1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetInstrInfo.h" 14 #include "llvm/ADT/StringExtras.h" 15 #include "llvm/BinaryFormat/Dwarf.h" 16 #include "llvm/CodeGen/MachineCombinerPattern.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineInstrBuilder.h" 19 #include "llvm/CodeGen/MachineMemOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/MachineScheduler.h" 22 #include "llvm/CodeGen/MachineTraceMetrics.h" 23 #include "llvm/CodeGen/PseudoSourceValue.h" 24 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 25 #include "llvm/CodeGen/StackMaps.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/CodeGen/TargetLowering.h" 28 #include "llvm/CodeGen/TargetRegisterInfo.h" 29 #include "llvm/CodeGen/TargetSchedule.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfoMetadata.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCInstrItineraries.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 38 using namespace llvm; 39 40 static cl::opt<bool> DisableHazardRecognizer( 41 "disable-sched-hazard", cl::Hidden, cl::init(false), 42 cl::desc("Disable hazard detection during preRA scheduling")); 43 44 TargetInstrInfo::~TargetInstrInfo() = default; 45 46 const TargetRegisterClass* 47 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 48 const TargetRegisterInfo *TRI, 49 const MachineFunction &MF) const { 50 if (OpNum >= MCID.getNumOperands()) 51 return nullptr; 52 53 short RegClass = MCID.operands()[OpNum].RegClass; 54 if (MCID.operands()[OpNum].isLookupPtrRegClass()) 55 return TRI->getPointerRegClass(MF, RegClass); 56 57 // Instructions like INSERT_SUBREG do not have fixed register classes. 58 if (RegClass < 0) 59 return nullptr; 60 61 // Otherwise just look it up normally. 62 return TRI->getRegClass(RegClass); 63 } 64 65 /// insertNoop - Insert a noop into the instruction stream at the specified 66 /// point. 67 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 68 MachineBasicBlock::iterator MI) const { 69 llvm_unreachable("Target didn't implement insertNoop!"); 70 } 71 72 /// insertNoops - Insert noops into the instruction stream at the specified 73 /// point. 74 void TargetInstrInfo::insertNoops(MachineBasicBlock &MBB, 75 MachineBasicBlock::iterator MI, 76 unsigned Quantity) const { 77 for (unsigned i = 0; i < Quantity; ++i) 78 insertNoop(MBB, MI); 79 } 80 81 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) { 82 return strncmp(Str, MAI.getCommentString().data(), 83 MAI.getCommentString().size()) == 0; 84 } 85 86 /// Measure the specified inline asm to determine an approximation of its 87 /// length. 88 /// Comments (which run till the next SeparatorString or newline) do not 89 /// count as an instruction. 90 /// Any other non-whitespace text is considered an instruction, with 91 /// multiple instructions separated by SeparatorString or newlines. 92 /// Variable-length instructions are not handled here; this function 93 /// may be overloaded in the target code to do that. 94 /// We implement a special case of the .space directive which takes only a 95 /// single integer argument in base 10 that is the size in bytes. This is a 96 /// restricted form of the GAS directive in that we only interpret 97 /// simple--i.e. not a logical or arithmetic expression--size values without 98 /// the optional fill value. This is primarily used for creating arbitrary 99 /// sized inline asm blocks for testing purposes. 100 unsigned TargetInstrInfo::getInlineAsmLength( 101 const char *Str, 102 const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const { 103 // Count the number of instructions in the asm. 104 bool AtInsnStart = true; 105 unsigned Length = 0; 106 const unsigned MaxInstLength = MAI.getMaxInstLength(STI); 107 for (; *Str; ++Str) { 108 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 109 strlen(MAI.getSeparatorString())) == 0) { 110 AtInsnStart = true; 111 } else if (isAsmComment(Str, MAI)) { 112 // Stop counting as an instruction after a comment until the next 113 // separator. 114 AtInsnStart = false; 115 } 116 117 if (AtInsnStart && !isSpace(static_cast<unsigned char>(*Str))) { 118 unsigned AddLength = MaxInstLength; 119 if (strncmp(Str, ".space", 6) == 0) { 120 char *EStr; 121 int SpaceSize; 122 SpaceSize = strtol(Str + 6, &EStr, 10); 123 SpaceSize = SpaceSize < 0 ? 0 : SpaceSize; 124 while (*EStr != '\n' && isSpace(static_cast<unsigned char>(*EStr))) 125 ++EStr; 126 if (*EStr == '\0' || *EStr == '\n' || 127 isAsmComment(EStr, MAI)) // Successfully parsed .space argument 128 AddLength = SpaceSize; 129 } 130 Length += AddLength; 131 AtInsnStart = false; 132 } 133 } 134 135 return Length; 136 } 137 138 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 139 /// after it, replacing it with an unconditional branch to NewDest. 140 void 141 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 142 MachineBasicBlock *NewDest) const { 143 MachineBasicBlock *MBB = Tail->getParent(); 144 145 // Remove all the old successors of MBB from the CFG. 146 while (!MBB->succ_empty()) 147 MBB->removeSuccessor(MBB->succ_begin()); 148 149 // Save off the debug loc before erasing the instruction. 150 DebugLoc DL = Tail->getDebugLoc(); 151 152 // Update call site info and remove all the dead instructions 153 // from the end of MBB. 154 while (Tail != MBB->end()) { 155 auto MI = Tail++; 156 if (MI->shouldUpdateCallSiteInfo()) 157 MBB->getParent()->eraseCallSiteInfo(&*MI); 158 MBB->erase(MI); 159 } 160 161 // If MBB isn't immediately before MBB, insert a branch to it. 162 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 163 insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL); 164 MBB->addSuccessor(NewDest); 165 } 166 167 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI, 168 bool NewMI, unsigned Idx1, 169 unsigned Idx2) const { 170 const MCInstrDesc &MCID = MI.getDesc(); 171 bool HasDef = MCID.getNumDefs(); 172 if (HasDef && !MI.getOperand(0).isReg()) 173 // No idea how to commute this instruction. Target should implement its own. 174 return nullptr; 175 176 unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1; 177 unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2; 178 assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) && 179 CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 && 180 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands."); 181 assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() && 182 "This only knows how to commute register operands so far"); 183 184 Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); 185 Register Reg1 = MI.getOperand(Idx1).getReg(); 186 Register Reg2 = MI.getOperand(Idx2).getReg(); 187 unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0; 188 unsigned SubReg1 = MI.getOperand(Idx1).getSubReg(); 189 unsigned SubReg2 = MI.getOperand(Idx2).getSubReg(); 190 bool Reg1IsKill = MI.getOperand(Idx1).isKill(); 191 bool Reg2IsKill = MI.getOperand(Idx2).isKill(); 192 bool Reg1IsUndef = MI.getOperand(Idx1).isUndef(); 193 bool Reg2IsUndef = MI.getOperand(Idx2).isUndef(); 194 bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead(); 195 bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead(); 196 // Avoid calling isRenamable for virtual registers since we assert that 197 // renamable property is only queried/set for physical registers. 198 bool Reg1IsRenamable = 199 Reg1.isPhysical() ? MI.getOperand(Idx1).isRenamable() : false; 200 bool Reg2IsRenamable = 201 Reg2.isPhysical() ? MI.getOperand(Idx2).isRenamable() : false; 202 // If destination is tied to either of the commuted source register, then 203 // it must be updated. 204 if (HasDef && Reg0 == Reg1 && 205 MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 206 Reg2IsKill = false; 207 Reg0 = Reg2; 208 SubReg0 = SubReg2; 209 } else if (HasDef && Reg0 == Reg2 && 210 MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 211 Reg1IsKill = false; 212 Reg0 = Reg1; 213 SubReg0 = SubReg1; 214 } 215 216 MachineInstr *CommutedMI = nullptr; 217 if (NewMI) { 218 // Create a new instruction. 