1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetInstrInfo.h" 14 #include "llvm/ADT/StringExtras.h" 15 #include "llvm/CodeGen/MachineFrameInfo.h" 16 #include "llvm/CodeGen/MachineInstrBuilder.h" 17 #include "llvm/CodeGen/MachineMemOperand.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/MachineScheduler.h" 20 #include "llvm/CodeGen/PseudoSourceValue.h" 21 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 22 #include "llvm/CodeGen/StackMaps.h" 23 #include "llvm/CodeGen/TargetFrameLowering.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSchedule.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCInstrItineraries.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 37 using namespace llvm; 38 39 static cl::opt<bool> DisableHazardRecognizer( 40 "disable-sched-hazard", cl::Hidden, cl::init(false), 41 cl::desc("Disable hazard detection during preRA scheduling")); 42 43 TargetInstrInfo::~TargetInstrInfo() { 44 } 45 46 const TargetRegisterClass* 47 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 48 const TargetRegisterInfo *TRI, 49 const MachineFunction &MF) const { 50 if (OpNum >= MCID.getNumOperands()) 51 return nullptr; 52 53 short RegClass = MCID.OpInfo[OpNum].RegClass; 54 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 55 return TRI->getPointerRegClass(MF, RegClass); 56 57 // Instructions like INSERT_SUBREG do not have fixed register classes. 58 if (RegClass < 0) 59 return nullptr; 60 61 // Otherwise just look it up normally. 62 return TRI->getRegClass(RegClass); 63 } 64 65 /// insertNoop - Insert a noop into the instruction stream at the specified 66 /// point. 67 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 68 MachineBasicBlock::iterator MI) const { 69 llvm_unreachable("Target didn't implement insertNoop!"); 70 } 71 72 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { 73 return strncmp(Str, MAI.getCommentString().data(), 74 MAI.getCommentString().size()) == 0; 75 } 76 77 /// Measure the specified inline asm to determine an approximation of its 78 /// length. 79 /// Comments (which run till the next SeparatorString or newline) do not 80 /// count as an instruction. 81 /// Any other non-whitespace text is considered an instruction, with 82 /// multiple instructions separated by SeparatorString or newlines. 83 /// Variable-length instructions are not handled here; this function 84 /// may be overloaded in the target code to do that. 85 /// We implement a special case of the .space directive which takes only a 86 /// single integer argument in base 10 that is the size in bytes. This is a 87 /// restricted form of the GAS directive in that we only interpret 88 /// simple--i.e. not a logical or arithmetic expression--size values without 89 /// the optional fill value. This is primarily used for creating arbitrary 90 /// sized inline asm blocks for testing purposes. 91 unsigned TargetInstrInfo::getInlineAsmLength( 92 const char *Str, 93 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { 94 // Count the number of instructions in the asm. 95 bool AtInsnStart = true; 96 unsigned Length = 0; 97 const unsigned MaxInstLength = MAI.getMaxInstLength(STI); 98 for (; *Str; ++Str) { 99 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 100 strlen(MAI.getSeparatorString())) == 0) { 101 AtInsnStart = true; 102 } else if (isAsmComment(Str, MAI)) { 103 // Stop counting as an instruction after a comment until the next 104 // separator. 105 AtInsnStart = false; 106 } 107 108 if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) { 109 unsigned AddLength = MaxInstLength; 110 if (strncmp(Str, ".space", 6) == 0) { 111 char *EStr; 112 int SpaceSize; 113 SpaceSize = strtol(Str + 6, &EStr, 10); 114 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; 115 while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr))) 116 ++EStr; 117 if (*EStr == '\0' || *EStr == '\n' || 118 isAsmComment(EStr, MAI)) // Successfully parsed .space argument 119 AddLength = SpaceSize; 120 } 121 Length += AddLength; 122 AtInsnStart = false; 123 } 124 } 125 126 return Length; 127 } 128 129 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 130 /// after it, replacing it with an unconditional branch to NewDest. 131 void 132 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 133 MachineBasicBlock *NewDest) const { 134 MachineBasicBlock *MBB = Tail->getParent(); 135 136 // Remove all the old successors of MBB from the CFG. 137 while (!MBB->succ_empty()) 138 MBB->removeSuccessor(MBB->succ_begin()); 139 140 // Save off the debug loc before erasing the instruction. 141 DebugLoc DL = Tail->getDebugLoc(); 142 143 // Update call site info and remove all the dead instructions 144 // from the end of MBB. 145 while (Tail != MBB->end()) { 146 auto MI = Tail++; 147 if (MI->shouldUpdateCallSiteInfo()) 148 MBB->getParent()->eraseCallSiteInfo(&*MI); 149 MBB->erase(MI); 150 } 151 152 // If MBB isn't immediately before MBB, insert a branch to it. 153 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 154 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); 155 MBB->addSuccessor(NewDest); 156 } 157 158 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, 159 bool NewMI, unsigned Idx1, 160 unsigned Idx2) const { 161 const MCInstrDesc &MCID = MI.getDesc(); 162 bool HasDef = MCID.getNumDefs(); 163 if (HasDef && !MI.getOperand(0).isReg()) 164 // No idea how to commute this instruction. Target should implement its own. 165 return nullptr; 166 167 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 168 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 169 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 170 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 171 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 172 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && 173 "This only knows how to commute register operands so far"); 174 175 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 176 Register Reg1 = MI.getOperand(Idx1).getReg(); 177 Register Reg2 = MI.getOperand(Idx2).getReg(); 178 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; 179 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); 180 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); 181 bool Reg1IsKill = MI.getOperand(Idx1).isKill(); 182 bool Reg2IsKill = MI.getOperand(Idx2).isKill(); 183 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); 184 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); 185 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); 186 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); 187 // Avoid calling isRenamable for virtual registers since we assert that 188 // renamable property is only queried/set for physical registers. 