1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLoweringBase class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/BitVector.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/ISDOpcodes.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RuntimeLibcalls.h" 31 #include "llvm/CodeGen/StackMaps.h" 32 #include "llvm/CodeGen/TargetLowering.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/ValueTypes.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalValue.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MachineValueType.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstddef> 57 #include <cstdint> 58 #include <cstring> 59 #include <iterator> 60 #include <string> 61 #include <tuple> 62 #include <utility> 63 64 using namespace llvm; 65 66 static cl::opt<bool> JumpIsExpensiveOverride( 67 "jump-is-expensive", cl::init(false), 68 cl::desc("Do not create extra branches to split comparison logic."), 69 cl::Hidden); 70 71 static cl::opt<unsigned> MinimumJumpTableEntries 72 ("min-jump-table-entries", cl::init(4), cl::Hidden, 73 cl::desc("Set minimum number of entries to use a jump table.")); 74 75 static cl::opt<unsigned> MaximumJumpTableSize 76 ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 77 cl::desc("Set maximum size of jump tables.")); 78 79 /// Minimum jump table density for normal functions. 80 static cl::opt<unsigned> 81 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 82 cl::desc("Minimum density for building a jump table in " 83 "a normal function")); 84 85 /// Minimum jump table density for -Os or -Oz functions. 86 static cl::opt<unsigned> OptsizeJumpTableDensity( 87 "optsize-jump-table-density", cl::init(40), cl::Hidden, 88 cl::desc("Minimum density for building a jump table in " 89 "an optsize function")); 90 91 // FIXME: This option is only to test if the strict fp operation processed 92 // correctly by preventing mutating strict fp operation to normal fp operation 93 // during development. When the backend supports strict float operation, this 94 // option will be meaningless. 95 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation", 96 cl::desc("Don't mutate strict-float node to a legalize node"), 97 cl::init(false), cl::Hidden); 98 99 static bool darwinHasSinCos(const Triple &TT) { 100 assert(TT.isOSDarwin() && "should be called with darwin triple"); 101 // Don't bother with 32 bit x86. 102 if (TT.getArch() == Triple::x86) 103 return false; 104 // Macos < 10.9 has no sincos_stret. 105 if (TT.isMacOSX()) 106 return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 107 // iOS < 7.0 has no sincos_stret. 108 if (TT.isiOS()) 109 return !TT.isOSVersionLT(7, 0); 110 // Any other darwin such as WatchOS/TvOS is new enough. 111 return true; 112 } 113 114 // Although this default value is arbitrary, it is not random. It is assumed 115 // that a condition that evaluates the same way by a higher percentage than this 116 // is best represented as control flow. Therefore, the default value N should be 117 // set such that the win from N% correct executions is greater than the loss 118 // from (100 - N)% mispredicted executions for the majority of intended targets. 119 static cl::opt<int> MinPercentageForPredictableBranch( 120 "min-predictable-branch", cl::init(99), 121 cl::desc("Minimum percentage (0-100) that a condition must be either true " 122 "or false to assume that the condition is predictable"), 123 cl::Hidden); 124 125 void TargetLoweringBase::InitLibcalls(const Triple &TT) { 126 #define HANDLE_LIBCALL(code, name) \ 127 setLibcallName(RTLIB::code, name); 128 #include "llvm/IR/RuntimeLibcalls.def" 129 #undef HANDLE_LIBCALL 130 // Initialize calling conventions to their default. 131 for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 132 setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 133 134 // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 135 if (TT.getArch() == Triple::ppc || TT.isPPC64()) { 136 setLibcallName(RTLIB::ADD_F128, "__addkf3"); 137 setLibcallName(RTLIB::SUB_F128, "__subkf3"); 138 setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 139 setLibcallName(RTLIB::DIV_F128, "__divkf3"); 140 setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 141 setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 142 setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 143 setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 144 setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 145 setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 146 setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 147 setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 148 setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 149 setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 150 setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 151 setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 152 setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 153 setLibcallName(RTLIB::UNE_F128, "__nekf2"); 154 setLibcallName(RTLIB::OGE_F128, "__gekf2"); 155 setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 156 setLibcallName(RTLIB::OLE_F128, "__lekf2"); 157 setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 158 setLibcallName(RTLIB::UO_F128, "__unordkf2"); 159 } 160 161 // A few names are different on particular architectures or environments. 162 if (TT.isOSDarwin()) { 163 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 164 // of the gnueabi-style __gnu_*_ieee. 165 // FIXME: What about other targets? 166 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 167 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 168 169 // Some darwins have an optimized __bzero/bzero function. 170 switch (TT.getArch()) { 171 case Triple::x86: 172 case Triple::x86_64: 173 if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 174 setLibcallName(RTLIB::BZERO, "__bzero"); 175 break; 176 case Triple::aarch64: 177 case Triple::aarch64_32: 178 setLibcallName(RTLIB::BZERO, "bzero"); 179 break; 180 default: 181 break; 182 } 183 184 if (darwinHasSinCos(TT)) { 185 setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 186 setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 187 if (TT.isWatchABI()) { 188 setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 189 CallingConv::ARM_AAPCS_VFP); 190 setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 191 CallingConv::ARM_AAPCS_VFP); 192 } 193 } 194 } else { 195 setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 196 setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 197 } 198 199 if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 200 (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 201 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 202 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 203 setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 204 setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 205 setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 206 } 207 208 if (TT.isPS4CPU()) { 209 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 210 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 211 } 212 213 if (TT.isOSOpenBSD()) { 214 setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 215 } 216 } 217 218 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 219 /// UNKNOWN_LIBCALL if there is none. 220 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 221 if (OpVT == MVT::f16) { 222 if (RetVT == MVT::f32) 223 return FPEXT_F16_F32; 224 } else if (OpVT == MVT::f32) { 225 if (RetVT == MVT::f64) 226 return FPEXT_F32_F64; 227 if (RetVT == MVT::f128) 228 return FPEXT_F32_F128; 229 if (RetVT == MVT::ppcf128) 230 return FPEXT_F32_PPCF128; 231 } else if (OpVT == MVT::f64) { 232 if (RetVT == MVT::f128) 233 return FPEXT_F64_F128; 234 else if (RetVT == MVT::ppcf128) 235 return FPEXT_F64_PPCF128; 236 } else if (OpVT == MVT::f80) { 237 if (RetVT == MVT::f128) 238 return FPEXT_F80_F128; 239 } 240 241 return UNKNOWN_LIBCALL; 242 } 243 244 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 245 /// UNKNOWN_LIBCALL if there is none. 246 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 247 if (RetVT == MVT::f16) { 248 if (OpVT == MVT::f32) 249 return FPROUND_F32_F16; 250 if (OpVT == MVT::f64) 251 return FPROUND_F64_F16; 252 if (OpVT == MVT::f80) 253 return FPROUND_F80_F16; 254 if (OpVT == MVT::f128) 255 return FPROUND_F128_F16; 256 if (OpVT == MVT::ppcf128) 257 return FPROUND_PPCF128_F16; 258 } else if (RetVT == MVT::f32) { 259 if (OpVT == MVT::f64) 260 return FPROUND_F64_F32; 261 if (OpVT == MVT::f80) 262 return FPROUND_F80_F32; 263 if (OpVT == MVT::f128) 264 return FPROUND_F128_F32; 265 if (OpVT == MVT::ppcf128) 266 return FPROUND_PPCF128_F32; 267 } else if (RetVT == MVT::f64) { 268 if (OpVT == MVT::f80) 269 return FPROUND_F80_F64; 270 if (OpVT == MVT::f128) 271 return FPROUND_F128_F64; 272 if (OpVT == MVT::ppcf128) 273 return FPROUND_PPCF128_F64; 274 } else if (RetVT == MVT::f80) { 275 if (OpVT == MVT::f128) 276 return FPROUND_F128_F80; 277 } 278 279 return UNKNOWN_LIBCALL; 280 } 281 282 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 283 /// UNKNOWN_LIBCALL if there is none. 284 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 285 if (OpVT == MVT::f32) { 286 if (RetVT == MVT::i32) 287 return FPTOSINT_F32_I32; 288 if (RetVT == MVT::i64) 289 return FPTOSINT_F32_I64; 290 if (RetVT == MVT::i128) 291 return FPTOSINT_F32_I128; 292 } else if (OpVT == MVT::f64) { 293 if (RetVT == MVT::i32) 294 return FPTOSINT_F64_I32; 295 if (RetVT == MVT::i64) 296 return FPTOSINT_F64_I64; 297 if (RetVT == MVT::i128) 298 return FPTOSINT_F64_I128; 299 } else if (OpVT == MVT::f80) { 300 if (RetVT == MVT::i32) 301 return FPTOSINT_F80_I32; 302 if (RetVT == MVT::i64) 303 return FPTOSINT_F80_I64; 304 if (RetVT == MVT::i128) 305 return FPTOSINT_F80_I128; 306 } else if (OpVT == MVT::f128) { 307 if (RetVT == MVT::i32) 308 return FPTOSINT_F128_I32; 309 if (RetVT == MVT::i64) 310 return FPTOSINT_F128_I64; 311 if (RetVT == MVT::i128) 312 return FPTOSINT_F128_I128; 313 } else if (OpVT == MVT::ppcf128) { 314 if (RetVT == MVT::i32) 315 return FPTOSINT_PPCF128_I32; 316 if (RetVT == MVT::i64) 317 return FPTOSINT_PPCF128_I64; 318 if (RetVT == MVT::i128) 319 return FPTOSINT_PPCF128_I128; 320 } 321 return UNKNOWN_LIBCALL; 322 } 323 324 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 325 /// UNKNOWN_LIBCALL if there is none. 326 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 327 if (OpVT == MVT::f32) { 328 if (RetVT == MVT::i32) 329 return FPTOUINT_F32_I32; 330 if (RetVT == MVT::i64) 331 return FPTOUINT_F32_I64; 332 if (RetVT == MVT::i128) 333 return FPTOUINT_F32_I128; 334 } else if (OpVT == MVT::f64) { 335 if (RetVT == MVT::i32) 336 return FPTOUINT_F64_I32; 337 if (RetVT == MVT::i64) 338 return FPTOUINT_F64_I64; 339 if (RetVT == MVT::i128) 340 return FPTOUINT_F64_I128; 341 } else if (OpVT == MVT::f80) { 342 if (RetVT == MVT::i32) 343 return FPTOUINT_F80_I32; 344 if (RetVT == MVT::i64) 345 return FPTOUINT_F80_I64; 346 if (RetVT == MVT::i128) 347 return FPTOUINT_F80_I128; 348 } else if (OpVT == MVT::f128) { 349 if (RetVT == MVT::i32) 350 return FPTOUINT_F128_I32; 351 if (RetVT == MVT::i64) 352 return FPTOUINT_F128_I64; 353 if (RetVT == MVT::i128) 354 return FPTOUINT_F128_I128; 355 } else if (OpVT == MVT::ppcf128) { 356 if (RetVT == MVT::i32) 357 return FPTOUINT_PPCF128_I32; 358 if (RetVT == MVT::i64) 359 return FPTOUINT_PPCF128_I64; 360 if (RetVT == MVT::i128) 361 return FPTOUINT_PPCF128_I128; 362 } 363 return UNKNOWN_LIBCALL; 364 } 365 366 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 367 /// UNKNOWN_LIBCALL if there is none. 368 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 369 if (OpVT == MVT::i32) { 370 if (RetVT == MVT::f32) 371 return SINTTOFP_I32_F32; 372 if (RetVT == MVT::f64) 373 return SINTTOFP_I32_F64; 374 if (RetVT == MVT::f80) 375 return SINTTOFP_I32_F80; 376 if (RetVT == MVT::f128) 377 return SINTTOFP_I32_F128; 378 if (RetVT == MVT::ppcf128) 379 return SINTTOFP_I32_PPCF128; 380 } else if (OpVT == MVT::i64) { 381 if (RetVT == MVT::f32) 382 return SINTTOFP_I64_F32; 383 if (RetVT == MVT::f64) 384 return SINTTOFP_I64_F64; 385 if (RetVT == MVT::f80) 386 return SINTTOFP_I64_F80; 387 if (RetVT == MVT::f128) 388 return SINTTOFP_I64_F128; 389 if (RetVT == MVT::ppcf128) 390 return SINTTOFP_I64_PPCF128; 391 } else if (OpVT == MVT::i128) { 392 if (RetVT == MVT::f32) 393 return SINTTOFP_I128_F32; 394 if (RetVT == MVT::f64) 395 return SINTTOFP_I128_F64; 396 if (RetVT == MVT::f80) 397 return SINTTOFP_I128_F80; 398 if (RetVT == MVT::f128) 399 return SINTTOFP_I128_F128; 400 if (RetVT == MVT::ppcf128) 401 return SINTTOFP_I128_PPCF128; 402 } 403 return UNKNOWN_LIBCALL; 404 } 405 406 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 407 /// UNKNOWN_LIBCALL if there is none. 408 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 409 if (OpVT == MVT::i32) { 410 if (RetVT == MVT::f32) 411 return UINTTOFP_I32_F32; 412 if (RetVT == MVT::f64) 413 return UINTTOFP_I32_F64; 414 if (RetVT == MVT::f80) 415 return UINTTOFP_I32_F80; 416 if (RetVT == MVT::f128) 417 return UINTTOFP_I32_F128; 418 if (RetVT == MVT::ppcf128) 419 return UINTTOFP_I32_PPCF128; 420 } else if (OpVT == MVT::i64) { 421 if (RetVT == MVT::f32) 422 return UINTTOFP_I64_F32; 423 if (RetVT == MVT::f64) 424 return UINTTOFP_I64_F64; 425 if (RetVT == MVT::f80) 426 return UINTTOFP_I64_F80; 427 if (RetVT == MVT::f128) 428 return UINTTOFP_I64_F128; 429 if (RetVT == MVT::ppcf128) 430 return UINTTOFP_I64_PPCF128; 431 } else if (OpVT == MVT::i128) { 432 if (RetVT == MVT::f32) 433 return UINTTOFP_I128_F32; 434 if (RetVT == MVT::f64) 435 return UINTTOFP_I128_F64; 436 if (RetVT == MVT::f80) 437 return UINTTOFP_I128_F80; 438 if (RetVT == MVT::f128) 439 return UINTTOFP_I128_F128; 440 if (RetVT == MVT::ppcf128) 441 return UINTTOFP_I128_PPCF128; 442 } 443 return UNKNOWN_LIBCALL; 444 } 445 446 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 447 #define OP_TO_LIBCALL(Name, Enum) \ 448 case Name: \ 449 switch (VT.SimpleTy) { \ 450 default: \ 451 return UNKNOWN_LIBCALL; \ 452 case MVT::i8: \ 453 return Enum##_1; \ 454 case MVT::i16: \ 455 return Enum##_2; \ 456 case MVT::i32: \ 457 return Enum##_4; \ 458 case MVT::i64: \ 459 return Enum##_8; \ 460 case MVT::i128: \ 461 return Enum##_16; \ 462 } 463 464 switch (Opc) { 465 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 466 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 467 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 468 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 469 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 470 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 471 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 472 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 473 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 474 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 475 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 476 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 477 } 478 479 #undef OP_TO_LIBCALL 480 481 return UNKNOWN_LIBCALL; 482 } 483 484 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 485 switch (ElementSize) { 486 case 1: 487 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 488 case 2: 489 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 490 case 4: 491 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 492 case 8: 493 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 494 case 16: 495 return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 496 default: 497 return UNKNOWN_LIBCALL; 498 } 499 } 500 501 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 502 switch (ElementSize) { 503 case 1: 504 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 505 case 2: 506 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 507 case 4: 508 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 509 case 8: 510 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 511 case 16: 512 return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 513 default: 514 return UNKNOWN_LIBCALL; 515 } 516 } 517 518 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 519 switch (ElementSize) { 520 case 1: 521 return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 522 case 2: 523 return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 524 case 4: 525 return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 526 case 8: 527 return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 528 case 16: 529 return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 530 default: 531 return UNKNOWN_LIBCALL; 532 } 533 } 534 535 /// InitCmpLibcallCCs - Set default comparison libcall CC. 536 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 537 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 538 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 539 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 540 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 541 CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 542 CCs[RTLIB::UNE_F32] = ISD::SETNE; 543 CCs[RTLIB::UNE_F64] = ISD::SETNE; 544 CCs[RTLIB::UNE_F128] = ISD::SETNE; 545 CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 546 CCs[RTLIB::OGE_F32] = ISD::SETGE; 547 CCs[RTLIB::OGE_F64] = ISD::SETGE; 548 CCs[RTLIB::OGE_F128] = ISD::SETGE; 549 CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 550 CCs[RTLIB::OLT_F32] = ISD::SETLT; 551 CCs[RTLIB::OLT_F64] = ISD::SETLT; 552 CCs[RTLIB::OLT_F128] = ISD::SETLT; 553 CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 554 CCs[RTLIB::OLE_F32] = ISD::SETLE; 555 CCs[RTLIB::OLE_F64] = ISD::SETLE; 556 CCs[RTLIB::OLE_F128] = ISD::SETLE; 557 CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 558 CCs[RTLIB::OGT_F32] = ISD::SETGT; 559 CCs[RTLIB::OGT_F64] = ISD::SETGT; 560 CCs[RTLIB::OGT_F128] = ISD::SETGT; 561 CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 562 CCs[RTLIB::UO_F32] = ISD::SETNE; 563 CCs[RTLIB::UO_F64] = ISD::SETNE; 564 CCs[RTLIB::UO_F128] = ISD::SETNE; 565 CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 566 } 567 568 /// NOTE: The TargetMachine owns TLOF. 569 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 570 initActions(); 571 572 // Perform these initializations only once. 573 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 574 MaxLoadsPerMemcmp = 8; 575 MaxGluedStoresPerMemcpy = 0; 576 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 577 MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 578 HasMultipleConditionRegisters = false; 579 HasExtractBitsInsn = false; 580 JumpIsExpensive = JumpIsExpensiveOverride; 581 PredictableSelectIsExpensive = false; 582 EnableExtLdPromotion = false; 583 StackPointerRegisterToSaveRestore = 0; 584 BooleanContents = UndefinedBooleanContent; 585 BooleanFloatContents = UndefinedBooleanContent; 586 BooleanVectorContents = UndefinedBooleanContent; 587 SchedPreferenceInfo = Sched::ILP; 588 GatherAllAliasesMaxDepth = 18; 589 IsStrictFPEnabled = DisableStrictNodeMutation; 590 // TODO: the default will be switched to 0 in the next commit, along 591 // with the Target-specific changes necessary. 