219 MachineFunction &MF = *MI.getMF(); 220 CommutedMI = MF.CloneMachineInstr(&MI); 221 } else { 222 CommutedMI = &MI; 223 } 224 225 if (HasDef) { 226 CommutedMI->getOperand(0).setReg(Reg0); 227 CommutedMI->getOperand(0).setSubReg(SubReg0); 228 } 229 CommutedMI->getOperand(Idx2).setReg(Reg1); 230 CommutedMI->getOperand(Idx1).setReg(Reg2); 231 CommutedMI->getOperand(Idx2).setSubReg(SubReg1); 232 CommutedMI->getOperand(Idx1).setSubReg(SubReg2); 233 CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill); 234 CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill); 235 CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef); 236 CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef); 237 CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal); 238 CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal); 239 // Avoid calling setIsRenamable for virtual registers since we assert that 240 // renamable property is only queried/set for physical registers. 241 if (Reg1.isPhysical()) 242 CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable); 243 if (Reg2.isPhysical()) 244 CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable); 245 return CommutedMI; 246 } 247 248 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI, 249 unsigned OpIdx1, 250 unsigned OpIdx2) const { 251 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose 252 // any commutable operand, which is done in findCommutedOpIndices() method 253 // called below. 254 if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) && 255 !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) { 256 assert(MI.isCommutable() && 257 "Precondition violation: MI must be commutable."); 258 return nullptr; 259 } 260 return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 261 } 262 263 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1, 264 unsigned &ResultIdx2, 265 unsigned CommutableOpIdx1, 266 unsigned CommutableOpIdx2) { 267 if (ResultIdx1 == CommuteAnyOperandIndex && 268 ResultIdx2 == CommuteAnyOperandIndex) { 269 ResultIdx1 = CommutableOpIdx1; 270 ResultIdx2 = CommutableOpIdx2; 271 } else if (ResultIdx1 == CommuteAnyOperandIndex) { 272 if (ResultIdx2 == CommutableOpIdx1) 273 ResultIdx1 = CommutableOpIdx2; 274 else if (ResultIdx2 == CommutableOpIdx2) 275 ResultIdx1 = CommutableOpIdx1; 276 else 277 return false; 278 } else if (ResultIdx2 == CommuteAnyOperandIndex) { 279 if (ResultIdx1 == CommutableOpIdx1) 280 ResultIdx2 = CommutableOpIdx2; 281 else if (ResultIdx1 == CommutableOpIdx2) 282 ResultIdx2 = CommutableOpIdx1; 283 else 284 return false; 285 } else 286 // Check that the result operand indices match the given commutable 287 // operand indices. 288 return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) || 289 (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1); 290 291 return true; 292 } 293 294 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI, 295 unsigned &SrcOpIdx1, 296 unsigned &SrcOpIdx2) const { 297 assert(!MI.isBundle() && 298 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 299 300 const MCInstrDesc &MCID = MI.getDesc(); 301 if (!MCID.isCommutable()) 302 return false; 303 304 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 305 // is not true, then the target must implement this. 306 unsigned CommutableOpIdx1 = MCID.getNumDefs(); 307 unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1; 308 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 309 CommutableOpIdx1, CommutableOpIdx2)) 310 return false; 311 312 if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) 313 // No idea. 314 return false; 315 return true; 316 } 317 318 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { 319 if (!MI.isTerminator()) return false; 320 321 // Conditional branch is a special case. 322 if (MI.isBranch() && !MI.isBarrier()) 323 return true; 324 if (!MI.isPredicable()) 325 return true; 326 return !isPredicated(MI); 327 } 328 329 bool TargetInstrInfo::PredicateInstruction( 330 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 331 bool MadeChange = false; 332 333 assert(!MI.isBundle() && 334 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 335 336 const MCInstrDesc &MCID = MI.getDesc(); 337 if (!MI.isPredicable()) 338 return false; 339 340 for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) { 341 if (MCID.operands()[i].isPredicate()) { 342 MachineOperand &MO = MI.getOperand(i); 343 if (MO.isReg()) { 344 MO.setReg(Pred[j].getReg()); 345 MadeChange = true; 346 } else if (MO.isImm()) { 347 MO.setImm(Pred[j].getImm()); 348 MadeChange = true; 349 } else if (MO.isMBB()) { 350 MO.setMBB(Pred[j].getMBB()); 351 MadeChange = true; 352 } 353 ++j; 354 } 355 } 356 return MadeChange; 357 } 358 359 bool TargetInstrInfo::hasLoadFromStackSlot( 360 const MachineInstr &MI, 361 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 362 size_t StartSize = Accesses.size(); 363 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 364 oe = MI.memoperands_end(); 365 o != oe; ++o) { 366 if ((*o)->isLoad() && 367 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 368 Accesses.push_back(*o); 369 } 370 return Accesses.size() != StartSize; 371 } 372 373 bool TargetInstrInfo::hasStoreToStackSlot( 374 const MachineInstr &MI, 375 SmallVectorImpl<const MachineMemOperand *> &Accesses) const { 376 size_t StartSize = Accesses.size(); 377 for (MachineInstr::mmo_iterator o = MI.memoperands_begin(), 378 oe = MI.memoperands_end(); 379 o != oe; ++o) { 380 if ((*o)->isStore() && 381 isa_and_nonnull<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) 382 Accesses.push_back(*o); 383 } 384 return Accesses.size() != StartSize; 385 } 386 387 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 388 unsigned SubIdx, unsigned &Size, 389 unsigned &Offset, 390 const MachineFunction &MF) const { 391 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 392 if (!SubIdx) { 393 Size = TRI->getSpillSize(*RC); 394 Offset = 0; 395 return true; 396 } 397 unsigned BitSize = TRI->getSubRegIdxSize(SubIdx); 398 // Convert bit size to byte size. 399 if (BitSize % 8) 400 return false; 401 402 int BitOffset = TRI->getSubRegIdxOffset(SubIdx); 403 if (BitOffset < 0 || BitOffset % 8) 404 return false; 405 406 Size = BitSize / 8; 407 Offset = (unsigned)BitOffset / 8; 408 409 assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range"); 410 411 if (!MF.getDataLayout().isLittleEndian()) { 412 Offset = TRI->getSpillSize(*RC) - (Offset + Size); 413 } 414 return true; 415 } 416 417 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 418 MachineBasicBlock::iterator I, 419 Register DestReg, unsigned SubIdx, 420 const MachineInstr &Orig, 421 const TargetRegisterInfo &TRI) const { 422 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 423 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 424 MBB.insert(I, MI); 425 } 426 427 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0, 428 const MachineInstr &MI1, 429 const MachineRegisterInfo *MRI) const { 430 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 431 } 432 433 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB, 434 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const { 435 assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated"); 436 MachineFunction &MF = *MBB.getParent(); 437 return MF.cloneMachineInstrBundle(MBB, InsertBefore, Orig); 438 } 439 440 // If the COPY instruction in MI can be folded to a stack operation, return 441 // the register class to use. 442 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI, 443 const TargetInstrInfo &TII, 444 unsigned FoldIdx) { 445 assert(TII.isCopyInstr(MI) && "MI must be a COPY instruction"); 446 if (MI.getNumOperands() != 2) 447 return nullptr; 448 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 449 450 const MachineOperand &FoldOp = MI.getOperand(FoldIdx); 451 const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx); 452 453 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 454 return nullptr; 455 456 Register FoldReg = FoldOp.getReg(); 457 Register LiveReg = LiveOp.getReg(); 458 459 assert(FoldReg.isVirtual() && "Cannot fold physregs"); 460 461 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 462 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 463 464 if (LiveOp.getReg().isPhysical()) 465 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 466 467 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 468 return RC; 469 470 // FIXME: Allow folding when register classes are memory compatible. 