189 bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1) 190 ? MI.getOperand(Idx1).isRenamable() 191 : false; 192 bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2) 193 ? MI.getOperand(Idx2).isRenamable() 194 : false; 195 // If destination is tied to either of the commuted source register, then 196 // it must be updated. 197 if (HasDef && Reg0 == Reg1 && 198 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 199 Reg2IsKill = false; 200 Reg0 = Reg2; 201 SubReg0 = SubReg2; 202 } else if (HasDef && Reg0 == Reg2 && 203 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 204 Reg1IsKill = false; 205 Reg0 = Reg1; 206 SubReg0 = SubReg1; 207 } 208 209 MachineInstr *CommutedMI = nullptr; 210 if (NewMI) { 211 // Create a new instruction. 212 MachineFunction &MF = *MI.getMF(); 213 CommutedMI = MF.CloneMachineInstr(&MI); 214 } else { 215 CommutedMI = &MI; 216 } 217 218 if (HasDef) { 219 CommutedMI->getOperand(0).setReg(Reg0); 220 CommutedMI->getOperand(0).setSubReg(SubReg0); 221 } 222 CommutedMI->getOperand(Idx2).setReg(Reg1); 223 CommutedMI->getOperand(Idx1).setReg(Reg2); 224 CommutedMI->getOperand(Idx2).setSubReg(SubReg1); 225 CommutedMI->getOperand(Idx1).setSubReg(SubReg2); 226 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); 227 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); 228 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 229 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 230 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 231 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 232 // Avoid calling setIsRenamable for virtual registers since we assert that 233 // renamable property is only queried/set for physical registers. 234 if (Register::isPhysicalRegister(Reg1)) 235 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); 236 if (Register::isPhysicalRegister(Reg2)) 237 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); 238 return CommutedMI; 239 } 240 241 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, 242 unsigned OpIdx1, 243 unsigned OpIdx2) const { 244 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 245 // any commutable operand, which is done in findCommutedOpIndices() method 246 // called below. 247 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 248 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 249 assert(MI.isCommutable() && 250 "Precondition violation: MI must be commutable."); 251 return nullptr; 252 } 253 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 254 } 255 256 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 257 unsigned &ResultIdx2, 258 unsigned CommutableOpIdx1, 259 unsigned CommutableOpIdx2) { 260 if (ResultIdx1 == CommuteAnyOperandIndex && 261 ResultIdx2 == CommuteAnyOperandIndex) { 262 ResultIdx1 = CommutableOpIdx1; 263 ResultIdx2 = CommutableOpIdx2; 264 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 265 if (ResultIdx2 == CommutableOpIdx1) 266 ResultIdx1 = CommutableOpIdx2; 267 else if (ResultIdx2 == CommutableOpIdx2) 268 ResultIdx1 = CommutableOpIdx1; 269 else 270 return false; 271 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 272 if (ResultIdx1 == CommutableOpIdx1) 273 ResultIdx2 = CommutableOpIdx2; 274 else if (ResultIdx1 == CommutableOpIdx2) 275 ResultIdx2 = CommutableOpIdx1; 276 else 277 return false; 278 } else 279 // Check that the result operand indices match the given commutable 280 // operand indices. 281 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 282 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 283 284 return true; 285 } 286 287 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 288 unsigned &SrcOpIdx1, 289 unsigned &SrcOpIdx2) const { 290 assert(!MI.isBundle() && 291 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 292 293 const MCInstrDesc &MCID = MI.getDesc(); 294 if (!MCID.isCommutable()) 295 return false; 296 297 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 298 // is not true, then the target must implement this. 299 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 300 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 301 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 302 CommutableOpIdx1, CommutableOpIdx2)) 303 return false; 304 305 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 306 // No idea. 307 return false; 308 return true; 309 } 310 311 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 312 if (!MI.isTerminator()) return false; 313 314 // Conditional branch is a special case. 315 if (MI.isBranch() && !MI.isBarrier()) 316 return true; 317 if (!MI.isPredicable()) 318 return true; 319 return !isPredicated(MI); 320 } 321 322 bool TargetInstrInfo::PredicateInstruction( 323 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 324 bool MadeChange = false; 325 326 assert(!MI.isBundle() && 327 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 328 329 const MCInstrDesc &MCID = MI.getDesc(); 330 if (!MI.isPredicable()) 331 return false; 332 333 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 334 if (MCID.OpInfo[i].isPredicate()) { 335 MachineOperand &MO = MI.getOperand(i); 336 if (MO.isReg()) { 337 MO.setReg(Pred[j].getReg()); 338 MadeChange = true; 339 } else if (MO.isImm()) { 340 MO.setImm(Pred[j].getImm()); 341 MadeChange = true; 342 } else if (MO.isMBB()) { 343 MO.setMBB(Pred[j].getMBB()); 344 MadeChange = true; 345 } 346 ++j; 347 } 348 } 349 return MadeChange; 350 } 351 352 bool TargetInstrInfo::hasLoadFromStackSlot( 353 const MachineInstr &MI, 354 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 355 size_t StartSize = Accesses.size(); 356 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 357 oe = MI.memoperands_end(); 358 o != oe; ++o) { 