592 MaxAtomicSizeInBitsSupported = 1024; 593 594 MinCmpXchgSizeInBits = 0; 595 SupportsUnalignedAtomics = false; 596 597 std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 598 599 InitLibcalls(TM.getTargetTriple()); 600 InitCmpLibcallCCs(CmpLibcallCCs); 601 } 602 603 void TargetLoweringBase::initActions() { 604 // All operations default to being supported. 605 memset(OpActions, 0, sizeof(OpActions)); 606 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 607 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 608 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 609 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 610 std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 611 std::fill(std::begin(TargetDAGCombineArray), 612 std::end(TargetDAGCombineArray), 0); 613 614 for (MVT VT : MVT::fp_valuetypes()) { 615 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 616 if (IntVT.isValid()) { 617 setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 618 AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 619 } 620 } 621 622 // Set default actions for various operations. 623 for (MVT VT : MVT::all_valuetypes()) { 624 // Default all indexed load / store to expand. 625 for (unsigned IM = (unsigned)ISD::PRE_INC; 626 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 627 setIndexedLoadAction(IM, VT, Expand); 628 setIndexedStoreAction(IM, VT, Expand); 629 setIndexedMaskedLoadAction(IM, VT, Expand); 630 setIndexedMaskedStoreAction(IM, VT, Expand); 631 } 632 633 // Most backends expect to see the node which just returns the value loaded. 634 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 635 636 // These operations default to expand. 637 setOperationAction(ISD::FGETSIGN, VT, Expand); 638 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 639 setOperationAction(ISD::FMINNUM, VT, Expand); 640 setOperationAction(ISD::FMAXNUM, VT, Expand); 641 setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); 642 setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); 643 setOperationAction(ISD::FMINIMUM, VT, Expand); 644 setOperationAction(ISD::FMAXIMUM, VT, Expand); 645 setOperationAction(ISD::FMAD, VT, Expand); 646 setOperationAction(ISD::SMIN, VT, Expand); 647 setOperationAction(ISD::SMAX, VT, Expand); 648 setOperationAction(ISD::UMIN, VT, Expand); 649 setOperationAction(ISD::UMAX, VT, Expand); 650 setOperationAction(ISD::ABS, VT, Expand); 651 setOperationAction(ISD::FSHL, VT, Expand); 652 setOperationAction(ISD::FSHR, VT, Expand); 653 setOperationAction(ISD::SADDSAT, VT, Expand); 654 setOperationAction(ISD::UADDSAT, VT, Expand); 655 setOperationAction(ISD::SSUBSAT, VT, Expand); 656 setOperationAction(ISD::USUBSAT, VT, Expand); 657 setOperationAction(ISD::SMULFIX, VT, Expand); 658 setOperationAction(ISD::SMULFIXSAT, VT, Expand); 659 setOperationAction(ISD::UMULFIX, VT, Expand); 660 setOperationAction(ISD::UMULFIXSAT, VT, Expand); 661 setOperationAction(ISD::SDIVFIX, VT, Expand); 662 setOperationAction(ISD::UDIVFIX, VT, Expand); 663 664 // Overflow operations default to expand 665 setOperationAction(ISD::SADDO, VT, Expand); 666 setOperationAction(ISD::SSUBO, VT, Expand); 667 setOperationAction(ISD::UADDO, VT, Expand); 668 setOperationAction(ISD::USUBO, VT, Expand); 669 setOperationAction(ISD::SMULO, VT, Expand); 670 setOperationAction(ISD::UMULO, VT, Expand); 671 672 // ADDCARRY operations default to expand 673 setOperationAction(ISD::ADDCARRY, VT, Expand); 674 setOperationAction(ISD::SUBCARRY, VT, Expand); 675 setOperationAction(ISD::SETCCCARRY, VT, Expand); 676 677 // ADDC/ADDE/SUBC/SUBE default to expand. 678 setOperationAction(ISD::ADDC, VT, Expand); 679 setOperationAction(ISD::ADDE, VT, Expand); 680 setOperationAction(ISD::SUBC, VT, Expand); 681 setOperationAction(ISD::SUBE, VT, Expand); 682 683 // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 684 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 685 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 686 687 setOperationAction(ISD::BITREVERSE, VT, Expand); 688 689 // These library functions default to expand. 690 setOperationAction(ISD::FROUND, VT, Expand); 691 setOperationAction(ISD::FPOWI, VT, Expand); 692 693 // These operations default to expand for vector types. 694 if (VT.isVector()) { 695 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 696 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 697 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 698 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 699 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 700 setOperationAction(ISD::SPLAT_VECTOR, VT, Expand); 701 } 702 703 // Constrained floating-point operations default to expand. 704 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 705 setOperationAction(ISD::STRICT_##DAGN, VT, Expand); 706 #include "llvm/IR/ConstrainedOps.def" 707 708 // For most targets @llvm.get.dynamic.area.offset just returns 0. 709 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 710 711 // Vector reduction default to expand. 712 setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); 713 setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); 714 setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); 715 setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); 716 setOperationAction(ISD::VECREDUCE_AND, VT, Expand); 717 setOperationAction(ISD::VECREDUCE_OR, VT, Expand); 718 setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); 719 setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); 720 setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); 721 setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); 722 setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); 723 setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); 724 setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); 725 } 726 727 // Most targets ignore the @llvm.prefetch intrinsic. 728 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 729 730 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 731 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 732 733 // ConstantFP nodes default to expand. Targets can either change this to 734 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 735 // to optimize expansions for certain constants. 736 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 737 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 738 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 739 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 740 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 741 742 // These library functions default to expand. 743 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 744 setOperationAction(ISD::FCBRT, VT, Expand); 745 setOperationAction(ISD::FLOG , VT, Expand); 746 setOperationAction(ISD::FLOG2, VT, Expand); 747 setOperationAction(ISD::FLOG10, VT, Expand); 748 setOperationAction(ISD::FEXP , VT, Expand); 749 setOperationAction(ISD::FEXP2, VT, Expand); 750 setOperationAction(ISD::FFLOOR, VT, Expand); 751 setOperationAction(ISD::FNEARBYINT, VT, Expand); 752 setOperationAction(ISD::FCEIL, VT, Expand); 753 setOperationAction(ISD::FRINT, VT, Expand); 754 setOperationAction(ISD::FTRUNC, VT, Expand); 755 setOperationAction(ISD::FROUND, VT, Expand); 756 setOperationAction(ISD::LROUND, VT, Expand); 757 setOperationAction(ISD::LLROUND, VT, Expand); 758 setOperationAction(ISD::LRINT, VT, Expand); 759 setOperationAction(ISD::LLRINT, VT, Expand); 760 } 761 762 // Default ISD::TRAP to expand (which turns it into abort). 763 setOperationAction(ISD::TRAP, MVT::Other, Expand); 764 765 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 766 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 767 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 768 } 769 770 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 771 EVT) const { 772 return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 773 } 774 775 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 776 bool LegalTypes) const { 777 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 778 if (LHSTy.isVector()) 779 return LHSTy; 780 return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) 781 : getPointerTy(DL); 782 } 783 784 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 785 assert(isTypeLegal(VT)); 786 switch (Op) { 787 default: 788 return false; 789 case ISD::SDIV: 790 case ISD::UDIV: 791 case ISD::SREM: 792 case ISD::UREM: 793 return true; 794 } 795 } 796 797 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 798 // If the command-line option was specified, ignore this request. 