471 return nullptr; 472 } 473 474 MCInst TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); } 475 476 std::pair<unsigned, unsigned> 477 TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr &MI) const { 478 switch (MI.getOpcode()) { 479 case TargetOpcode::STACKMAP: 480 // StackMapLiveValues are foldable 481 return std::make_pair(0, StackMapOpers(&MI).getVarIdx()); 482 case TargetOpcode::PATCHPOINT: 483 // For PatchPoint, the call args are not foldable (even if reported in the 484 // stackmap e.g. via anyregcc). 485 return std::make_pair(0, PatchPointOpers(&MI).getVarIdx()); 486 case TargetOpcode::STATEPOINT: 487 // For statepoints, fold deopt and gc arguments, but not call arguments. 488 return std::make_pair(MI.getNumDefs(), StatepointOpers(&MI).getVarIdx()); 489 default: 490 llvm_unreachable("unexpected stackmap opcode"); 491 } 492 } 493 494 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI, 495 ArrayRef<unsigned> Ops, int FrameIndex, 496 const TargetInstrInfo &TII) { 497 unsigned StartIdx = 0; 498 unsigned NumDefs = 0; 499 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint. 500 std::tie(NumDefs, StartIdx) = TII.getPatchpointUnfoldableRange(MI); 501 502 unsigned DefToFoldIdx = MI.getNumOperands(); 503 504 // Return false if any operands requested for folding are not foldable (not 505 // part of the stackmap's live values). 506 for (unsigned Op : Ops) { 507 if (Op < NumDefs) { 508 assert(DefToFoldIdx == MI.getNumOperands() && "Folding multiple defs"); 509 DefToFoldIdx = Op; 510 } else if (Op < StartIdx) { 511 return nullptr; 512 } 513 if (MI.getOperand(Op).isTied()) 514 return nullptr; 515 } 516 517 MachineInstr *NewMI = 518 MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true); 519 MachineInstrBuilder MIB(MF, NewMI); 520 521 // No need to fold return, the meta data, and function arguments 522 for (unsigned i = 0; i < StartIdx; ++i) 523 if (i != DefToFoldIdx) 524 MIB.add(MI.getOperand(i)); 525 526 for (unsigned i = StartIdx, e = MI.getNumOperands(); i < e; ++i) { 527 MachineOperand &MO = MI.getOperand(i); 528 unsigned TiedTo = e; 529 (void)MI.isRegTiedToDefOperand(i, &TiedTo); 530 531 if (is_contained(Ops, i)) { 532 assert(TiedTo == e && "Cannot fold tied operands"); 533 unsigned SpillSize; 534 unsigned SpillOffset; 535 // Compute the spill slot size and offset. 536 const TargetRegisterClass *RC = 537 MF.getRegInfo().getRegClass(MO.getReg()); 538 bool Valid = 539 TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF); 540 if (!Valid) 541 report_fatal_error("cannot spill patchpoint subregister operand"); 542 MIB.addImm(StackMaps::IndirectMemRefOp); 543 MIB.addImm(SpillSize); 544 MIB.addFrameIndex(FrameIndex); 545 MIB.addImm(SpillOffset); 546 } else { 547 MIB.add(MO); 548 if (TiedTo < e) { 549 assert(TiedTo < NumDefs && "Bad tied operand"); 550 if (TiedTo > DefToFoldIdx) 551 --TiedTo; 552 NewMI->tieOperands(TiedTo, NewMI->getNumOperands() - 1); 553 } 554 } 555 } 556 return NewMI; 557 } 558 559 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 560 ArrayRef<unsigned> Ops, int FI, 561 LiveIntervals *LIS, 562 VirtRegMap *VRM) const { 563 auto Flags = MachineMemOperand::MONone; 564 for (unsigned OpIdx : Ops) 565 Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore 566 : MachineMemOperand::MOLoad; 567 568 MachineBasicBlock *MBB = MI.getParent(); 569 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 570 MachineFunction &MF = *MBB->getParent(); 571 572 // If we're not folding a load into a subreg, the size of the load is the 573 // size of the spill slot. But if we are, we need to figure out what the 574 // actual load size is. 575 int64_t MemSize = 0; 576 const MachineFrameInfo &MFI = MF.getFrameInfo(); 577 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 578 579 if (Flags & MachineMemOperand::MOStore) { 580 MemSize = MFI.getObjectSize(FI); 581 } else { 582 for (unsigned OpIdx : Ops) { 583 int64_t OpSize = MFI.getObjectSize(FI); 584 585 if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) { 586 unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg); 587 if (SubRegSize > 0 && !(SubRegSize % 8)) 588 OpSize = SubRegSize / 8; 589 } 590 591 MemSize = std::max(MemSize, OpSize); 592 } 593 } 594 595 assert(MemSize && "Did not expect a zero-sized stack slot"); 596 597 MachineInstr *NewMI = nullptr; 598 599 if (MI.getOpcode() == TargetOpcode::STACKMAP || 600 MI.getOpcode() == TargetOpcode::PATCHPOINT || 601 MI.getOpcode() == TargetOpcode::STATEPOINT) { 602 // Fold stackmap/patchpoint. 603 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 604 if (NewMI) 605 MBB->insert(MI, NewMI); 606 } else { 607 // Ask the target to do the actual folding. 608 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM); 609 } 610 611 if (NewMI) { 612 NewMI->setMemRefs(MF, MI.memoperands()); 613 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 614 assert((!(Flags & MachineMemOperand::MOStore) || 615 NewMI->mayStore()) && 616 "Folded a def to a non-store!"); 617 assert((!(Flags & MachineMemOperand::MOLoad) || 618 NewMI->mayLoad()) && 619 "Folded a use to a non-load!"); 620 assert(MFI.getObjectOffset(FI) != -1); 621 MachineMemOperand *MMO = 622 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 623 Flags, MemSize, MFI.getObjectAlign(FI)); 624 NewMI->addMemOperand(MF, MMO); 625 626 // The pass "x86 speculative load hardening" always attaches symbols to 627 // call instructions. We need copy it form old instruction. 628 NewMI->cloneInstrSymbols(MF, MI); 629 630 return NewMI; 631 } 632 633 // Straight COPY may fold as load/store. 634 if (!isCopyInstr(MI) || Ops.size() != 1) 635 return nullptr; 636 637 const TargetRegisterClass *RC = canFoldCopy(MI, *this, Ops[0]); 638 if (!RC) 639 return nullptr; 640 641 const MachineOperand &MO = MI.getOperand(1 - Ops[0]); 642 MachineBasicBlock::iterator Pos = MI; 643 644 if (Flags == MachineMemOperand::MOStore) 645 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI, 646 Register()); 647 else 648 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI, Register()); 649 return &*--Pos; 650 } 651 652 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI, 653 ArrayRef<unsigned> Ops, 654 MachineInstr &LoadMI, 655 LiveIntervals *LIS) const { 656 assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!"); 657 #ifndef NDEBUG 658 for (unsigned OpIdx : Ops) 659 assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!"); 660 #endif 661 662 MachineBasicBlock &MBB = *MI.getParent(); 663 MachineFunction &MF = *MBB.getParent(); 664 665 // Ask the target to do the actual folding. 666 MachineInstr *NewMI = nullptr; 667 int FrameIndex = 0; 668 669 if ((MI.getOpcode() == TargetOpcode::STACKMAP || 670 MI.getOpcode() == TargetOpcode::PATCHPOINT || 671 MI.getOpcode() == TargetOpcode::STATEPOINT) && 672 isLoadFromStackSlot(LoadMI, FrameIndex)) { 673 // Fold stackmap/patchpoint. 674 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 675 if (NewMI) 676 NewMI = &*MBB.insert(MI, NewMI); 677 } else { 678 // Ask the target to do the actual folding. 679 NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS); 680 } 681 682 if (!NewMI) 683 return nullptr; 684 685 // Copy the memoperands from the load to the folded instruction. 686 if (MI.memoperands_empty()) { 687 NewMI->setMemRefs(MF, LoadMI.memoperands()); 688 } else { 689 // Handle the rare case of folding multiple loads. 