359 if ((*o)->isLoad() && 360 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 361 Accesses.push_back(*o); 362 } 363 return Accesses.size() != StartSize; 364 } 365 366 bool TargetInstrInfo::hasStoreToStackSlot( 367 const MachineInstr &MI, 368 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 369 size_t StartSize = Accesses.size(); 370 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 371 oe = MI.memoperands_end(); 372 o != oe; ++o) { 373 if ((*o)->isStore() && 374 dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 375 Accesses.push_back(*o); 376 } 377 return Accesses.size() != StartSize; 378 } 379 380 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 381 unsigned SubIdx, unsigned &Size, 382 unsigned &Offset, 383 const MachineFunction &MF) const { 384 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 385 if (!SubIdx) { 386 Size = TRI->getSpillSize(*RC); 387 Offset = 0; 388 return true; 389 } 390 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 391 // Convert bit size to byte size. 392 if (BitSize % 8) 393 return false; 394 395 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 396 if (BitOffset < 0 || BitOffset % 8) 397 return false; 398 399 Size = BitSize / 8; 400 Offset = (unsigned)BitOffset / 8; 401 402 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); 403 404 if (!MF.getDataLayout().isLittleEndian()) { 405 Offset = TRI->getSpillSize(*RC) - (Offset + Size); 406 } 407 return true; 408 } 409 410 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 411 MachineBasicBlock::iterator I, 412 Register DestReg, unsigned SubIdx, 413 const MachineInstr &Orig, 414 const TargetRegisterInfo &TRI) const { 415 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 416 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 417 MBB.insert(I, MI); 418 } 419 420 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, 421 const MachineInstr &MI1, 422 const MachineRegisterInfo *MRI) const { 423 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 424 } 425 426 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, 427 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { 428 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); 429 MachineFunction &MF = *MBB.getParent(); 430 return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig); 431 } 432 433 // If the COPY instruction in MI can be folded to a stack operation, return 434 // the register class to use. 435 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, 436 unsigned FoldIdx) { 437 assert(MI.isCopy() && "MI must be a COPY instruction"); 438 if (MI.getNumOperands() != 2) 439 return nullptr; 440 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 441 442 const MachineOperand &FoldOp = MI.getOperand(FoldIdx); 443 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); 444 445 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 446 return nullptr; 447 448 Register FoldReg = FoldOp.getReg(); 449 Register LiveReg = LiveOp.getReg(); 450 451 assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs"); 452 453 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 454 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 455 456 if (Register::isPhysicalRegister(LiveOp.getReg())) 457 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 458 459 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 460 return RC; 461 462 // FIXME: Allow folding when register classes are memory compatible. 463 return nullptr; 464 } 465 466 void TargetInstrInfo::getNoop(MCInst &NopInst) const { 467 llvm_unreachable("Not implemented"); 468 } 469 470 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, 471 ArrayRef<unsigned> Ops, int FrameIndex, 472 const TargetInstrInfo &TII) { 473 unsigned StartIdx = 0; 474 switch (MI.getOpcode()) { 475 case TargetOpcode::STACKMAP: { 476 // StackMapLiveValues are foldable 477 StartIdx = StackMapOpers(&MI).getVarIdx(); 478 break; 479 } 480 case TargetOpcode::PATCHPOINT: { 481 // For PatchPoint, the call args are not foldable (even if reported in the 482 // stackmap e.g. via anyregcc). 483 StartIdx = PatchPointOpers(&MI).getVarIdx(); 484 break; 485 } 486 case TargetOpcode::STATEPOINT: { 487 // For statepoints, fold deopt and gc arguments, but not call arguments. 488 StartIdx = StatepointOpers(&MI).getVarIdx(); 489 break; 490 } 491 default: 492 llvm_unreachable("unexpected stackmap opcode"); 493 } 494 495 // Return false if any operands requested for folding are not foldable (not 496 // part of the stackmap's live values). 497 for (unsigned Op : Ops) { 498 if (Op < StartIdx) 499 return nullptr; 500 } 501 502 MachineInstr *NewMI = 503 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); 504 MachineInstrBuilder MIB(MF, NewMI); 505 506 // No need to fold return, the meta data, and function arguments 507 for (unsigned i = 0; i < StartIdx; ++i) 508 MIB.add(MI.getOperand(i)); 509 510 for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) { 511 MachineOperand &MO = MI.getOperand(i); 512 if (is_contained(Ops, i)) { 513 unsigned SpillSize; 514 unsigned SpillOffset; 515 // Compute the spill slot size and offset. 516 const TargetRegisterClass *RC = 517 MF.getRegInfo().getRegClass(MO.getReg()); 518 bool Valid = 519 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 520 if (!Valid) 521 report_fatal_error("cannot spill patchpoint subregister operand"); 522 MIB.addImm(StackMaps::IndirectMemRefOp); 523 MIB.addImm(SpillSize); 524 MIB.addFrameIndex(FrameIndex); 525 MIB.addImm(SpillOffset); 526 } 527 else 528 MIB.add(MO); 529 } 530 return NewMI; 531 } 532 533 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 534 ArrayRef<unsigned> Ops, int FI, 535 LiveIntervals *LIS, 536 VirtRegMap *VRM) const { 537 auto Flags = MachineMemOperand::MONone; 538 for (unsigned OpIdx : Ops) 539 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore 540 : MachineMemOperand::MOLoad; 541 542 MachineBasicBlock *MBB = MI.getParent(); 543 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 544 MachineFunction &MF = *MBB->getParent(); 545 546 // If we're not folding a load into a subreg, the size of the load is the 547 // size of the spill slot. But if we are, we need to figure out what the 548 // actual load size is. 549 int64_t MemSize = 0; 550 const MachineFrameInfo &MFI = MF.getFrameInfo(); 551 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 552 553 if (Flags & MachineMemOperand::MOStore) { 554 MemSize = MFI.getObjectSize(FI); 555 } else { 556 for (unsigned OpIdx : Ops) { 557 int64_t OpSize = MFI.getObjectSize(FI); 558 559 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { 560 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); 561 if (SubRegSize > 0 && !