799 if (!JumpIsExpensiveOverride.getNumOccurrences()) 800 JumpIsExpensive = isExpensive; 801 } 802 803 TargetLoweringBase::LegalizeKind 804 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 805 // If this is a simple type, use the ComputeRegisterProp mechanism. 806 if (VT.isSimple()) { 807 MVT SVT = VT.getSimpleVT(); 808 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 809 MVT NVT = TransformToType[SVT.SimpleTy]; 810 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 811 812 assert((LA == TypeLegal || LA == TypeSoftenFloat || 813 (NVT.isVector() || 814 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) && 815 "Promote may not follow Expand or Promote"); 816 817 if (LA == TypeSplitVector) 818 return LegalizeKind(LA, 819 EVT::getVectorVT(Context, SVT.getVectorElementType(), 820 SVT.getVectorNumElements() / 2)); 821 if (LA == TypeScalarizeVector) 822 return LegalizeKind(LA, SVT.getVectorElementType()); 823 return LegalizeKind(LA, NVT); 824 } 825 826 // Handle Extended Scalar Types. 827 if (!VT.isVector()) { 828 assert(VT.isInteger() && "Float types must be simple"); 829 unsigned BitSize = VT.getSizeInBits(); 830 // First promote to a power-of-two size, then expand if necessary. 831 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 832 EVT NVT = VT.getRoundIntegerType(Context); 833 assert(NVT != VT && "Unable to round integer VT"); 834 LegalizeKind NextStep = getTypeConversion(Context, NVT); 835 // Avoid multi-step promotion. 836 if (NextStep.first == TypePromoteInteger) 837 return NextStep; 838 // Return rounded integer type. 839 return LegalizeKind(TypePromoteInteger, NVT); 840 } 841 842 return LegalizeKind(TypeExpandInteger, 843 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 844 } 845 846 // Handle vector types. 847 unsigned NumElts = VT.getVectorNumElements(); 848 EVT EltVT = VT.getVectorElementType(); 849 850 // Vectors with only one element are always scalarized. 851 if (NumElts == 1) 852 return LegalizeKind(TypeScalarizeVector, EltVT); 853 854 // Try to widen vector elements until the element type is a power of two and 855 // promote it to a legal type later on, for example: 856 // <3 x i8> -> <4 x i8> -> <4 x i32> 857 if (EltVT.isInteger()) { 858 // Vectors with a number of elements that is not a power of two are always 859 // widened, for example <3 x i8> -> <4 x i8>. 860 if (!VT.isPow2VectorType()) { 861 NumElts = (unsigned)NextPowerOf2(NumElts); 862 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 863 return LegalizeKind(TypeWidenVector, NVT); 864 } 865 866 // Examine the element type. 867 LegalizeKind LK = getTypeConversion(Context, EltVT); 868 869 // If type is to be expanded, split the vector. 870 // <4 x i140> -> <2 x i140> 871 if (LK.first == TypeExpandInteger) 872 return LegalizeKind(TypeSplitVector, 873 EVT::getVectorVT(Context, EltVT, NumElts / 2)); 874 875 // Promote the integer element types until a legal vector type is found 876 // or until the element integer type is too big. If a legal type was not 877 // found, fallback to the usual mechanism of widening/splitting the 878 // vector. 879 EVT OldEltVT = EltVT; 880 while (true) { 881 // Increase the bitwidth of the element to the next pow-of-two 882 // (which is greater than 8 bits). 883 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 884 .getRoundIntegerType(Context); 885 886 // Stop trying when getting a non-simple element type. 887 // Note that vector elements may be greater than legal vector element 888 // types. Example: X86 XMM registers hold 64bit element on 32bit 889 // systems. 890 if (!EltVT.isSimple()) 891 break; 892 893 // Build a new vector type and check if it is legal. 894 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 895 // Found a legal promoted vector type. 896 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 897 return LegalizeKind(TypePromoteInteger, 898 EVT::getVectorVT(Context, EltVT, NumElts)); 899 } 900 901 // Reset the type to the unexpanded type if we did not find a legal vector 902 // type with a promoted vector element type. 903 EltVT = OldEltVT; 904 } 905 906 // Try to widen the vector until a legal type is found. 907 // If there is no wider legal type, split the vector. 908 while (true) { 909 // Round up to the next power of 2. 910 NumElts = (unsigned)NextPowerOf2(NumElts); 911 912 // If there is no simple vector type with this many elements then there 913 // cannot be a larger legal vector type. Note that this assumes that 914 // there are no skipped intermediate vector types in the simple types. 915 if (!EltVT.isSimple()) 916 break; 917 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 918 if (LargerVector == MVT()) 919 break; 920 921 // If this type is legal then widen the vector. 922 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 923 return LegalizeKind(TypeWidenVector, LargerVector); 924 } 925 926 // Widen odd vectors to next power of two. 927 if (!VT.isPow2VectorType()) { 928 EVT NVT = VT.getPow2VectorType(Context); 929 return LegalizeKind(TypeWidenVector, NVT); 930 } 931 932 // Vectors with illegal element types are expanded. 933 EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); 934 return LegalizeKind(TypeSplitVector, NVT); 935 } 936 937 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 938 unsigned &NumIntermediates, 939 MVT &RegisterVT, 940 TargetLoweringBase *TLI) { 941 // Figure out the right, legal destination reg to copy into. 942 unsigned NumElts = VT.getVectorNumElements(); 943 MVT EltTy = VT.getVectorElementType(); 944 945 unsigned NumVectorRegs = 1; 946 947 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 948 // could break down into LHS/RHS like LegalizeDAG does. 949 if (!isPowerOf2_32(NumElts)) { 950 NumVectorRegs = NumElts; 951 NumElts = 1; 952 } 953 954 // Divide the input until we get to a supported size. This will always 955 // end with a scalar if the target doesn't support vectors. 956 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 957 NumElts >>= 1; 958 NumVectorRegs <<= 1; 959 } 960 961 NumIntermediates = NumVectorRegs; 962 963 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 964 if (!TLI->isTypeLegal(NewVT)) 965 NewVT = EltTy; 966 IntermediateVT = NewVT; 967 968 unsigned NewVTSize = NewVT.getSizeInBits(); 969 970 // Convert sizes such as i33 to i64. 971 if (!isPowerOf2_32(NewVTSize)) 972 NewVTSize = NextPowerOf2(NewVTSize); 973 974 MVT DestVT = TLI->getRegisterType(NewVT); 975 RegisterVT = DestVT; 976 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 977 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 978 979 // Otherwise, promotion or legal types use the same number of registers as 980 // the vector decimated to the appropriate level. 981 return NumVectorRegs; 982 } 983 984 /// isLegalRC - Return true if the value types that can be represented by the 985 /// specified register class are all legal. 986 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 987 const TargetRegisterClass &RC) const { 988 for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 989 if (isTypeLegal(*I)) 990 return true; 991 return false; 992 } 993 994 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 995 /// sequence of memory operands that is recognized by PrologEpilogInserter. 996 MachineBasicBlock * 997 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 998 MachineBasicBlock *MBB) const { 999 MachineInstr *MI = &InitialMI; 1000 MachineFunction &MF = *MI->getMF(); 1001 MachineFrameInfo &MFI = MF.getFrameInfo(); 1002 1003 // We're handling multiple types of operands here: 1004 // PATCHPOINT MetaArgs - live-in, read only, direct 1005 // STATEPOINT Deopt Spill - live-through, read only, indirect 1006 // STATEPOINT Deopt Alloca - live-through, read only, direct 1007 // (We're currently conservative and mark the deopt slots read/write in 1008 // practice.) 1009 // STATEPOINT GC Spill - live-through, read/write, indirect 1010 // STATEPOINT GC Alloca - live-through, read/write, direct 1011 // The live-in vs live-through is handled already (the live through ones are 1012 // all stack slots), but we need to handle the different type of stackmap 1013 // operands and memory effects here. 1014 1015 // MI changes inside this loop as we grow operands. 1016 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { 1017 MachineOperand &MO = MI->getOperand(OperIdx); 1018 if (!MO.isFI()) 1019 continue; 1020 1021 // foldMemoryOperand builds a new MI after replacing a single FI operand 1022 // with the canonical set of five x86 addressing-mode operands. 1023 int FI = MO.getIndex(); 1024 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1025 1026 // Copy operands before the frame-index. 1027 for (unsigned i = 0; i < OperIdx; ++i) 1028 MIB.add(MI->getOperand(i)); 1029 // Add frame index operands recognized by stackmaps.cpp 1030 if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1031 // indirect-mem-ref tag, size, #FI, offset. 1032 // Used for spills inserted by StatepointLowering. This codepath is not 1033 // used for patchpoints/stackmaps at all, for these spilling is done via 1034 // foldMemoryOperand callback only. 1035 assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1036 MIB.addImm(StackMaps::IndirectMemRefOp); 1037 MIB.addImm(MFI.getObjectSize(FI)); 1038 MIB.add(MI->getOperand(OperIdx)); 1039 MIB.addImm(0); 1040 } else { 1041 // direct-mem-ref tag, #FI, offset. 