690 NewMI->setMemRefs(MF, MI.memoperands()); 691 for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(), 692 E = LoadMI.memoperands_end(); 693 I != E; ++I) { 694 NewMI->addMemOperand(MF, *I); 695 } 696 } 697 return NewMI; 698 } 699 700 /// transferImplicitOperands - MI is a pseudo-instruction, and the lowered 701 /// replacement instructions immediately precede it. Copy any implicit 702 /// operands from MI to the replacement instruction. 703 static void transferImplicitOperands(MachineInstr *MI, 704 const TargetRegisterInfo *TRI) { 705 MachineBasicBlock::iterator CopyMI = MI; 706 --CopyMI; 707 708 Register DstReg = MI->getOperand(0).getReg(); 709 for (const MachineOperand &MO : MI->implicit_operands()) { 710 CopyMI->addOperand(MO); 711 712 // Be conservative about preserving kills when subregister defs are 713 // involved. If there was implicit kill of a super-register overlapping the 714 // copy result, we would kill the subregisters previous copies defined. 715 716 if (MO.isKill() && TRI->regsOverlap(DstReg, MO.getReg())) 717 CopyMI->getOperand(CopyMI->getNumOperands() - 1).setIsKill(false); 718 } 719 } 720 721 void TargetInstrInfo::lowerCopy(MachineInstr *MI, 722 const TargetRegisterInfo *TRI) const { 723 if (MI->allDefsAreDead()) { 724 MI->setDesc(get(TargetOpcode::KILL)); 725 return; 726 } 727 728 MachineOperand &DstMO = MI->getOperand(0); 729 MachineOperand &SrcMO = MI->getOperand(1); 730 731 bool IdentityCopy = (SrcMO.getReg() == DstMO.getReg()); 732 if (IdentityCopy || SrcMO.isUndef()) { 733 // No need to insert an identity copy instruction, but replace with a KILL 734 // if liveness is changed. 735 if (SrcMO.isUndef() || MI->getNumOperands() > 2) { 736 // We must make sure the super-register gets killed. Replace the 737 // instruction with KILL. 738 MI->setDesc(get(TargetOpcode::KILL)); 739 return; 740 } 741 // Vanilla identity copy. 742 MI->eraseFromParent(); 743 return; 744 } 745 746 copyPhysReg(*MI->getParent(), MI, MI->getDebugLoc(), DstMO.getReg(), 747 SrcMO.getReg(), SrcMO.isKill()); 748 749 if (MI->getNumOperands() > 2) 750 transferImplicitOperands(MI, TRI); 751 MI->eraseFromParent(); 752 return; 753 } 754 755 bool TargetInstrInfo::hasReassociableOperands( 756 const MachineInstr &Inst, const MachineBasicBlock *MBB) const { 757 const MachineOperand &Op1 = Inst.getOperand(1); 758 const MachineOperand &Op2 = Inst.getOperand(2); 759 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 760 761 // We need virtual register definitions for the operands that we will 762 // reassociate. 763 MachineInstr *MI1 = nullptr; 764 MachineInstr *MI2 = nullptr; 765 if (Op1.isReg() && Op1.getReg().isVirtual()) 766 MI1 = MRI.getUniqueVRegDef(Op1.getReg()); 767 if (Op2.isReg() && Op2.getReg().isVirtual()) 768 MI2 = MRI.getUniqueVRegDef(Op2.getReg()); 769 770 // And at least one operand must be defined in MBB. 771 return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB); 772 } 773 774 bool TargetInstrInfo::areOpcodesEqualOrInverse(unsigned Opcode1, 775 unsigned Opcode2) const { 776 return Opcode1 == Opcode2 || getInverseOpcode(Opcode1) == Opcode2; 777 } 778 779 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst, 780 bool &Commuted) const { 781 const MachineBasicBlock *MBB = Inst.getParent(); 782 const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 783 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg()); 784 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg()); 785 unsigned Opcode = Inst.getOpcode(); 786 787 // If only one operand has the same or inverse opcode and it's the second 788 // source operand, the operands must be commuted. 789 Commuted = !areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) && 790 areOpcodesEqualOrInverse(Opcode, MI2->getOpcode()); 791 if (Commuted) 792 std::swap(MI1, MI2); 793 794 // 1. The previous instruction must be the same type as Inst. 795 // 2. The previous instruction must also be associative/commutative or be the 796 // inverse of such an operation (this can be different even for 797 // instructions with the same opcode if traits like fast-math-flags are 798 // included). 799 // 3. The previous instruction must have virtual register definitions for its 800 // operands in the same basic block as Inst. 801 // 4. The previous instruction's result must only be used by Inst. 802 return areOpcodesEqualOrInverse(Opcode, MI1->getOpcode()) && 803 (isAssociativeAndCommutative(*MI1) || 804 isAssociativeAndCommutative(*MI1, /* Invert */ true)) && 805 hasReassociableOperands(*MI1, MBB) && 806 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()); 807 } 808 809 // 1. The operation must be associative and commutative or be the inverse of 810 // such an operation. 811 // 2. The instruction must have virtual register definitions for its 812 // operands in the same basic block. 813 // 3. The instruction must have a reassociable sibling. 814 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst, 815 bool &Commuted) const { 816 return (isAssociativeAndCommutative(Inst) || 817 isAssociativeAndCommutative(Inst, /* Invert */ true)) && 818 hasReassociableOperands(Inst, Inst.getParent()) && 819 hasReassociableSibling(Inst, Commuted); 820 } 821 822 // The concept of the reassociation pass is that these operations can benefit 823 // from this kind of transformation: 824 // 825 // A = ? op ? 826 // B = A op X (Prev) 827 // C = B op Y (Root) 828 // --> 829 // A = ? op ? 830 // B = X op Y 831 // C = A op B 832 // 833 // breaking the dependency between A and B, allowing them to be executed in 834 // parallel (or back-to-back in a pipeline) instead of depending on each other. 835 836 // FIXME: This has the potential to be expensive (compile time) while not 837 // improving the code at all. Some ways to limit the overhead: 838 // 1. Track successful transforms; bail out if hit rate gets too low. 839 // 2. Only enable at -O3 or some other non-default optimization level. 840 // 3. Pre-screen pattern candidates here: if an operand of the previous 841 // instruction is known to not increase the critical path, then don't match 842 // that pattern. 843 bool TargetInstrInfo::getMachineCombinerPatterns( 844 MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns, 845 bool DoRegPressureReduce) const { 846 bool Commute; 847 if (isReassociationCandidate(Root, Commute)) { 848 // We found a sequence of instructions that may be suitable for a 849 // reassociation of operands to increase ILP. Specify each commutation 850 // possibility for the Prev instruction in the sequence and let the 851 // machine combiner decide if changing the operands is worthwhile. 852 if (Commute) { 853 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB); 854 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB); 855 } else { 856 Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY); 857 Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY); 858 } 859 return true; 860 } 861 862 return false; 863 } 864 865 /// Return true when a code sequence can improve loop throughput. 866 bool 867 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const { 868 return false; 869 } 870 871 std::pair<unsigned, unsigned> 872 TargetInstrInfo::getReassociationOpcodes(MachineCombinerPattern Pattern, 873 const MachineInstr &Root, 874 const MachineInstr &Prev) const { 875 bool AssocCommutRoot = isAssociativeAndCommutative(Root); 876 bool AssocCommutPrev = isAssociativeAndCommutative(Prev); 877 878 // Early exit if both opcodes are associative and commutative. It's a trivial 879 // reassociation when we only change operands order. In this case opcodes are 880 // not required to have inverse versions. 881 if (AssocCommutRoot && AssocCommutPrev) { 882 assert(Root.getOpcode() == Prev.getOpcode() && "Expected to be equal"); 883 return std::make_pair(Root.getOpcode(), Root.getOpcode()); 884 } 885 886 // At least one instruction is not associative or commutative. 