(SubRegSize % 8)) 562 OpSize = SubRegSize / 8; 563 } 564 565 MemSize = std::max(MemSize, OpSize); 566 } 567 } 568 569 assert(MemSize && "Did not expect a zero-sized stack slot"); 570 571 MachineInstr *NewMI = nullptr; 572 573 if (MI.getOpcode() == TargetOpcode::STACKMAP || 574 MI.getOpcode() == TargetOpcode::PATCHPOINT || 575 MI.getOpcode() == TargetOpcode::STATEPOINT) { 576 // Fold stackmap/patchpoint. 577 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 578 if (NewMI) 579 MBB->insert(MI, NewMI); 580 } else { 581 // Ask the target to do the actual folding. 582 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); 583 } 584 585 if (NewMI) { 586 NewMI->setMemRefs(MF, MI.memoperands()); 587 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 588 assert((!(Flags & MachineMemOperand::MOStore) || 589 NewMI->mayStore()) && 590 "Folded a def to a non-store!"); 591 assert((!(Flags & MachineMemOperand::MOLoad) || 592 NewMI->mayLoad()) && 593 "Folded a use to a non-load!"); 594 assert(MFI.getObjectOffset(FI) != -1); 595 MachineMemOperand *MMO = 596 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 597 Flags, MemSize, MFI.getObjectAlign(FI)); 598 NewMI->addMemOperand(MF, MMO); 599 600 // The pass "x86 speculative load hardening" always attaches symbols to 601 // call instructions. We need copy it form old instruction. 602 NewMI->cloneInstrSymbols(MF, MI); 603 604 return NewMI; 605 } 606 607 // Straight COPY may fold as load/store. 608 if (!MI.isCopy() || Ops.size() != 1) 609 return nullptr; 610 611 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 612 if (!RC) 613 return nullptr; 614 615 const MachineOperand &MO = MI.getOperand(1 - Ops[0]); 616 MachineBasicBlock::iterator Pos = MI; 617 618 if (Flags == MachineMemOperand::MOStore) 619 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 620 else 621 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 622 return &*--Pos; 623 } 624 625 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 626 ArrayRef<unsigned> Ops, 627 MachineInstr &LoadMI, 628 LiveIntervals *LIS) const { 629 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); 630 #ifndef NDEBUG 631 for (unsigned OpIdx : Ops) 632 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); 633 #endif 634 635 MachineBasicBlock &MBB = *MI.getParent(); 636 MachineFunction &MF = *MBB.getParent(); 637 638 // Ask the target to do the actual folding. 639 MachineInstr *NewMI = nullptr; 640 int FrameIndex = 0; 641 642 if ((MI.getOpcode() == TargetOpcode::STACKMAP || 643 MI.getOpcode() == TargetOpcode::PATCHPOINT || 644 MI.getOpcode() == TargetOpcode::STATEPOINT) && 645 isLoadFromStackSlot(LoadMI, FrameIndex)) { 646 // Fold stackmap/patchpoint. 647 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 648 if (NewMI) 649 NewMI = &*MBB.insert(MI, NewMI); 650 } else { 651 // Ask the target to do the actual folding. 652 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); 653 } 654 655 if (!NewMI) 656 return nullptr; 657 658 // Copy the memoperands from the load to the folded instruction. 659 if (MI.memoperands_empty()) { 660 NewMI->setMemRefs(MF, LoadMI.memoperands()); 661 } else { 662 // Handle the rare case of folding multiple loads. 663 NewMI->setMemRefs(MF, MI.memoperands()); 664 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), 665 E = LoadMI.memoperands_end(); 666 I != E; ++I) { 667 NewMI->addMemOperand(MF, *I); 668 } 669 } 670 return NewMI; 671 } 672 673 bool TargetInstrInfo::hasReassociableOperands( 674 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 675 const MachineOperand &Op1 = Inst.getOperand(1); 676 const MachineOperand &Op2 = Inst.getOperand(2); 677 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 678 679 // We need virtual register definitions for the operands that we will 680 // reassociate. 681 MachineInstr *MI1 = nullptr; 682 MachineInstr *MI2 = nullptr; 683 if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg())) 684 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 685 if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg())) 686 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 687 688 // And they need to be in the trace (otherwise, they won't have a depth). 689 return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB; 690 } 691 692 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 693 bool &Commuted) const { 694 const MachineBasicBlock *MBB = Inst.getParent(); 695 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 696 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 697 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 698 unsigned AssocOpcode = Inst.getOpcode(); 699 700 // If only one operand has the same opcode and it's the second source operand, 701 // the operands must be commuted. 702 Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode; 703 if (Commuted) 704 std::swap(MI1, MI2); 705 706 // 1. The previous instruction must be the same type as Inst. 707 // 2. The previous instruction must also be associative/commutative (this can 708 // be different even for instructions with the same opcode if traits like 709 // fast-math-flags are included). 710 // 3. The previous instruction must have virtual register definitions for its 711 // operands in the same basic block as Inst. 712 // 4. The previous instruction's result must only be used by Inst. 713 return MI1->getOpcode() == AssocOpcode && isAssociativeAndCommutative(*MI1) && 714 hasReassociableOperands(*MI1, MBB) && 715 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 716 } 717 718 // 1. The operation must be associative and commutative. 719 // 2. The instruction must have virtual register definitions for its 720 // operands in the same basic block. 