1042 // Used by patchpoint, and direct alloca arguments to statepoints 1043 MIB.addImm(StackMaps::DirectMemRefOp); 1044 MIB.add(MI->getOperand(OperIdx)); 1045 MIB.addImm(0); 1046 } 1047 // Copy the operands after the frame index. 1048 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) 1049 MIB.add(MI->getOperand(i)); 1050 1051 // Inherit previous memory operands. 1052 MIB.cloneMemRefs(*MI); 1053 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1054 1055 // Add a new memory operand for this FI. 1056 assert(MFI.getObjectOffset(FI) != -1); 1057 1058 // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1059 // PATCHPOINT should be updated to do the same. (TODO) 1060 if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1061 auto Flags = MachineMemOperand::MOLoad; 1062 MachineMemOperand *MMO = MF.getMachineMemOperand( 1063 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1064 MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); 1065 MIB->addMemOperand(MF, MMO); 1066 } 1067 1068 // Replace the instruction and update the operand index. 1069 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1070 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; 1071 MI->eraseFromParent(); 1072 MI = MIB; 1073 } 1074 return MBB; 1075 } 1076 1077 MachineBasicBlock * 1078 TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI, 1079 MachineBasicBlock *MBB) const { 1080 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL && 1081 "Called emitXRayCustomEvent on the wrong MI!"); 1082 auto &MF = *MI.getMF(); 1083 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 1084 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 1085 MIB.add(MI.getOperand(OpIdx)); 1086 1087 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1088 MI.eraseFromParent(); 1089 return MBB; 1090 } 1091 1092 MachineBasicBlock * 1093 TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI, 1094 MachineBasicBlock *MBB) const { 1095 assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL && 1096 "Called emitXRayTypedEvent on the wrong MI!"); 1097 auto &MF = *MI.getMF(); 1098 auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 1099 for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 1100 MIB.add(MI.getOperand(OpIdx)); 1101 1102 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1103 MI.eraseFromParent(); 1104 return MBB; 1105 } 1106 1107 /// findRepresentativeClass - Return the largest legal super-reg register class 1108 /// of the register class for the specified type and its associated "cost". 1109 // This function is in TargetLowering because it uses RegClassForVT which would 1110 // need to be moved to TargetRegisterInfo and would necessitate moving 1111 // isTypeLegal over as well - a massive change that would just require 1112 // TargetLowering having a TargetRegisterInfo class member that it would use. 1113 std::pair<const TargetRegisterClass *, uint8_t> 1114 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1115 MVT VT) const { 1116 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1117 if (!RC) 1118 return std::make_pair(RC, 0); 1119 1120 // Compute the set of all super-register classes. 1121 BitVector SuperRegRC(TRI->getNumRegClasses()); 1122 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1123 SuperRegRC.setBitsInMask(RCI.getMask()); 1124 1125 // Find the first legal register class with the largest spill size. 1126 const TargetRegisterClass *BestRC = RC; 1127 for (unsigned i : SuperRegRC.set_bits()) { 1128 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1129 // We want the largest possible spill size. 1130 if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1131 continue; 1132 if (!isLegalRC(*TRI, *SuperRC)) 1133 continue; 1134 BestRC = SuperRC; 1135 } 1136 return std::make_pair(BestRC, 1); 1137 } 1138 1139 /// computeRegisterProperties - Once all of the register classes are added, 1140 /// this allows us to compute derived properties we expose. 1141 void TargetLoweringBase::computeRegisterProperties( 1142 const TargetRegisterInfo *TRI) { 1143 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 1144 "Too many value types for ValueTypeActions to hold!"); 1145 1146 // Everything defaults to needing one register. 1147 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1148 NumRegistersForVT[i] = 1; 1149 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1150 } 1151 // ...except isVoid, which doesn't need any registers. 1152 NumRegistersForVT[MVT::isVoid] = 0; 1153 1154 // Find the largest integer register class. 1155 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1156 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1157 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1158 1159 // Every integer value type larger than this largest register takes twice as 1160 // many registers to represent as the previous ValueType. 1161 for (unsigned ExpandedReg = LargestIntReg + 1; 1162 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1163 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1164 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1165 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1166 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1167 TypeExpandInteger); 1168 } 1169 1170 // Inspect all of the ValueType's smaller than the largest integer 1171 // register to see which ones need promotion. 1172 unsigned LegalIntReg = LargestIntReg; 1173 for (unsigned IntReg = LargestIntReg - 1; 1174 IntReg >= (unsigned)MVT::i1; --IntReg) { 1175 MVT IVT = (MVT::SimpleValueType)IntReg; 1176 if (isTypeLegal(IVT)) { 1177 LegalIntReg = IntReg; 1178 } else { 1179 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1180 (MVT::SimpleValueType)LegalIntReg; 1181 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1182 } 1183 } 1184 1185 // ppcf128 type is really two f64's. 1186 if (!isTypeLegal(MVT::ppcf128)) { 1187 if (isTypeLegal(MVT::f64)) { 1188 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1189 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1190 TransformToType[MVT::ppcf128] = MVT::f64; 1191 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1192 } else { 1193 NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1194 RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1195 TransformToType[MVT::ppcf128] = MVT::i128; 1196 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1197 } 1198 } 1199 1200 // Decide how to handle f128. If the target does not have native f128 support, 1201 // expand it to i128 and we will be generating soft float library calls. 1202 if (!isTypeLegal(MVT::f128)) { 1203 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1204 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1205 TransformToType[MVT::f128] = MVT::i128; 1206 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1207 } 1208 1209 // Decide how to handle f64. If the target does not have native f64 support, 1210 // expand it to i64 and we will be generating soft float library calls. 1211 if (!isTypeLegal(MVT::f64)) { 1212 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1213 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1214 TransformToType[MVT::f64] = MVT::i64; 1215 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1216 } 1217 1218 // Decide how to handle f32. If the target does not have native f32 support, 1219 // expand it to i32 and we will be generating soft float library calls. 1220 if (!isTypeLegal(MVT::f32)) { 1221 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1222 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1223 TransformToType[MVT::f32] = MVT::i32; 1224 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1225 } 1226 1227 // Decide how to handle f16. If the target does not have native f16 support, 1228 // promote it to f32, because there are no f16 library calls (except for 1229 // conversions). 1230 if (!isTypeLegal(MVT::f16)) { 1231 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1232 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1233 TransformToType[MVT::f16] = MVT::f32; 1234 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1235 } 1236 1237 // Loop over all of the vector value types to see which need transformations. 1238 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1239 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1240 MVT VT = (MVT::SimpleValueType) i; 1241 if (isTypeLegal(VT)) 1242 continue; 1243 1244 MVT EltVT = VT.getVectorElementType(); 1245 unsigned NElts = VT.getVectorNumElements(); 1246 bool IsLegalWiderType = false; 1247 bool IsScalable = VT.isScalableVector(); 1248 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1249 switch (PreferredAction) { 1250 case TypePromoteInteger: { 1251 MVT::SimpleValueType EndVT = IsScalable ? 1252 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE : 1253 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE; 1254 // Try to promote the elements of integer vectors. If no legal 1255 // promotion was found, fall through to the widen-vector method. 