887 // Since we have matched one of the reassociation patterns, we expect that the 888 // instructions' opcodes are equal or one of them is the inversion of the 889 // other. 890 assert(areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()) && 891 "Incorrectly matched pattern"); 892 unsigned AssocCommutOpcode = Root.getOpcode(); 893 unsigned InverseOpcode = *getInverseOpcode(Root.getOpcode()); 894 if (!AssocCommutRoot) 895 std::swap(AssocCommutOpcode, InverseOpcode); 896 897 // The transformation rule (`+` is any associative and commutative binary 898 // operation, `-` is the inverse): 899 // REASSOC_AX_BY: 900 // (A + X) + Y => A + (X + Y) 901 // (A + X) - Y => A + (X - Y) 902 // (A - X) + Y => A - (X - Y) 903 // (A - X) - Y => A - (X + Y) 904 // REASSOC_XA_BY: 905 // (X + A) + Y => (X + Y) + A 906 // (X + A) - Y => (X - Y) + A 907 // (X - A) + Y => (X + Y) - A 908 // (X - A) - Y => (X - Y) - A 909 // REASSOC_AX_YB: 910 // Y + (A + X) => (Y + X) + A 911 // Y - (A + X) => (Y - X) - A 912 // Y + (A - X) => (Y - X) + A 913 // Y - (A - X) => (Y + X) - A 914 // REASSOC_XA_YB: 915 // Y + (X + A) => (Y + X) + A 916 // Y - (X + A) => (Y - X) - A 917 // Y + (X - A) => (Y + X) - A 918 // Y - (X - A) => (Y - X) + A 919 switch (Pattern) { 920 default: 921 llvm_unreachable("Unexpected pattern"); 922 case MachineCombinerPattern::REASSOC_AX_BY: 923 if (!AssocCommutRoot && AssocCommutPrev) 924 return {AssocCommutOpcode, InverseOpcode}; 925 if (AssocCommutRoot && !AssocCommutPrev) 926 return {InverseOpcode, InverseOpcode}; 927 if (!AssocCommutRoot && !AssocCommutPrev) 928 return {InverseOpcode, AssocCommutOpcode}; 929 break; 930 case MachineCombinerPattern::REASSOC_XA_BY: 931 if (!AssocCommutRoot && AssocCommutPrev) 932 return {AssocCommutOpcode, InverseOpcode}; 933 if (AssocCommutRoot && !AssocCommutPrev) 934 return {InverseOpcode, AssocCommutOpcode}; 935 if (!AssocCommutRoot && !AssocCommutPrev) 936 return {InverseOpcode, InverseOpcode}; 937 break; 938 case MachineCombinerPattern::REASSOC_AX_YB: 939 if (!AssocCommutRoot && AssocCommutPrev) 940 return {InverseOpcode, InverseOpcode}; 941 if (AssocCommutRoot && !AssocCommutPrev) 942 return {AssocCommutOpcode, InverseOpcode}; 943 if (!AssocCommutRoot && !AssocCommutPrev) 944 return {InverseOpcode, AssocCommutOpcode}; 945 break; 946 case MachineCombinerPattern::REASSOC_XA_YB: 947 if (!AssocCommutRoot && AssocCommutPrev) 948 return {InverseOpcode, InverseOpcode}; 949 if (AssocCommutRoot && !AssocCommutPrev) 950 return {InverseOpcode, AssocCommutOpcode}; 951 if (!AssocCommutRoot && !AssocCommutPrev) 952 return {AssocCommutOpcode, InverseOpcode}; 953 break; 954 } 955 llvm_unreachable("Unhandled combination"); 956 } 957 958 // Return a pair of boolean flags showing if the new root and new prev operands 959 // must be swapped. See visual example of the rule in 960 // TargetInstrInfo::getReassociationOpcodes. 961 static std::pair<bool, bool> mustSwapOperands(MachineCombinerPattern Pattern) { 962 switch (Pattern) { 963 default: 964 llvm_unreachable("Unexpected pattern"); 965 case MachineCombinerPattern::REASSOC_AX_BY: 966 return {false, false}; 967 case MachineCombinerPattern::REASSOC_XA_BY: 968 return {true, false}; 969 case MachineCombinerPattern::REASSOC_AX_YB: 970 return {true, true}; 971 case MachineCombinerPattern::REASSOC_XA_YB: 972 return {true, true}; 973 } 974 } 975 976 /// Attempt the reassociation transformation to reduce critical path length. 977 /// See the above comments before getMachineCombinerPatterns(). 978 void TargetInstrInfo::reassociateOps( 979 MachineInstr &Root, MachineInstr &Prev, 980 MachineCombinerPattern Pattern, 981 SmallVectorImpl<MachineInstr *> &InsInstrs, 982 SmallVectorImpl<MachineInstr *> &DelInstrs, 983 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const { 984 MachineFunction *MF = Root.getMF(); 985 MachineRegisterInfo &MRI = MF->getRegInfo(); 986 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 987 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 988 const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI); 989 990 // This array encodes the operand index for each parameter because the 991 // operands may be commuted. Each row corresponds to a pattern value, 992 // and each column specifies the index of A, B, X, Y. 993 unsigned OpIdx[4][4] = { 994 { 1, 1, 2, 2 }, 995 { 1, 2, 2, 1 }, 996 { 2, 1, 1, 2 }, 997 { 2, 2, 1, 1 } 998 }; 999 1000 int Row; 1001 switch (Pattern) { 1002 case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break; 1003 case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break; 1004 case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break; 1005 case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break; 1006 default: llvm_unreachable("unexpected MachineCombinerPattern"); 1007 } 1008 1009 MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]); 1010 MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]); 1011 MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]); 1012 MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]); 1013 MachineOperand &OpC = Root.getOperand(0); 1014 1015 Register RegA = OpA.getReg(); 1016 Register RegB = OpB.getReg(); 1017 Register RegX = OpX.getReg(); 1018 Register RegY = OpY.getReg(); 1019 Register RegC = OpC.getReg(); 1020 1021 if (RegA.isVirtual()) 1022 MRI.constrainRegClass(RegA, RC); 1023 if (RegB.isVirtual()) 1024 MRI.constrainRegClass(RegB, RC); 1025 if (RegX.isVirtual()) 1026 MRI.constrainRegClass(RegX, RC); 1027 if (RegY.isVirtual()) 1028 MRI.constrainRegClass(RegY, RC); 1029 if (RegC.isVirtual()) 1030 MRI.constrainRegClass(RegC, RC); 1031 1032 // Create a new virtual register for the result of (X op Y) instead of 1033 // recycling RegB because the MachineCombiner's computation of the critical 1034 // path requires a new register definition rather than an existing one. 1035 Register NewVR = MRI.createVirtualRegister(RC); 1036 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0)); 1037 1038 auto [NewRootOpc, NewPrevOpc] = getReassociationOpcodes(Pattern, Root, Prev); 1039 bool KillA = OpA.isKill(); 1040 bool KillX = OpX.isKill(); 1041 bool KillY = OpY.isKill(); 1042 bool KillNewVR = true; 1043 1044 auto [SwapRootOperands, SwapPrevOperands] = mustSwapOperands(Pattern); 1045 1046 if (SwapPrevOperands) { 1047 std::swap(RegX, RegY); 1048 std::swap(KillX, KillY); 1049 } 1050 1051 // Create new instructions for insertion. 1052 MachineInstrBuilder MIB1 = 1053 BuildMI(*MF, MIMetadata(Prev), TII->get(NewPrevOpc), NewVR) 1054 .addReg(RegX, getKillRegState(KillX)) 1055 .addReg(RegY, getKillRegState(KillY)) 1056 .setMIFlags(Prev.getFlags()); 1057 1058 if (SwapRootOperands) { 1059 std::swap(RegA, NewVR); 1060 std::swap(KillA, KillNewVR); 1061 } 1062 1063 MachineInstrBuilder MIB2 = 1064 BuildMI(*MF, MIMetadata(Root), TII->get(NewRootOpc), RegC) 1065 .addReg(RegA, getKillRegState(KillA)) 1066 .addReg(NewVR, getKillRegState(KillNewVR)) 1067 .setMIFlags(Root.getFlags()); 1068 1069 setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2); 1070 1071 // Record new instructions for insertion and old instructions for deletion. 1072 InsInstrs.push_back(MIB1); 1073 InsInstrs.push_back(MIB2); 1074 DelInstrs.push_back(&Prev); 1075 DelInstrs.push_back(&Root); 1076 1077 // We transformed: 1078 // B = A op X (Prev) 1079 // C = B op Y (Root) 1080 // Into: 1081 // B = X op Y (MIB1) 1082 // C = A op B (MIB2) 1083 // C has the same value as before, B doesn't; as such, keep the debug number 1084 // of C but not of B. 1085 if (unsigned OldRootNum = Root.peekDebugInstrNum()) 1086 MIB2.getInstr()->setDebugInstrNum(OldRootNum); 1087 } 1088 1089 void TargetInstrInfo::genAlternativeCodeSequence( 1090 MachineInstr &Root, MachineCombinerPattern Pattern, 1091 SmallVectorImpl<MachineInstr *> &InsInstrs, 1092 SmallVectorImpl<MachineInstr *> &DelInstrs, 1093 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const { 1094 MachineRegisterInfo &MRI = Root.getMF()->getRegInfo(); 1095 1096 // Select the previous instruction in the sequence based on the input pattern. 