, RefPos);
2192      if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2193        return RefSteps;
2194    }
2195  
2196    return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2197  }
2198  
2199  int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2200                                                      MachineFunction &MF) const {
2201    return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2202  }
2203  
2204  int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2205                                                     MachineFunction &MF) const {
2206    return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2207  }
2208  
2209  int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2210                                                 MachineFunction &MF) const {
2211    return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2212  }
2213  
2214  int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2215                                                MachineFunction &MF) const {
2216    return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2217  }
2218  
2219  bool TargetLoweringBase::isLoadBitCastBeneficial(
2220      EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2221      const MachineMemOperand &MMO) const {
2222    // Single-element vectors are scalarized, so we should generally avoid having
2223    // any memory operations on such types, as they would get scalarized too.
2224    if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2225        BitcastVT.getVectorNumElements() == 1)
2226      return false;
2227  
2228    // Don't do if we could do an indexed load on the original type, but not on
2229    // the new one.
2230    if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2231      return true;
2232  
2233    MVT LoadMVT = LoadVT.getSimpleVT();
2234  
2235    // Don't bother doing this if it's just going to be promoted again later, as
2236    // doing so might interfere with other combines.
2237    if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2238        getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2239      return false;
2240  
2241    unsigned Fast = 0;
2242    return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2243                              MMO, &Fast) &&
2244           Fast;
2245  }
2246  
2247  void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2248    MF.getRegInfo().freezeReservedRegs(MF);
2249  }
2250  
2251  MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2252      const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2253      const TargetLibraryInfo *LibInfo) const {
2254    MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2255    if (LI.isVolatile())
2256      Flags |= MachineMemOperand::MOVolatile;
2257  
2258    if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2259      Flags |= MachineMemOperand::MONonTemporal;
2260  
2261    if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2262      Flags |= MachineMemOperand::MOInvariant;
2263  
2264    if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2265                                           LI.getAlign(), DL, &LI, AC,
2266                                           /*DT=*/nullptr, LibInfo))
2267      Flags |= MachineMemOperand::MODereferenceable;
2268  
2269    Flags |= getTargetMMOFlags(LI);
2270    return Flags;
2271  }
2272  
2273  MachineMemOperand::Flags
2274  TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2275                                              const DataLayout &DL) const {
2276    MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2277  
2278    if (SI.isVolatile())
2279      Flags |= MachineMemOperand::MOVolatile;
2280  
2281    if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2282      Flags |= MachineMemOperand::MONonTemporal;
2283  
2284    // FIXME: Not preserving dereferenceable
2285    Flags |= getTargetMMOFlags(SI);
2286    return Flags;
2287  }
2288  
2289  MachineMemOperand::Flags
2290  TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2291                                               const DataLayout &DL) const {
2292    auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2293  
2294    if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2295      if (RMW->isVolatile())
2296        Flags |= MachineMemOperand::MOVolatile;
2297    } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2298      if (CmpX->isVolatile())
2299        Flags |= MachineMemOperand::MOVolatile;
2300    } else
2301      llvm_unreachable("not an atomic instruction");
2302  
2303    // FIXME: Not preserving dereferenceable
2304    Flags |= getTargetMMOFlags(AI);
2305    return Flags;
2306  }
2307  
2308  Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2309                                                    Instruction *Inst,
2310                                                    AtomicOrdering Ord) const {
2311    if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2312      return Builder.CreateFence(Ord);
2313    else
2314      return nullptr;
2315  }
2316  
2317  Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2318                                                     Instruction *Inst,
2319                                                     AtomicOrdering Ord) const {
2320    if (isAcquireOrStronger(Ord))
2321      return Builder.CreateFence(Ord);
2322    else
2323      return nullptr;
2324  }
2325  
2326  //===----------------------------------------------------------------------===//
2327  //  GlobalISel Hooks
2328  //===----------------------------------------------------------------------===//
2329  
2330  bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2331                                          const TargetTransformInfo *TTI) const {
2332    auto &MF = *MI.getMF();
2333    auto &MRI = MF.getRegInfo();
2334    // Assuming a spill and reload of a value has a cost of 1 instruction each,
2335    // this helper function computes the maximum number of uses we should consider
2336    // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2337    // break even in terms of code size when the original MI has 2 users vs
2338    // choosing to potentially spill. Any more than 2 users we we have a net code
2339    // size increase. This doesn't take into account register pressure though.
2340    auto maxUses = [](unsigned RematCost) {
2341      // A cost of 1 means remats are basically free.
2342      if (RematCost == 1)
2343        return std::numeric_limits<unsigned>::max();
2344      if (RematCost == 2)
2345        return 2U;
2346  
2347      // Remat is too expensive, only sink if there's one user.
2348      if (RematCost > 2)
2349        return 1U;
2350      llvm_unreachable("Unexpected remat cost");
2351    };
2352  
2353    switch (MI.getOpcode()) {
2354    default:
2355      return false;
2356    // Constants-like instructions should be close to their users.
2357    // We don't want long live-ranges for them.
2358    case TargetOpcode::G_CONSTANT:
2359    case TargetOpcode::G_FCONSTANT:
2360    case TargetOpcode::G_FRAME_INDEX:
2361    case TargetOpcode::G_INTTOPTR:
2362      return true;
2363    case TargetOpcode::G_GLOBAL_VALUE: {
2364      unsigned RematCost = TTI->getGISelRematGlobalCost();
2365      Register Reg = MI.getOperand(0).getReg();
2366      unsigned MaxUses = maxUses(RematCost);
2367      if (MaxUses == UINT_MAX)
2368        return true; // Remats are "free" so always localize.
2369      return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2370    }
2371    }
2372  }
2373