1256 for (unsigned nVT = i + 1; 1257 (MVT::SimpleValueType)nVT <= EndVT; ++nVT) { 1258 MVT SVT = (MVT::SimpleValueType) nVT; 1259 // Promote vectors of integers to vectors with the same number 1260 // of elements, with a wider element type. 1261 if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && 1262 SVT.getVectorNumElements() == NElts && 1263 SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) { 1264 TransformToType[i] = SVT; 1265 RegisterTypeForVT[i] = SVT; 1266 NumRegistersForVT[i] = 1; 1267 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1268 IsLegalWiderType = true; 1269 break; 1270 } 1271 } 1272 if (IsLegalWiderType) 1273 break; 1274 LLVM_FALLTHROUGH; 1275 } 1276 1277 case TypeWidenVector: 1278 if (isPowerOf2_32(NElts)) { 1279 // Try to widen the vector. 1280 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1281 MVT SVT = (MVT::SimpleValueType) nVT; 1282 if (SVT.getVectorElementType() == EltVT 1283 && SVT.getVectorNumElements() > NElts 1284 && SVT.isScalableVector() == IsScalable && isTypeLegal(SVT)) { 1285 TransformToType[i] = SVT; 1286 RegisterTypeForVT[i] = SVT; 1287 NumRegistersForVT[i] = 1; 1288 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1289 IsLegalWiderType = true; 1290 break; 1291 } 1292 } 1293 if (IsLegalWiderType) 1294 break; 1295 } else { 1296 // Only widen to the next power of 2 to keep consistency with EVT. 1297 MVT NVT = VT.getPow2VectorType(); 1298 if (isTypeLegal(NVT)) { 1299 TransformToType[i] = NVT; 1300 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1301 RegisterTypeForVT[i] = NVT; 1302 NumRegistersForVT[i] = 1; 1303 break; 1304 } 1305 } 1306 LLVM_FALLTHROUGH; 1307 1308 case TypeSplitVector: 1309 case TypeScalarizeVector: { 1310 MVT IntermediateVT; 1311 MVT RegisterVT; 1312 unsigned NumIntermediates; 1313 unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1314 NumIntermediates, RegisterVT, this); 1315 NumRegistersForVT[i] = NumRegisters; 1316 assert(NumRegistersForVT[i] == NumRegisters && 1317 "NumRegistersForVT size cannot represent NumRegisters!"); 1318 RegisterTypeForVT[i] = RegisterVT; 1319 1320 MVT NVT = VT.getPow2VectorType(); 1321 if (NVT == VT) { 1322 // Type is already a power of 2. The default action is to split. 1323 TransformToType[i] = MVT::Other; 1324 if (PreferredAction == TypeScalarizeVector) 1325 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1326 else if (PreferredAction == TypeSplitVector) 1327 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1328 else 1329 // Set type action according to the number of elements. 1330 ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector 1331 : TypeSplitVector); 1332 } else { 1333 TransformToType[i] = NVT; 1334 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1335 } 1336 break; 1337 } 1338 default: 1339 llvm_unreachable("Unknown vector legalization action!"); 1340 } 1341 } 1342 1343 // Determine the 'representative' register class for each value type. 1344 // An representative register class is the largest (meaning one which is 1345 // not a sub-register class / subreg register class) legal register class for 1346 // a group of value types. For example, on i386, i8, i16, and i32 1347 // representative would be GR32; while on x86_64 it's GR64. 1348 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1349 const TargetRegisterClass* RRC; 1350 uint8_t Cost; 1351 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1352 RepRegClassForVT[i] = RRC; 1353 RepRegClassCostForVT[i] = Cost; 1354 } 1355 } 1356 1357 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1358 EVT VT) const { 1359 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1360 return getPointerTy(DL).SimpleTy; 1361 } 1362 1363 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1364 return MVT::i32; // return the default value 1365 } 1366 1367 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1368 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1369 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1370 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1371 /// 1372 /// This method returns the number of registers needed, and the VT for each 1373 /// register. It also returns the VT and quantity of the intermediate values 1374 /// before they are promoted/expanded. 1375 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1376 EVT &IntermediateVT, 1377 unsigned &NumIntermediates, 1378 MVT &RegisterVT) const { 1379 unsigned NumElts = VT.getVectorNumElements(); 1380 1381 // If there is a wider vector type with the same element type as this one, 1382 // or a promoted vector type that has the same number of elements which 1383 // are wider, then we should convert to that legal vector type. 1384 // This handles things like <2 x float> -> <4 x float> and 1385 // <4 x i1> -> <4 x i32>. 1386 LegalizeTypeAction TA = getTypeAction(Context, VT); 1387 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1388 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1389 if (isTypeLegal(RegisterEVT)) { 1390 IntermediateVT = RegisterEVT; 1391 RegisterVT = RegisterEVT.getSimpleVT(); 1392 NumIntermediates = 1; 1393 return 1; 1394 } 1395 } 1396 1397 // Figure out the right, legal destination reg to copy into. 1398 EVT EltTy = VT.getVectorElementType(); 1399 1400 unsigned NumVectorRegs = 1; 1401 1402 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1403 // could break down into LHS/RHS like LegalizeDAG does. 1404 if (!isPowerOf2_32(NumElts)) { 1405 NumVectorRegs = NumElts; 1406 NumElts = 1; 1407 } 1408 1409 // Divide the input until we get to a supported size. This will always 1410 // end with a scalar if the target doesn't support vectors. 1411 while (NumElts > 1 && !isTypeLegal( 1412 EVT::getVectorVT(Context, EltTy, NumElts))) { 1413 NumElts >>= 1; 1414 NumVectorRegs <<= 1; 1415 } 1416 1417 NumIntermediates = NumVectorRegs; 1418 1419 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 1420 if (!isTypeLegal(NewVT)) 1421 NewVT = EltTy; 1422 IntermediateVT = NewVT; 1423 1424 MVT DestVT = getRegisterType(Context, NewVT); 1425 RegisterVT = DestVT; 1426 unsigned NewVTSize = NewVT.getSizeInBits(); 1427 1428 // Convert sizes such as i33 to i64. 1429 if (!isPowerOf2_32(NewVTSize)) 1430 NewVTSize = NextPowerOf2(NewVTSize); 1431 1432 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1433 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1434 1435 // Otherwise, promotion or legal types use the same number of registers as 1436 // the vector decimated to the appropriate level. 1437 return NumVectorRegs; 1438 } 1439 1440 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI, 1441 uint64_t NumCases, 1442 uint64_t Range, 1443 ProfileSummaryInfo *PSI, 1444 BlockFrequencyInfo *BFI) const { 1445 // FIXME: This function check the maximum table size and density, but the 1446 // minimum size is not checked. It would be nice if the minimum size is 1447 // also combined within this function. Currently, the minimum size check is 1448 // performed in findJumpTable() in SelectionDAGBuiler and 1449 // getEstimatedNumberOfCaseClusters() in BasicTTIImpl. 1450 const bool OptForSize = 1451 SI->getParent()->getParent()->hasOptSize() || 1452 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI); 1453 const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); 1454 const unsigned MaxJumpTableSize = getMaximumJumpTableSize(); 1455 1456 // Check whether the number of cases is small enough and 1457 // the range is dense enough for a jump table. 1458 return (OptForSize || Range <= MaxJumpTableSize) && 1459 (NumCases * 100 >= Range * MinDensity); 1460 } 1461 1462 /// Get the EVTs and ArgFlags collections that represent the legalized return 1463 /// type of the given function. This does not require a DAG or a return value, 1464 /// and is suitable for use before any DAGs for the function are constructed. 1465 /// TODO: Move this out of TargetLowering.cpp. 1466 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1467 AttributeList attr, 1468 SmallVectorImpl<ISD::OutputArg> &Outs, 1469 const TargetLowering &TLI, const DataLayout &DL) { 1470 SmallVector<EVT, 4> ValueVTs; 1471 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1472 unsigned NumValues = ValueVTs.size(); 1473 if (NumValues == 0) return; 1474 1475 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1476 EVT VT = ValueVTs[j]; 1477 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1478 1479 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1480 ExtendKind = ISD::SIGN_EXTEND; 1481 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1482 ExtendKind = ISD::ZERO_EXTEND; 1483 1484 // FIXME: C calling convention requires the return type to be promoted to 1485 // at least 32-bit. But this is not necessary for non-C calling 1486 // conventions. The frontend should mark functions whose return values 1487 // require promoting with signext or zeroext attributes. 1488 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1489 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1490 if (VT.bitsLT(MinVT)) 1491 VT = MinVT; 1492 } 1493 1494 unsigned NumParts = 1495 TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1496 MVT PartVT = 1497 TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1498 1499 // 'inreg' on function refers to return value 1500 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1501 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) 1502 Flags.setInReg(); 1503 1504 // Propagate extension type if any 1505 if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1506 Flags.setSExt(); 1507 else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1508 Flags.setZExt(); 1509 1510 for (unsigned i = 0; i < NumParts; ++i) 1511 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1512 } 1513 } 1514 1515 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1516 /// function arguments in the caller parameter area. This is the actual 1517 /// alignment, not its logarithm. 