1097 MachineInstr *Prev = nullptr; 1098 switch (Pattern) { 1099 case MachineCombinerPattern::REASSOC_AX_BY: 1100 case MachineCombinerPattern::REASSOC_XA_BY: 1101 Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg()); 1102 break; 1103 case MachineCombinerPattern::REASSOC_AX_YB: 1104 case MachineCombinerPattern::REASSOC_XA_YB: 1105 Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg()); 1106 break; 1107 default: 1108 llvm_unreachable("Unknown pattern for machine combiner"); 1109 } 1110 1111 // Don't reassociate if Prev and Root are in different blocks. 1112 if (Prev->getParent() != Root.getParent()) 1113 return; 1114 1115 reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg); 1116 } 1117 1118 MachineTraceStrategy TargetInstrInfo::getMachineCombinerTraceStrategy() const { 1119 return MachineTraceStrategy::TS_MinInstrCount; 1120 } 1121 1122 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric( 1123 const MachineInstr &MI) const { 1124 const MachineFunction &MF = *MI.getMF(); 1125 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1126 1127 // Remat clients assume operand 0 is the defined register. 1128 if (!MI.getNumOperands() || !MI.getOperand(0).isReg()) 1129 return false; 1130 Register DefReg = MI.getOperand(0).getReg(); 1131 1132 // A sub-register definition can only be rematerialized if the instruction 1133 // doesn't read the other parts of the register. Otherwise it is really a 1134 // read-modify-write operation on the full virtual register which cannot be 1135 // moved safely. 1136 if (DefReg.isVirtual() && MI.getOperand(0).getSubReg() && 1137 MI.readsVirtualRegister(DefReg)) 1138 return false; 1139 1140 // A load from a fixed stack slot can be rematerialized. This may be 1141 // redundant with subsequent checks, but it's target-independent, 1142 // simple, and a common case. 1143 int FrameIdx = 0; 1144 if (isLoadFromStackSlot(MI, FrameIdx) && 1145 MF.getFrameInfo().isImmutableObjectIndex(FrameIdx)) 1146 return true; 1147 1148 // Avoid instructions obviously unsafe for remat. 1149 if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() || 1150 MI.hasUnmodeledSideEffects()) 1151 return false; 1152 1153 // Don't remat inline asm. We have no idea how expensive it is 1154 // even if it's side effect free. 1155 if (MI.isInlineAsm()) 1156 return false; 1157 1158 // Avoid instructions which load from potentially varying memory. 1159 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad()) 1160 return false; 1161 1162 // If any of the registers accessed are non-constant, conservatively assume 1163 // the instruction is not rematerializable. 1164 for (const MachineOperand &MO : MI.operands()) { 1165 if (!MO.isReg()) continue; 1166 Register Reg = MO.getReg(); 1167 if (Reg == 0) 1168 continue; 1169 1170 // Check for a well-behaved physical register. 1171 if (Reg.isPhysical()) { 1172 if (MO.isUse()) { 1173 // If the physreg has no defs anywhere, it's just an ambient register 1174 // and we can freely move its uses. Alternatively, if it's allocatable, 1175 // it could get allocated to something with a def during allocation. 1176 if (!MRI.isConstantPhysReg(Reg)) 1177 return false; 1178 } else { 1179 // A physreg def. We can't remat it. 1180 return false; 1181 } 1182 continue; 1183 } 1184 1185 // Only allow one virtual-register def. There may be multiple defs of the 1186 // same virtual register, though. 1187 if (MO.isDef() && Reg != DefReg) 1188 return false; 1189 1190 // Don't allow any virtual-register uses. Rematting an instruction with 1191 // virtual register uses would length the live ranges of the uses, which 1192 // is not necessarily a good idea, certainly not "trivial". 1193 if (MO.isUse()) 1194 return false; 1195 } 1196 1197 // Everything checked out. 1198 return true; 1199 } 1200 1201 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const { 1202 const MachineFunction *MF = MI.getMF(); 1203 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); 1204 bool StackGrowsDown = 1205 TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown; 1206 1207 unsigned FrameSetupOpcode = getCallFrameSetupOpcode(); 1208 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode(); 1209 1210 if (!isFrameInstr(MI)) 1211 return 0; 1212 1213 int SPAdj = TFI->alignSPAdjust(getFrameSize(MI)); 1214 1215 if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) || 1216 (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode)) 1217 SPAdj = -SPAdj; 1218 1219 return SPAdj; 1220 } 1221 1222 /// isSchedulingBoundary - Test if the given instruction should be 1223 /// considered a scheduling boundary. This primarily includes labels 1224 /// and terminators. 1225 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1226 const MachineBasicBlock *MBB, 1227 const MachineFunction &MF) const { 1228 // Terminators and labels can't be scheduled around. 1229 if (MI.isTerminator() || MI.isPosition()) 1230 return true; 1231 1232 // INLINEASM_BR can jump to another block 1233 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 1234 return true; 1235 1236 // Don't attempt to schedule around any instruction that defines 1237 // a stack-oriented pointer, as it's unlikely to be profitable. This 1238 // saves compile time, because it doesn't require every single 1239 // stack slot reference to depend on the instruction that does the 1240 // modification. 1241 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1242 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1243 return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI); 1244 } 1245 1246 // Provide a global flag for disabling the PreRA hazard recognizer that targets 1247 // may choose to honor. 1248 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 1249 return !DisableHazardRecognizer; 1250 } 1251 1252 // Default implementation of CreateTargetRAHazardRecognizer. 1253 ScheduleHazardRecognizer *TargetInstrInfo:: 1254 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 1255 const ScheduleDAG *DAG) const { 1256 // Dummy hazard recognizer allows all instructions to issue. 1257 return new ScheduleHazardRecognizer(); 1258 } 1259 1260 // Default implementation of CreateTargetMIHazardRecognizer. 1261 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer( 1262 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 1263 return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler"); 1264 } 1265 1266 // Default implementation of CreateTargetPostRAHazardRecognizer. 1267 ScheduleHazardRecognizer *TargetInstrInfo:: 1268 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 1269 const ScheduleDAG *DAG) const { 1270 return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 1271 } 1272 1273 // Default implementation of getMemOperandWithOffset. 1274 bool TargetInstrInfo::getMemOperandWithOffset( 1275 const MachineInstr &MI, const MachineOperand *&BaseOp, int64_t &Offset, 1276 bool &OffsetIsScalable, const TargetRegisterInfo *TRI) const { 1277 SmallVector<const MachineOperand *, 4> BaseOps; 1278 unsigned Width; 1279 if (!getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, OffsetIsScalable, 1280 Width, TRI) || 1281 BaseOps.size() != 1) 1282 return false; 1283 BaseOp = BaseOps.front(); 1284 return true; 1285 } 1286 1287 //===----------------------------------------------------------------------===// 1288 // SelectionDAG latency interface. 