721 // 3. The instruction must have a reassociable sibling. 722 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 723 bool &Commuted) const { 724 return isAssociativeAndCommutative(Inst) && 725 hasReassociableOperands(Inst, Inst.getParent()) && 726 hasReassociableSibling(Inst, Commuted); 727 } 728 729 // The concept of the reassociation pass is that these operations can benefit 730 // from this kind of transformation: 731 // 732 // A = ? op ? 733 // B = A op X (Prev) 734 // C = B op Y (Root) 735 // --> 736 // A = ? op ? 737 // B = X op Y 738 // C = A op B 739 // 740 // breaking the dependency between A and B, allowing them to be executed in 741 // parallel (or back-to-back in a pipeline) instead of depending on each other. 742 743 // FIXME: This has the potential to be expensive (compile time) while not 744 // improving the code at all. Some ways to limit the overhead: 745 // 1. Track successful transforms; bail out if hit rate gets too low. 746 // 2. Only enable at -O3 or some other non-default optimization level. 747 // 3. Pre-screen pattern candidates here: if an operand of the previous 748 // instruction is known to not increase the critical path, then don't match 749 // that pattern. 750 bool TargetInstrInfo::getMachineCombinerPatterns( 751 MachineInstr &Root, 752 SmallVectorImpl<MachineCombinerPattern> &Patterns) const { 753 bool Commute; 754 if (isReassociationCandidate(Root, Commute)) { 755 // We found a sequence of instructions that may be suitable for a 756 // reassociation of operands to increase ILP. Specify each commutation 757 // possibility for the Prev instruction in the sequence and let the 758 // machine combiner decide if changing the operands is worthwhile. 759 if (Commute) { 760 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 761 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 762 } else { 763 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 764 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 765 } 766 return true; 767 } 768 769 return false; 770 } 771 772 /// Return true when a code sequence can improve loop throughput. 773 bool 774 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { 775 return false; 776 } 777 778 /// Attempt the reassociation transformation to reduce critical path length. 779 /// See the above comments before getMachineCombinerPatterns(). 780 void TargetInstrInfo::reassociateOps( 781 MachineInstr &Root, MachineInstr &Prev, 782 MachineCombinerPattern Pattern, 783 SmallVectorImpl<MachineInstr *> &InsInstrs, 784 SmallVectorImpl<MachineInstr *> &DelInstrs, 785 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 786 MachineFunction *MF = Root.getMF(); 787 MachineRegisterInfo &MRI = MF->getRegInfo(); 788 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 789 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 790 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 791 792 // This array encodes the operand index for each parameter because the 793 // operands may be commuted. Each row corresponds to a pattern value, 794 // and each column specifies the index of A, B, X, Y. 795 unsigned OpIdx[4][4] = { 796 { 1, 1, 2, 2 }, 797 { 1, 2, 2, 1 }, 798 { 2, 1, 1, 2 }, 799 { 2, 2, 1, 1 } 800 }; 801 802 int Row; 803 switch (Pattern) { 804 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 805 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 806 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 807 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 808 default: llvm_unreachable("unexpected MachineCombinerPattern"); 809 } 810 811 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 812 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 813 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 814 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 815 MachineOperand &OpC = Root.getOperand(0); 816 817 Register RegA = OpA.getReg(); 818 Register RegB = OpB.getReg(); 819 Register RegX = OpX.getReg(); 820 Register RegY = OpY.getReg(); 821 Register RegC = OpC.getReg(); 822 823 if (Register::isVirtualRegister(RegA)) 824 MRI.constrainRegClass(RegA, RC); 825 if (Register::isVirtualRegister(RegB)) 826 MRI.constrainRegClass(RegB, RC); 827 if (Register::isVirtualRegister(RegX)) 828 MRI.constrainRegClass(RegX, RC); 829 if (Register::isVirtualRegister(RegY)) 830 MRI.constrainRegClass(RegY, RC); 831 if (Register::isVirtualRegister(RegC)) 832 MRI.constrainRegClass(RegC, RC); 833 834 // Create a new virtual register for the result of (X op Y) instead of 835 // recycling RegB because the MachineCombiner's computation of the critical 836 // path requires a new register definition rather than an existing one. 837 Register NewVR = MRI.createVirtualRegister(RC); 838 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 839 840 unsigned Opcode = Root.getOpcode(); 841 bool KillA = OpA.isKill(); 842 bool KillX = OpX.isKill(); 843 bool KillY = OpY.isKill(); 844 845 // Create new instructions for insertion. 846 MachineInstrBuilder MIB1 = 847 BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR) 848 .addReg(RegX, getKillRegState(KillX)) 849 .addReg(RegY, getKillRegState(KillY)); 850 MachineInstrBuilder MIB2 = 851 BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC) 852 .addReg(RegA, getKillRegState(KillA)) 853 .addReg(NewVR, getKillRegState(true)); 854 855 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 856 857 // Record new instructions for insertion and old instructions for deletion. 858 InsInstrs.push_back(MIB1); 859 InsInstrs.push_back(MIB2); 860 DelInstrs.push_back(&Prev); 861 DelInstrs.push_back(&Root); 862 } 863 864 void TargetInstrInfo::genAlternativeCodeSequence( 865 MachineInstr &Root, MachineCombinerPattern Pattern, 866 SmallVectorImpl<MachineInstr *> &InsInstrs, 867 SmallVectorImpl<MachineInstr *> &DelInstrs, 868 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 869 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); 870 871 // Select the previous instruction in the sequence based on the input pattern. 