1518 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1519 const DataLayout &DL) const { 1520 return DL.getABITypeAlignment(Ty); 1521 } 1522 1523 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1524 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1525 unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { 1526 // Check if the specified alignment is sufficient based on the data layout. 1527 // TODO: While using the data layout works in practice, a better solution 1528 // would be to implement this check directly (make this a virtual function). 1529 // For example, the ABI alignment may change based on software platform while 1530 // this function should only be affected by hardware implementation. 1531 Type *Ty = VT.getTypeForEVT(Context); 1532 if (Alignment >= DL.getABITypeAlignment(Ty)) { 1533 // Assume that an access that meets the ABI-specified alignment is fast. 1534 if (Fast != nullptr) 1535 *Fast = true; 1536 return true; 1537 } 1538 1539 // This is a misaligned access. 1540 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 1541 } 1542 1543 bool TargetLoweringBase::allowsMemoryAccessForAlignment( 1544 LLVMContext &Context, const DataLayout &DL, EVT VT, 1545 const MachineMemOperand &MMO, bool *Fast) const { 1546 return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(), 1547 MMO.getAlignment(), MMO.getFlags(), 1548 Fast); 1549 } 1550 1551 bool TargetLoweringBase::allowsMemoryAccess( 1552 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, 1553 unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast) const { 1554 return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment, 1555 Flags, Fast); 1556 } 1557 1558 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1559 const DataLayout &DL, EVT VT, 1560 const MachineMemOperand &MMO, 1561 bool *Fast) const { 1562 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), 1563 MMO.getAlignment(), MMO.getFlags(), Fast); 1564 } 1565 1566 BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { 1567 return BranchProbability(MinPercentageForPredictableBranch, 100); 1568 } 1569 1570 //===----------------------------------------------------------------------===// 1571 // TargetTransformInfo Helpers 1572 //===----------------------------------------------------------------------===// 1573 1574 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1575 enum InstructionOpcodes { 1576 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1577 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1578 #include "llvm/IR/Instruction.def" 1579 }; 1580 switch (static_cast<InstructionOpcodes>(Opcode)) { 1581 case Ret: return 0; 1582 case Br: return 0; 1583 case Switch: return 0; 1584 case IndirectBr: return 0; 1585 case Invoke: return 0; 1586 case CallBr: return 0; 1587 case Resume: return 0; 1588 case Unreachable: return 0; 1589 case CleanupRet: return 0; 1590 case CatchRet: return 0; 1591 case CatchPad: return 0; 1592 case CatchSwitch: return 0; 1593 case CleanupPad: return 0; 1594 case FNeg: return ISD::FNEG; 1595 case Add: return ISD::ADD; 1596 case FAdd: return ISD::FADD; 1597 case Sub: return ISD::SUB; 1598 case FSub: return ISD::FSUB; 1599 case Mul: return ISD::MUL; 1600 case FMul: return ISD::FMUL; 1601 case UDiv: return ISD::UDIV; 1602 case SDiv: return ISD::SDIV; 1603 case FDiv: return ISD::FDIV; 1604 case URem: return ISD::UREM; 1605 case SRem: return ISD::SREM; 1606 case FRem: return ISD::FREM; 1607 case Shl: return ISD::SHL; 1608 case LShr: return ISD::SRL; 1609 case AShr: return ISD::SRA; 1610 case And: return ISD::AND; 1611 case Or: return ISD::OR; 1612 case Xor: return ISD::XOR; 1613 case Alloca: return 0; 1614 case Load: return ISD::LOAD; 1615 case Store: return ISD::STORE; 1616 case GetElementPtr: return 0; 1617 case Fence: return 0; 1618 case AtomicCmpXchg: return 0; 1619 case AtomicRMW: return 0; 1620 case Trunc: return ISD::TRUNCATE; 1621 case ZExt: return ISD::ZERO_EXTEND; 1622 case SExt: return ISD::SIGN_EXTEND; 1623 case FPToUI: return ISD::FP_TO_UINT; 1624 case FPToSI: return ISD::FP_TO_SINT; 1625 case UIToFP: return ISD::UINT_TO_FP; 1626 case SIToFP: return ISD::SINT_TO_FP; 1627 case FPTrunc: return ISD::FP_ROUND; 1628 case FPExt: return ISD::FP_EXTEND; 1629 case PtrToInt: return ISD::BITCAST; 1630 case IntToPtr: return ISD::BITCAST; 1631 case BitCast: return ISD::BITCAST; 1632 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1633 case ICmp: return ISD::SETCC; 1634 case FCmp: return ISD::SETCC; 1635 case PHI: return 0; 1636 case Call: return 0; 1637 case Select: return ISD::SELECT; 1638 case UserOp1: return 0; 1639 case UserOp2: return 0; 1640 case VAArg: return 0; 1641 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1642 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1643 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1644 case ExtractValue: return ISD::MERGE_VALUES; 1645 case InsertValue: return ISD::MERGE_VALUES; 1646 case LandingPad: return 0; 1647 case Freeze: return 0; 1648 } 1649 1650 llvm_unreachable("Unknown instruction type encountered!"); 1651 } 1652 1653 std::pair<int, MVT> 1654 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1655 Type *Ty) const { 1656 LLVMContext &C = Ty->getContext(); 1657 EVT MTy = getValueType(DL, Ty); 1658 1659 int Cost = 1; 1660 // We keep legalizing the type until we find a legal kind. We assume that 1661 // the only operation that costs anything is the split. After splitting 1662 // we need to handle two types. 1663 while (true) { 1664 LegalizeKind LK = getTypeConversion(C, MTy); 1665 1666 if (LK.first == TypeLegal) 1667 return std::make_pair(Cost, MTy.getSimpleVT()); 1668 1669 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1670 Cost *= 2; 1671 1672 // Do not loop with f128 type. 1673 if (MTy == LK.second) 1674 return std::make_pair(Cost, MTy.getSimpleVT()); 1675 1676 // Keep legalizing the type. 1677 MTy = LK.second; 1678 } 1679 } 1680 1681 Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, 1682 bool UseTLS) const { 1683 // compiler-rt provides a variable with a magic name. Targets that do not 1684 // link with compiler-rt may also provide such a variable. 1685 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1686 const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1687 auto UnsafeStackPtr = 1688 dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1689 1690 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1691 1692 if (!UnsafeStackPtr) { 1693 auto TLSModel = UseTLS ? 1694 GlobalValue::InitialExecTLSModel : 1695 GlobalValue::NotThreadLocal; 1696 // The global variable is not defined yet, define it ourselves. 1697 // We use the initial-exec TLS model because we do not support the 1698 // variable living anywhere other than in the main executable. 1699 UnsafeStackPtr = new GlobalVariable( 1700 *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1701 UnsafeStackPtrVar, nullptr, TLSModel); 1702 } else { 1703 // The variable exists, check its type and attributes. 1704 if (UnsafeStackPtr->getValueType() != StackPtrTy) 1705 report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1706 if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1707 report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1708 (UseTLS ? "" : "not ") + "be thread-local"); 1709 } 1710 return UnsafeStackPtr; 1711 } 1712 1713 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 1714 if (!TM.getTargetTriple().isAndroid()) 1715 return getDefaultSafeStackPointerLocation(IRB, true); 1716 1717 // Android provides a libc function to retrieve the address of the current 1718 // thread's unsafe stack pointer. 1719 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1720 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1721 FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1722 StackPtrTy->getPointerTo(0)); 1723 return IRB.CreateCall(Fn); 1724 } 1725 1726 //===----------------------------------------------------------------------===// 1727 // Loop Strength Reduction hooks 1728 //===----------------------------------------------------------------------===// 1729 1730 /// isLegalAddressingMode - Return true if the addressing mode represented 1731 /// by AM is legal for this target, for a load/store of the specified type. 1732 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1733 const AddrMode &AM, Type *Ty, 1734 unsigned AS, Instruction *I) const { 1735 // The default implementation of this implements a conservative RISCy, r+r and 1736 // r+i addr mode. 1737 1738 // Allows a sign-extended 16-bit immediate field. 1739 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1740 return false; 1741 1742 // No global is ever allowed as a base. 1743 if (AM.BaseGV) 1744 return false; 1745 1746 // Only support r+r, 1747 switch (AM.Scale) { 1748 case 0: // "r+i" or just "i", depending on HasBaseReg. 