1289 //===----------------------------------------------------------------------===// 1290 1291 int 1292 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1293 SDNode *DefNode, unsigned DefIdx, 1294 SDNode *UseNode, unsigned UseIdx) const { 1295 if (!ItinData || ItinData->isEmpty()) 1296 return -1; 1297 1298 if (!DefNode->isMachineOpcode()) 1299 return -1; 1300 1301 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 1302 if (!UseNode->isMachineOpcode()) 1303 return ItinData->getOperandCycle(DefClass, DefIdx); 1304 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 1305 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1306 } 1307 1308 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1309 SDNode *N) const { 1310 if (!ItinData || ItinData->isEmpty()) 1311 return 1; 1312 1313 if (!N->isMachineOpcode()) 1314 return 1; 1315 1316 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 1317 } 1318 1319 //===----------------------------------------------------------------------===// 1320 // MachineInstr latency interface. 1321 //===----------------------------------------------------------------------===// 1322 1323 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 1324 const MachineInstr &MI) const { 1325 if (!ItinData || ItinData->isEmpty()) 1326 return 1; 1327 1328 unsigned Class = MI.getDesc().getSchedClass(); 1329 int UOps = ItinData->Itineraries[Class].NumMicroOps; 1330 if (UOps >= 0) 1331 return UOps; 1332 1333 // The # of u-ops is dynamically determined. The specific target should 1334 // override this function to return the right number. 1335 return 1; 1336 } 1337 1338 /// Return the default expected latency for a def based on it's opcode. 1339 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 1340 const MachineInstr &DefMI) const { 1341 if (DefMI.isTransient()) 1342 return 0; 1343 if (DefMI.mayLoad()) 1344 return SchedModel.LoadLatency; 1345 if (isHighLatencyDef(DefMI.getOpcode())) 1346 return SchedModel.HighLatency; 1347 return 1; 1348 } 1349 1350 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const { 1351 return 0; 1352 } 1353 1354 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 1355 const MachineInstr &MI, 1356 unsigned *PredCost) const { 1357 // Default to one cycle for no itinerary. However, an "empty" itinerary may 1358 // still have a MinLatency property, which getStageLatency checks. 1359 if (!ItinData) 1360 return MI.mayLoad() ? 2 : 1; 1361 1362 return ItinData->getStageLatency(MI.getDesc().getSchedClass()); 1363 } 1364 1365 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 1366 const MachineInstr &DefMI, 1367 unsigned DefIdx) const { 1368 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 1369 if (!ItinData || ItinData->isEmpty()) 1370 return false; 1371 1372 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1373 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 1374 return (DefCycle != -1 && DefCycle <= 1); 1375 } 1376 1377 std::optional<ParamLoadedValue> 1378 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI, 1379 Register Reg) const { 1380 const MachineFunction *MF = MI.getMF(); 1381 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1382 DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {}); 1383 int64_t Offset; 1384 bool OffsetIsScalable; 1385 1386 // To simplify the sub-register handling, verify that we only need to 1387 // consider physical registers. 1388 assert(MF->getProperties().hasProperty( 1389 MachineFunctionProperties::Property::NoVRegs)); 1390 1391 if (auto DestSrc = isCopyInstr(MI)) { 1392 Register DestReg = DestSrc->Destination->getReg(); 1393 1394 // If the copy destination is the forwarding reg, describe the forwarding 1395 // reg using the copy source as the backup location. Example: 1396 // 1397 // x0 = MOV x7 1398 // call callee(x0) ; x0 described as x7 1399 if (Reg == DestReg) 1400 return ParamLoadedValue(*DestSrc->Source, Expr); 1401 1402 // If the target's hook couldn't describe this copy, give up. 1403 return std::nullopt; 1404 } else if (auto RegImm = isAddImmediate(MI, Reg)) { 1405 Register SrcReg = RegImm->Reg; 1406 Offset = RegImm->Imm; 1407 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset); 1408 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); 1409 } else if (MI.hasOneMemOperand()) { 1410 // Only describe memory which provably does not escape the function. As 1411 // described in llvm.org/PR43343, escaped memory may be clobbered by the 1412 // callee (or by another thread). 1413 const auto &TII = MF->getSubtarget().getInstrInfo(); 1414 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1415 const MachineMemOperand *MMO = MI.memoperands()[0]; 1416 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1417 1418 // If the address points to "special" memory (e.g. a spill slot), it's 1419 // sufficient to check that it isn't aliased by any high-level IR value. 1420 if (!PSV || PSV->mayAlias(&MFI)) 1421 return std::nullopt; 1422 1423 const MachineOperand *BaseOp; 1424 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, 1425 TRI)) 1426 return std::nullopt; 1427 1428 // FIXME: Scalable offsets are not yet handled in the offset code below. 1429 if (OffsetIsScalable) 1430 return std::nullopt; 1431 1432 // TODO: Can currently only handle mem instructions with a single define. 1433 // An example from the x86 target: 1434 // ... 1435 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx 1436 // ... 1437 // 1438 if (MI.getNumExplicitDefs() != 1) 1439 return std::nullopt; 1440 1441 // TODO: In what way do we need to take Reg into consideration here? 1442 1443 SmallVector<uint64_t, 8> Ops; 1444 DIExpression::appendOffset(Ops, Offset); 1445 Ops.push_back(dwarf::DW_OP_deref_size); 1446 Ops.push_back(MMO->getSize()); 1447 Expr = DIExpression::prependOpcodes(Expr, Ops); 1448 return ParamLoadedValue(*BaseOp, Expr); 1449 } 1450 1451 return std::nullopt; 1452 } 1453 1454 /// Both DefMI and UseMI must be valid. By default, call directly to the 1455 /// itinerary. This may be overriden by the target. 1456 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 1457 const MachineInstr &DefMI, 1458 unsigned DefIdx, 1459 const MachineInstr &UseMI, 1460 unsigned UseIdx) const { 1461 unsigned DefClass = DefMI.getDesc().getSchedClass(); 1462 unsigned UseClass = UseMI.getDesc().getSchedClass(); 1463 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 1464 } 1465 1466 bool TargetInstrInfo::getRegSequenceInputs( 1467 const MachineInstr &MI, unsigned DefIdx, 1468 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 1469 assert((MI.isRegSequence() || 1470 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 1471 1472 if (!MI.isRegSequence()) 1473 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 1474 1475 // We are looking at: 1476 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1477 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 1478 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 1479 OpIdx += 2) { 1480 const MachineOperand &MOReg = MI.getOperand(OpIdx); 1481 if (MOReg.isUndef()) 1482 continue; 1483 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 1484 assert(MOSubIdx.isImm() && 1485 "One of the subindex of the reg_sequence is not an immediate"); 1486 // Record Reg:SubReg, SubIdx. 1487 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 1488 (unsigned)MOSubIdx.getImm())); 1489 } 1490 return true; 1491 } 1492 1493 bool TargetInstrInfo::getExtractSubregInputs( 1494 const MachineInstr &MI, unsigned DefIdx, 1495 RegSubRegPairAndIdx &InputReg) const { 1496 assert((MI.isExtractSubreg() || 1497 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 1498 1499 if (!MI.isExtractSubreg()) 1500 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 1501 1502 // We are looking at: 1503 // Def = EXTRACT_SUBREG v0.sub1, sub0. 1504 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 1505 const MachineOperand &MOReg = MI.getOperand(1); 1506 if (MOReg.isUndef()) 1507 return false; 1508 const MachineOperand &MOSubIdx = MI.getOperand(2); 1509 assert(MOSubIdx.isImm() && 1510 "The subindex of the extract_subreg is not an immediate"); 1511 1512 InputReg.Reg = MOReg.getReg(); 1513 InputReg.SubReg = MOReg.getSubReg(); 1514 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1515 return true; 1516 } 1517 1518 bool TargetInstrInfo::getInsertSubregInputs( 1519 const MachineInstr &MI, unsigned DefIdx, 1520 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 1521 assert((MI.isInsertSubreg() || 1522 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 1523 1524 if (!MI.isInsertSubreg()) 1525 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 1526 1527 // We are looking at: 1528 // Def = INSERT_SEQUENCE v0, v1, sub0. 