872 MachineInstr *Prev = nullptr; 873 switch (Pattern) { 874 case MachineCombinerPattern::REASSOC_AX_BY: 875 case MachineCombinerPattern::REASSOC_XA_BY: 876 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 877 break; 878 case MachineCombinerPattern::REASSOC_AX_YB: 879 case MachineCombinerPattern::REASSOC_XA_YB: 880 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 881 break; 882 default: 883 break; 884 } 885 886 assert(Prev && "Unknown pattern for machine combiner"); 887 888 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 889 } 890 891 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( 892 const MachineInstr &MI, AAResults *AA) const { 893 const MachineFunction &MF = *MI.getMF(); 894 const MachineRegisterInfo &MRI = MF.getRegInfo(); 895 896 // Remat clients assume operand 0 is the defined register. 897 if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) 898 return false; 899 Register DefReg = MI.getOperand(0).getReg(); 900 901 // A sub-register definition can only be rematerialized if the instruction 902 // doesn't read the other parts of the register. Otherwise it is really a 903 // read-modify-write operation on the full virtual register which cannot be 904 // moved safely. 905 if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() && 906 MI.readsVirtualRegister(DefReg)) 907 return false; 908 909 // A load from a fixed stack slot can be rematerialized. This may be 910 // redundant with subsequent checks, but it's target-independent, 911 // simple, and a common case. 912 int FrameIdx = 0; 913 if (isLoadFromStackSlot(MI, FrameIdx) && 914 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) 915 return true; 916 917 // Avoid instructions obviously unsafe for remat. 918 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || 919 MI.hasUnmodeledSideEffects()) 920 return false; 921 922 // Don't remat inline asm. We have no idea how expensive it is 923 // even if it's side effect free. 924 if (MI.isInlineAsm()) 925 return false; 926 927 // Avoid instructions which load from potentially varying memory. 928 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)) 929 return false; 930 931 // If any of the registers accessed are non-constant, conservatively assume 932 // the instruction is not rematerializable. 933 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 934 const MachineOperand &MO = MI.getOperand(i); 935 if (!MO.isReg()) continue; 936 Register Reg = MO.getReg(); 937 if (Reg == 0) 938 continue; 939 940 // Check for a well-behaved physical register. 941 if (Register::isPhysicalRegister(Reg)) { 942 if (MO.isUse()) { 943 // If the physreg has no defs anywhere, it's just an ambient register 944 // and we can freely move its uses. Alternatively, if it's allocatable, 945 // it could get allocated to something with a def during allocation. 946 if (!MRI.isConstantPhysReg(Reg)) 947 return false; 948 } else { 949 // A physreg def. We can't remat it. 950 return false; 951 } 952 continue; 953 } 954 955 // Only allow one virtual-register def. There may be multiple defs of the 956 // same virtual register, though. 957 if (MO.isDef() && Reg != DefReg) 958 return false; 959 960 // Don't allow any virtual-register uses. Rematting an instruction with 961 // virtual register uses would length the live ranges of the uses, which 962 // is not necessarily a good idea, certainly not "trivial". 963 if (MO.isUse()) 964 return false; 965 } 966 967 // Everything checked out. 968 return true; 969 } 970 971 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { 972 const MachineFunction *MF = MI.getMF(); 973 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 974 bool StackGrowsDown = 975 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 976 977 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 978 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 979 980 if (!isFrameInstr(MI)) 981 return 0; 982 983 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); 984 985 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || 986 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) 987 SPAdj = -SPAdj; 988 989 return SPAdj; 990 } 991 992 /// isSchedulingBoundary - Test if the given instruction should be 993 /// considered a scheduling boundary. This primarily includes labels 994 /// and terminators. 995 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 996 const MachineBasicBlock *MBB, 997 const MachineFunction &MF) const { 998 // Terminators and labels can't be scheduled around. 999 if (MI.isTerminator() || MI.isPosition()) 1000 return true; 1001 1002 // INLINEASM_BR can jump to another block 1003 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 1004 return true; 1005 1006 // Don't attempt to schedule around any instruction that defines 1007 // a stack-oriented pointer, as it's unlikely to be profitable. This 1008 // saves compile time, because it doesn't require every single 1009 // stack slot reference to depend on the instruction that does the 1010 // modification. 1011 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1012 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1013 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 1014 } 1015 1016 // Provide a global flag for disabling the PreRA hazard recognizer that targets 1017 // may choose to honor. 1018 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 1019 return !DisableHazardRecognizer; 1020 } 1021 1022 // Default implementation of CreateTargetRAHazardRecognizer. 1023 ScheduleHazardRecognizer *TargetInstrInfo:: 1024 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1025 const ScheduleDAG *DAG) const { 1026 // Dummy hazard recognizer allows all instructions to issue. 1027 return new ScheduleHazardRecognizer(); 1028 } 1029 1030 // Default implementation of CreateTargetMIHazardRecognizer. 1031 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer( 1032 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 1033 return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); 1034 } 1035 1036 // Default implementation of CreateTargetPostRAHazardRecognizer. 1037 ScheduleHazardRecognizer *TargetInstrInfo:: 1038 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 1039 const ScheduleDAG *DAG) const { 1040 return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 1041 } 1042 1043 // Default implementation of getMemOperandWithOffset. 