1749 break; 1750 case 1: 1751 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1752 return false; 1753 // Otherwise we have r+r or r+i. 1754 break; 1755 case 2: 1756 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1757 return false; 1758 // Allow 2*r as r+r. 1759 break; 1760 default: // Don't allow n * r 1761 return false; 1762 } 1763 1764 return true; 1765 } 1766 1767 //===----------------------------------------------------------------------===// 1768 // Stack Protector 1769 //===----------------------------------------------------------------------===// 1770 1771 // For OpenBSD return its special guard variable. Otherwise return nullptr, 1772 // so that SelectionDAG handle SSP. 1773 Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { 1774 if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1775 Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1776 PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1777 return M.getOrInsertGlobal("__guard_local", PtrTy); 1778 } 1779 return nullptr; 1780 } 1781 1782 // Currently only support "standard" __stack_chk_guard. 1783 // TODO: add LOAD_STACK_GUARD support. 1784 void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1785 if (!M.getNamedValue("__stack_chk_guard")) 1786 new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1787 GlobalVariable::ExternalLinkage, 1788 nullptr, "__stack_chk_guard"); 1789 } 1790 1791 // Currently only support "standard" __stack_chk_guard. 1792 // TODO: add LOAD_STACK_GUARD support. 1793 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1794 return M.getNamedValue("__stack_chk_guard"); 1795 } 1796 1797 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1798 return nullptr; 1799 } 1800 1801 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1802 return MinimumJumpTableEntries; 1803 } 1804 1805 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 1806 MinimumJumpTableEntries = Val; 1807 } 1808 1809 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 1810 return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 1811 } 1812 1813 unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 1814 return MaximumJumpTableSize; 1815 } 1816 1817 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 1818 MaximumJumpTableSize = Val; 1819 } 1820 1821 //===----------------------------------------------------------------------===// 1822 // Reciprocal Estimates 1823 //===----------------------------------------------------------------------===// 1824 1825 /// Get the reciprocal estimate attribute string for a function that will 1826 /// override the target defaults. 1827 static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 1828 const Function &F = MF.getFunction(); 1829 return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 1830 } 1831 1832 /// Construct a string for the given reciprocal operation of the given type. 1833 /// This string should match the corresponding option to the front-end's 1834 /// "-mrecip" flag assuming those strings have been passed through in an 1835 /// attribute string. For example, "vec-divf" for a division of a vXf32. 1836 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 1837 std::string Name = VT.isVector() ? "vec-" : ""; 1838 1839 Name += IsSqrt ? "sqrt" : "div"; 1840 1841 // TODO: Handle "half" or other float types? 1842 if (VT.getScalarType() == MVT::f64) { 1843 Name += "d"; 1844 } else { 1845 assert(VT.getScalarType() == MVT::f32 && 1846 "Unexpected FP type for reciprocal estimate"); 1847 Name += "f"; 1848 } 1849 1850 return Name; 1851 } 1852 1853 /// Return the character position and value (a single numeric character) of a 1854 /// customized refinement operation in the input string if it exists. Return 1855 /// false if there is no customized refinement step count. 1856 static bool parseRefinementStep(StringRef In, size_t &Position, 1857 uint8_t &Value) { 1858 const char RefStepToken = ':'; 1859 Position = In.find(RefStepToken); 1860 if (Position == StringRef::npos) 1861 return false; 1862 1863 StringRef RefStepString = In.substr(Position + 1); 1864 // Allow exactly one numeric character for the additional refinement 1865 // step parameter. 1866 if (RefStepString.size() == 1) { 1867 char RefStepChar = RefStepString[0]; 1868 if (RefStepChar >= '0' && RefStepChar <= '9') { 1869 Value = RefStepChar - '0'; 1870 return true; 1871 } 1872 } 1873 report_fatal_error("Invalid refinement step for -recip."); 1874 } 1875 1876 /// For the input attribute string, return one of the ReciprocalEstimate enum 1877 /// status values (enabled, disabled, or not specified) for this operation on 1878 /// the specified data type. 1879 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 1880 if (Override.empty()) 1881 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1882 1883 SmallVector<StringRef, 4> OverrideVector; 1884 Override.split(OverrideVector, ','); 1885 unsigned NumArgs = OverrideVector.size(); 1886 1887 // Check if "all", "none", or "default" was specified. 1888 if (NumArgs == 1) { 1889 // Look for an optional setting of the number of refinement steps needed 1890 // for this type of reciprocal operation. 1891 size_t RefPos; 1892 uint8_t RefSteps; 1893 if (parseRefinementStep(Override, RefPos, RefSteps)) { 1894 // Split the string for further processing. 1895 Override = Override.substr(0, RefPos); 1896 } 1897 1898 // All reciprocal types are enabled. 1899 if (Override == "all") 1900 return TargetLoweringBase::ReciprocalEstimate::Enabled; 1901 1902 // All reciprocal types are disabled. 1903 if (Override == "none") 1904 return TargetLoweringBase::ReciprocalEstimate::Disabled; 1905 1906 // Target defaults for enablement are used. 1907 if (Override == "default") 1908 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1909 } 1910 1911 // The attribute string may omit the size suffix ('f'/'d'). 1912 std::string VTName = getReciprocalOpName(IsSqrt, VT); 1913 std::string VTNameNoSize = VTName; 1914 VTNameNoSize.pop_back(); 1915 static const char DisabledPrefix = '!'; 1916 1917 for (StringRef RecipType : OverrideVector) { 1918 size_t RefPos; 1919 uint8_t RefSteps; 1920 if (parseRefinementStep(RecipType, RefPos, RefSteps)) 1921 RecipType = RecipType.substr(0, RefPos); 1922 1923 // Ignore the disablement token for string matching. 1924 bool IsDisabled = RecipType[0] == DisabledPrefix; 1925 if (IsDisabled) 1926 RecipType = RecipType.substr(1); 1927 1928 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1929 return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 1930 : TargetLoweringBase::ReciprocalEstimate::Enabled; 1931 } 1932 1933 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1934 } 1935 1936 /// For the input attribute string, return the customized refinement step count 1937 /// for this operation on the specified data type. If the step count does not 1938 /// exist, return the ReciprocalEstimate enum value for unspecified. 1939 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 1940 if (Override.empty()) 1941 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1942 1943 SmallVector<StringRef, 4> OverrideVector; 1944 Override.split(OverrideVector, ','); 1945 unsigned NumArgs = OverrideVector.size(); 1946 1947 // Check if "all", "default", or "none" was specified. 1948 if (NumArgs == 1) { 1949 // Look for an optional setting of the number of refinement steps needed 1950 // for this type of reciprocal operation. 1951 size_t RefPos; 1952 uint8_t RefSteps; 1953 if (!parseRefinementStep(Override, RefPos, RefSteps)) 1954 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1955 1956 // Split the string for further processing. 1957 Override = Override.substr(0, RefPos); 1958 assert(Override != "none" && 1959 "Disabled reciprocals, but specifed refinement steps?"); 1960 1961 // If this is a general override, return the specified number of steps. 1962 if (Override == "all" || Override == "default") 1963 return RefSteps; 1964 } 1965 1966 // The attribute string may omit the size suffix ('f'/'d'). 1967 std::string VTName = getReciprocalOpName(IsSqrt, VT); 1968 std::string VTNameNoSize = VTName; 1969 VTNameNoSize.pop_back(); 1970 1971 for (StringRef RecipType : OverrideVector) { 1972 size_t RefPos; 1973 uint8_t RefSteps; 1974 if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 1975 continue; 1976 1977 RecipType = RecipType.substr(0, RefPos); 1978 if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1979 return RefSteps; 1980 } 1981 1982 return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1983 } 1984 1985 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 1986 MachineFunction &MF) const { 1987 return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 1988 } 1989 1990 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 1991 MachineFunction &MF) const { 1992 return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 1993 } 1994 1995 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 1996 MachineFunction &MF) const { 1997 return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 1998 } 1999 2000 int TargetLoweringBase::getDivRefinementSteps(EVT VT, 2001 MachineFunction &MF) const { 2002 return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 2003 } 2004 2005 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 2006 MF.getRegInfo().freezeReservedRegs(MF); 2007 } 2008