1529 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 1530 const MachineOperand &MOBaseReg = MI.getOperand(1); 1531 const MachineOperand &MOInsertedReg = MI.getOperand(2); 1532 if (MOInsertedReg.isUndef()) 1533 return false; 1534 const MachineOperand &MOSubIdx = MI.getOperand(3); 1535 assert(MOSubIdx.isImm() && 1536 "One of the subindex of the reg_sequence is not an immediate"); 1537 BaseReg.Reg = MOBaseReg.getReg(); 1538 BaseReg.SubReg = MOBaseReg.getSubReg(); 1539 1540 InsertedReg.Reg = MOInsertedReg.getReg(); 1541 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 1542 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 1543 return true; 1544 } 1545 1546 // Returns a MIRPrinter comment for this machine operand. 1547 std::string TargetInstrInfo::createMIROperandComment( 1548 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 1549 const TargetRegisterInfo *TRI) const { 1550 1551 if (!MI.isInlineAsm()) 1552 return ""; 1553 1554 std::string Flags; 1555 raw_string_ostream OS(Flags); 1556 1557 if (OpIdx == InlineAsm::MIOp_ExtraInfo) { 1558 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1559 unsigned ExtraInfo = Op.getImm(); 1560 bool First = true; 1561 for (StringRef Info : InlineAsm::getExtraInfoNames(ExtraInfo)) { 1562 if (!First) 1563 OS << " "; 1564 First = false; 1565 OS << Info; 1566 } 1567 1568 return OS.str(); 1569 } 1570 1571 int FlagIdx = MI.findInlineAsmFlagIdx(OpIdx); 1572 if (FlagIdx < 0 || (unsigned)FlagIdx != OpIdx) 1573 return ""; 1574 1575 assert(Op.isImm() && "Expected flag operand to be an immediate"); 1576 // Pretty print the inline asm operand descriptor. 1577 unsigned Flag = Op.getImm(); 1578 unsigned Kind = InlineAsm::getKind(Flag); 1579 OS << InlineAsm::getKindName(Kind); 1580 1581 unsigned RCID = 0; 1582 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1583 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1584 if (TRI) { 1585 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1586 } else 1587 OS << ":RC" << RCID; 1588 } 1589 1590 if (InlineAsm::isMemKind(Flag)) { 1591 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1592 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1593 } 1594 1595 unsigned TiedTo = 0; 1596 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1597 OS << " tiedto:$" << TiedTo; 1598 1599 return OS.str(); 1600 } 1601 1602 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() = default; 1603 1604 void TargetInstrInfo::mergeOutliningCandidateAttributes( 1605 Function &F, std::vector<outliner::Candidate> &Candidates) const { 1606 // Include target features from an arbitrary candidate for the outlined 1607 // function. This makes sure the outlined function knows what kinds of 1608 // instructions are going into it. This is fine, since all parent functions 1609 // must necessarily support the instructions that are in the outlined region. 1610 outliner::Candidate &FirstCand = Candidates.front(); 1611 const Function &ParentFn = FirstCand.getMF()->getFunction(); 1612 if (ParentFn.hasFnAttribute("target-features")) 1613 F.addFnAttr(ParentFn.getFnAttribute("target-features")); 1614 if (ParentFn.hasFnAttribute("target-cpu")) 1615 F.addFnAttr(ParentFn.getFnAttribute("target-cpu")); 1616 1617 // Set nounwind, so we don't generate eh_frame. 1618 if (llvm::all_of(Candidates, [](const outliner::Candidate &C) { 1619 return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind); 1620 })) 1621 F.addFnAttr(Attribute::NoUnwind); 1622 } 1623 1624 outliner::InstrType TargetInstrInfo::getOutliningType( 1625 MachineBasicBlock::iterator &MIT, unsigned Flags) const { 1626 MachineInstr &MI = *MIT; 1627 1628 // NOTE: MI.isMetaInstruction() will match CFI_INSTRUCTION, but some targets 1629 // have support for outlining those. Special-case that here. 1630 if (MI.isCFIInstruction()) 1631 // Just go right to the target implementation. 1632 return getOutliningTypeImpl(MIT, Flags); 1633 1634 // Be conservative about inline assembly. 1635 if (MI.isInlineAsm()) 1636 return outliner::InstrType::Illegal; 1637 1638 // Labels generally can't safely be outlined. 1639 if (MI.isLabel()) 1640 return outliner::InstrType::Illegal; 1641 1642 // Don't let debug instructions impact analysis. 1643 if (MI.isDebugInstr()) 1644 return outliner::InstrType::Invisible; 1645 1646 // Some other special cases. 1647 switch (MI.getOpcode()) { 1648 case TargetOpcode::IMPLICIT_DEF: 1649 case TargetOpcode::KILL: 1650 case TargetOpcode::LIFETIME_START: 1651 case TargetOpcode::LIFETIME_END: 1652 return outliner::InstrType::Invisible; 1653 default: 1654 break; 1655 } 1656 1657 // Is this a terminator for a basic block? 1658 if (MI.isTerminator()) { 1659 // If this is a branch to another block, we can't outline it. 1660 if (!MI.getParent()->succ_empty()) 1661 return outliner::InstrType::Illegal; 1662 1663 // Don't outline if the branch is not unconditional. 1664 if (isPredicated(MI)) 1665 return outliner::InstrType::Illegal; 1666 } 1667 1668 // Make sure none of the operands of this instruction do anything that 1669 // might break if they're moved outside their current function. 1670 // This includes MachineBasicBlock references, BlockAddressses, 1671 // Constant pool indices and jump table indices. 1672 // 1673 // A quick note on MO_TargetIndex: 1674 // This doesn't seem to be used in any of the architectures that the 1675 // MachineOutliner supports, but it was still filtered out in all of them. 1676 // There was one exception (RISC-V), but MO_TargetIndex also isn't used there. 1677 // As such, this check is removed both here and in the target-specific 1678 // implementations. Instead, we assert to make sure this doesn't 1679 // catch anyone off-guard somewhere down the line. 1680 for (const MachineOperand &MOP : MI.operands()) { 1681 // If you hit this assertion, please remove it and adjust 1682 // `getOutliningTypeImpl` for your target appropriately if necessary. 1683 // Adding the assertion back to other supported architectures 1684 // would be nice too :) 1685 assert(!MOP.isTargetIndex() && "This isn't used quite yet!"); 1686 1687 // CFI instructions should already have been filtered out at this point. 1688 assert(!MOP.isCFIIndex() && "CFI instructions handled elsewhere!"); 1689 1690 // PrologEpilogInserter should've already run at this point. 1691 assert(!MOP.isFI() && "FrameIndex instructions should be gone by now!"); 1692 1693 if (MOP.isMBB() || MOP.isBlockAddress() || MOP.isCPI() || MOP.isJTI()) 1694 return outliner::InstrType::Illegal; 1695 } 1696 1697 // If we don't know, delegate to the target-specific hook. 1698 return getOutliningTypeImpl(MIT, Flags); 1699 } 1700 1701 bool TargetInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 1702 unsigned &Flags) const { 1703 // Some instrumentations create special TargetOpcode at the start which 1704 // expands to special code sequences which must be present. 1705 auto First = MBB.getFirstNonDebugInstr(); 1706 if (First == MBB.end()) 1707 return true; 1708 1709 if (First->getOpcode() == TargetOpcode::FENTRY_CALL || 1710 First->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_ENTER) 1711 return false; 1712 1713 // Some instrumentations create special pseudo-instructions at or just before 1714 // the end that must be present. 1715 auto Last = MBB.getLastNonDebugInstr(); 1716 if (Last->getOpcode() == TargetOpcode::PATCHABLE_RET || 1717 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL) 1718 return false; 1719 1720 if (Last != First && Last->isReturn()) { 1721 --Last; 1722 if (Last->getOpcode() == TargetOpcode::PATCHABLE_FUNCTION_EXIT || 1723 Last->getOpcode() == TargetOpcode::PATCHABLE_TAIL_CALL) 1724 return false; 1725 } 1726 return true; 1727 } 1728