1044 bool TargetInstrInfo::getMemOperandWithOffset( 1045 const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, 1046 bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const { 1047 SmallVector<const MachineOperand *, 4> BaseOps; 1048 unsigned Width; 1049 if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable, 1050 Width, TRI) || 1051 BaseOps.size() != 1) 1052 return false; 1053 BaseOp = BaseOps.front(); 1054 return true; 1055 } 1056 1057 //===----------------------------------------------------------------------===// 1058 // SelectionDAG latency interface. 1059 //===----------------------------------------------------------------------===// 1060 1061 int 1062 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1063 SDNode *DefNode, unsigned DefIdx, 1064 SDNode *UseNode, unsigned UseIdx) const { 1065 if (!ItinData || ItinData->isEmpty()) 1066 return -1; 1067 1068 if (!DefNode->isMachineOpcode()) 1069 return -1; 1070 1071 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 1072 if (!UseNode->isMachineOpcode()) 1073 return ItinData->getOperandCycle(DefClass, DefIdx); 1074 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 1075 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1076 } 1077 1078 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1079 SDNode *N) const { 1080 if (!ItinData || ItinData->isEmpty()) 1081 return 1; 1082 1083 if (!N->isMachineOpcode()) 1084 return 1; 1085 1086 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1087 } 1088 1089 //===----------------------------------------------------------------------===// 1090 // MachineInstr latency interface. 1091 //===----------------------------------------------------------------------===// 1092 1093 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1094 const MachineInstr &MI) const { 1095 if (!ItinData || ItinData->isEmpty()) 1096 return 1; 1097 1098 unsigned Class = MI.getDesc().getSchedClass(); 1099 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1100 if (UOps >= 0) 1101 return UOps; 1102 1103 // The # of u-ops is dynamically determined. The specific target should 1104 // override this function to return the right number. 1105 return 1; 1106 } 1107 1108 /// Return the default expected latency for a def based on it's opcode. 1109 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1110 const MachineInstr &DefMI) const { 1111 if (DefMI.isTransient()) 1112 return 0; 1113 if (DefMI.mayLoad()) 1114 return SchedModel.LoadLatency; 1115 if (isHighLatencyDef(DefMI.getOpcode())) 1116 return SchedModel.HighLatency; 1117 return 1; 1118 } 1119 1120 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1121 return 0; 1122 } 1123 1124 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1125 const MachineInstr &MI, 1126 unsigned *PredCost) const { 1127 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1128 // still have a MinLatency property, which getStageLatency checks. 1129 if (!ItinData) 1130 return MI.mayLoad() ? 2 : 1; 1131 1132 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 1133 } 1134 1135 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1136 const MachineInstr &DefMI, 1137 unsigned DefIdx) const { 1138 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1139 if (!ItinData || ItinData->isEmpty()) 1140 return false; 1141 1142 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1143 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1144 return (DefCycle != -1 && DefCycle <= 1); 1145 } 1146 1147 Optional<ParamLoadedValue> 1148 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI, 1149 Register Reg) const { 1150 const MachineFunction *MF = MI.getMF(); 1151 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1152 DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {}); 1153 int64_t Offset; 1154 bool OffsetIsScalable; 1155 1156 // To simplify the sub-register handling, verify that we only need to 1157 // consider physical registers. 1158 assert(MF->getProperties().hasProperty( 1159 MachineFunctionProperties::Property::NoVRegs)); 1160 1161 if (auto DestSrc = isCopyInstr(MI)) { 1162 Register DestReg = DestSrc->Destination->getReg(); 1163 1164 // If the copy destination is the forwarding reg, describe the forwarding 1165 // reg using the copy source as the backup location. Example: 1166 // 1167 // x0 = MOV x7 1168 // call callee(x0) ; x0 described as x7 1169 if (Reg == DestReg) 1170 return ParamLoadedValue(*DestSrc->Source, Expr); 1171 1172 // Cases where super- or sub-registers needs to be described should 1173 // be handled by the target's hook implementation. 1174 assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) && 1175 "TargetInstrInfo::describeLoadedValue can't describe super- or " 1176 "sub-regs for copy instructions"); 1177 return None; 1178 } else if (auto RegImm = isAddImmediate(MI, Reg)) { 1179 Register SrcReg = RegImm->Reg; 1180 Offset = RegImm->Imm; 1181 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); 1182 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 1183 } else if (MI.hasOneMemOperand()) { 1184 // Only describe memory which provably does not escape the function. As 1185 // described in llvm.org/PR43343, escaped memory may be clobbered by the 1186 // callee (or by another thread). 1187 const auto &TII = MF->getSubtarget().getInstrInfo(); 1188 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1189 const MachineMemOperand *MMO = MI.memoperands()[0]; 1190 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1191 1192 // If the address points to "special" memory (e.g. a spill slot), it's 1193 // sufficient to check that it isn't aliased by any high-level IR value. 1194 if (!PSV || PSV->mayAlias(&MFI)) 1195 return None; 1196 1197 const MachineOperand *BaseOp; 1198 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, 1199 TRI)) 1200 return None; 1201 1202 // FIXME: Scalable offsets are not yet handled in the offset code below. 1203 if (OffsetIsScalable) 1204 return None; 1205 1206 // TODO: Can currently only handle mem instructions with a single define. 1207 // An example from the x86 target: 1208 // ... 1209 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx 1210 // ... 1211 // 1212 if (MI.getNumExplicitDefs() != 1) 1213 return None; 1214 1215 // TODO: In what way do we need to take Reg into consideration here? 1216 1217 SmallVector<uint64_t, 8> Ops; 1218 DIExpression::appendOffset(Ops, Offset); 1219 Ops.push_back(dwarf::DW_OP_deref_size); 1220 Ops.push_back(MMO->getSize()); 1221 Expr = DIExpression::prependOpcodes(Expr, Ops); 1222 return ParamLoadedValue(*BaseOp, Expr); 1223 } 1224 1225 return None; 1226 } 1227 1228 /// Both DefMI and UseMI must be valid. By default, call directly to the 1229 /// itinerary. This may be overriden by the target. 1230 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1231 const MachineInstr &DefMI, 1232 unsigned DefIdx, 1233 const MachineInstr &UseMI, 1234 unsigned UseIdx) const { 1235 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1236 unsigned UseClass = UseMI.getDesc().getSchedClass(); 1237 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1238 } 1239 1240 /// If we can determine the operand latency from the def only, without itinerary 1241 /// lookup, do so. Otherwise return -1. 1242 int TargetInstrInfo::computeDefOperandLatency( 1243 const InstrItineraryData *ItinData, const MachineInstr &DefMI) const { 1244 1245 // Let the target hook getInstrLatency handle missing itineraries. 1246 if (!ItinData) 1247 return getInstrLatency(ItinData, DefMI); 1248 1249 if(ItinData->isEmpty()) 1250 return defaultDefLatency(ItinData->SchedModel, DefMI); 1251 1252 // ...operand lookup required 1253 return -1; 1254 } 1255 1256 bool TargetInstrInfo::getRegSequenceInputs( 1257 const MachineInstr &MI, unsigned DefIdx, 1258 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1259 assert((MI.isRegSequence() || 1260 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1261 1262 if (!MI.isRegSequence()) 1263 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1264 1265 // We are looking at: 1266 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1267 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1268 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1269 OpIdx += 2) { 1270 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1271 if (MOReg.isUndef()) 1272 continue; 1273 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1274 assert(MOSubIdx.isImm() && 1275 "One of the subindex of the reg_sequence is not an immediate"); 1276 // Record Reg:SubReg, SubIdx. 1277 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1278 (unsigned)MOSubIdx.getImm())); 1279 } 1280 return true; 1281 } 1282 1283 bool TargetInstrInfo::getExtractSubregInputs( 1284 const MachineInstr &MI, unsigned DefIdx, 1285 RegSubRegPairAndIdx &InputReg) const { 1286 assert((MI.isExtractSubreg() || 1287 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1288 1289 if (!MI.isExtractSubreg()) 1290 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1291 1292 // We are looking at: 1293 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1294 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1295 const MachineOperand &MOReg = MI.getOperand(1); 1296 if (MOReg.isUndef()) 1297 return false; 1298 const MachineOperand &MOSubIdx = MI.getOperand(2); 1299 assert(MOSubIdx.isImm() && 1300 "The subindex of the extract_subreg is not an immediate"); 1301 1302 InputReg.Reg = MOReg.getReg(); 1303 InputReg.SubReg = MOReg.getSubReg(); 1304 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1305 return true; 1306 } 1307 1308 bool TargetInstrInfo::getInsertSubregInputs( 1309 const MachineInstr &MI, unsigned DefIdx, 1310 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1311 assert((MI.isInsertSubreg() || 1312 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1313 1314 if (!MI.isInsertSubreg()) 1315 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1316 1317 // We are looking at: 1318 // Def = INSERT_SEQUENCE v0, v1, sub0. 1319 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1320 const MachineOperand &MOBaseReg = MI.getOperand(1); 1321 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1322 if (MOInsertedReg.isUndef()) 1323 return false; 1324 const MachineOperand &MOSubIdx = MI.getOperand(3); 1325 assert(MOSubIdx.isImm() && 1326 "One of the subindex of the reg_sequence is not an immediate"); 1327 BaseReg.Reg = MOBaseReg.getReg(); 1328 BaseReg.SubReg = MOBaseReg.getSubReg(); 1329 1330 InsertedReg.Reg = MOInsertedReg.getReg(); 1331 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1332 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1333 return true; 1334 } 1335 1336 // Returns a MIRPrinter comment for this machine operand. 1337 std::string TargetInstrInfo::createMIROperandComment( 1338 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 1339 const TargetRegisterInfo *TRI) const { 1340 1341 if (!MI.isInlineAsm()) 1342 return ""; 1343 1344 std::string Flags; 1345 raw_string_ostream OS(Flags); 1346 1347 if (OpIdx == InlineAsm::MIOp_ExtraInfo) { 1348 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1349 unsigned ExtraInfo = Op.getImm(); 1350 bool First = true; 1351 for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) { 1352 if (!First) 1353 OS << " "; 1354 First = false; 1355 OS << Info; 1356 } 1357 1358 return OS.str(); 1359 } 1360 1361 int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx); 1362 if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx) 1363 return ""; 1364 1365 assert(Op.isImm() && "Expected flag operand to be an immediate"); 1366 // Pretty print the inline asm operand descriptor. 1367 unsigned Flag = Op.getImm(); 1368 unsigned Kind = InlineAsm::getKind(Flag); 1369 OS << InlineAsm::getKindName(Kind); 1370 1371 unsigned RCID = 0; 1372 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1373 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1374 if (TRI) { 1375 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1376 } else 1377 OS << ":RC" << RCID; 1378 } 1379 1380 if (InlineAsm::isMemKind(Flag)) { 1381 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1382 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1383 } 1384 1385 unsigned TiedTo = 0; 1386 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1387 OS << " tiedto:$" << TiedTo; 1388 1389 return OS.str(); 1390 } 1391 1392 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {} 1393