xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TailDuplicator.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This utility class duplicates basic blocks ending in unconditional branches
10 // into the tails of their predecessors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TailDuplicator.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/MachineSizeOpts.h"
32 #include "llvm/CodeGen/MachineSSAUpdater.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "tailduplication"
51 
52 STATISTIC(NumTails, "Number of tails duplicated");
53 STATISTIC(NumTailDups, "Number of tail duplicated blocks");
54 STATISTIC(NumTailDupAdded,
55           "Number of instructions added due to tail duplication");
56 STATISTIC(NumTailDupRemoved,
57           "Number of instructions removed due to tail duplication");
58 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
59 STATISTIC(NumAddedPHIs, "Number of phis added");
60 
61 // Heuristic for tail duplication.
62 static cl::opt<unsigned> TailDuplicateSize(
63     "tail-dup-size",
64     cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
65     cl::Hidden);
66 
67 static cl::opt<unsigned> TailDupIndirectBranchSize(
68     "tail-dup-indirect-size",
69     cl::desc("Maximum instructions to consider tail duplicating blocks that "
70              "end with indirect branches."), cl::init(20),
71     cl::Hidden);
72 
73 static cl::opt<bool>
74     TailDupVerify("tail-dup-verify",
75                   cl::desc("Verify sanity of PHI instructions during taildup"),
76                   cl::init(false), cl::Hidden);
77 
78 static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
79                                       cl::Hidden);
80 
81 void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc,
82                             const MachineBranchProbabilityInfo *MBPIin,
83                             MBFIWrapper *MBFIin,
84                             ProfileSummaryInfo *PSIin,
85                             bool LayoutModeIn, unsigned TailDupSizeIn) {
86   MF = &MFin;
87   TII = MF->getSubtarget().getInstrInfo();
88   TRI = MF->getSubtarget().getRegisterInfo();
89   MRI = &MF->getRegInfo();
90   MMI = &MF->getMMI();
91   MBPI = MBPIin;
92   MBFI = MBFIin;
93   PSI = PSIin;
94   TailDupSize = TailDupSizeIn;
95 
96   assert(MBPI != nullptr && "Machine Branch Probability Info required");
97 
98   LayoutMode = LayoutModeIn;
99   this->PreRegAlloc = PreRegAlloc;
100 }
101 
102 static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
103   for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) {
104     MachineBasicBlock *MBB = &*I;
105     SmallSetVector<MachineBasicBlock *, 8> Preds(MBB->pred_begin(),
106                                                  MBB->pred_end());
107     MachineBasicBlock::iterator MI = MBB->begin();
108     while (MI != MBB->end()) {
109       if (!MI->isPHI())
110         break;
111       for (MachineBasicBlock *PredBB : Preds) {
112         bool Found = false;
113         for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
114           MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
115           if (PHIBB == PredBB) {
116             Found = true;
117             break;
118           }
119         }
120         if (!Found) {
121           dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
122                  << *MI;
123           dbgs() << "  missing input from predecessor "
124                  << printMBBReference(*PredBB) << '\n';
125           llvm_unreachable(nullptr);
126         }
127       }
128 
129       for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
130         MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
131         if (CheckExtra && !Preds.count(PHIBB)) {
132           dbgs() << "Warning: malformed PHI in " << printMBBReference(*MBB)
133                  << ": " << *MI;
134           dbgs() << "  extra input from predecessor "
135                  << printMBBReference(*PHIBB) << '\n';
136           llvm_unreachable(nullptr);
137         }
138         if (PHIBB->getNumber() < 0) {
139           dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
140                  << *MI;
141           dbgs() << "  non-existing " << printMBBReference(*PHIBB) << '\n';
142           llvm_unreachable(nullptr);
143         }
144       }
145       ++MI;
146     }
147   }
148 }
149 
150 /// Tail duplicate the block and cleanup.
151 /// \p IsSimple - return value of isSimpleBB
152 /// \p MBB - block to be duplicated
153 /// \p ForcedLayoutPred - If non-null, treat this block as the layout
154 ///     predecessor, instead of using the ordering in MF
155 /// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of
156 ///     all Preds that received a copy of \p MBB.
157 /// \p RemovalCallback - if non-null, called just before MBB is deleted.
158 bool TailDuplicator::tailDuplicateAndUpdate(
159     bool IsSimple, MachineBasicBlock *MBB,
160     MachineBasicBlock *ForcedLayoutPred,
161     SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds,
162     function_ref<void(MachineBasicBlock *)> *RemovalCallback,
163     SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) {
164   // Save the successors list.
165   SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
166                                                MBB->succ_end());
167 
168   SmallVector<MachineBasicBlock *, 8> TDBBs;
169   SmallVector<MachineInstr *, 16> Copies;
170   if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred,
171                      TDBBs, Copies, CandidatePtr))
172     return false;
173 
174   ++NumTails;
175 
176   SmallVector<MachineInstr *, 8> NewPHIs;
177   MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);
178 
179   // TailBB's immediate successors are now successors of those predecessors
180   // which duplicated TailBB. Add the predecessors as sources to the PHI
181   // instructions.
182   bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
183   if (PreRegAlloc)
184     updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
185 
186   // If it is dead, remove it.
187   if (isDead) {
188     NumTailDupRemoved += MBB->size();
189     removeDeadBlock(MBB, RemovalCallback);
190     ++NumDeadBlocks;
191   }
192 
193   // Update SSA form.
194   if (!SSAUpdateVRs.empty()) {
195     for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
196       unsigned VReg = SSAUpdateVRs[i];
197       SSAUpdate.Initialize(VReg);
198 
199       // If the original definition is still around, add it as an available
200       // value.
201       MachineInstr *DefMI = MRI->getVRegDef(VReg);
202       MachineBasicBlock *DefBB = nullptr;
203       if (DefMI) {
204         DefBB = DefMI->getParent();
205         SSAUpdate.AddAvailableValue(DefBB, VReg);
206       }
207 
208       // Add the new vregs as available values.
209       DenseMap<Register, AvailableValsTy>::iterator LI =
210           SSAUpdateVals.find(VReg);
211       for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
212         MachineBasicBlock *SrcBB = LI->second[j].first;
213         Register SrcReg = LI->second[j].second;
214         SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
215       }
216 
217       // Rewrite uses that are outside of the original def's block.
218       MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
219       // Only remove instructions after loop, as DBG_VALUE_LISTs with multiple
220       // uses of VReg may invalidate the use iterator when erased.
221       SmallPtrSet<MachineInstr *, 4> InstrsToRemove;
222       while (UI != MRI->use_end()) {
223         MachineOperand &UseMO = *UI;
224         MachineInstr *UseMI = UseMO.getParent();
225         ++UI;
226         if (UseMI->isDebugValue()) {
227           // SSAUpdate can replace the use with an undef. That creates
228           // a debug instruction that is a kill.
229           // FIXME: Should it SSAUpdate job to delete debug instructions
230           // instead of replacing the use with undef?
231           InstrsToRemove.insert(UseMI);
232           continue;
233         }
234         if (UseMI->getParent() == DefBB && !UseMI->isPHI())
235           continue;
236         SSAUpdate.RewriteUse(UseMO);
237       }
238       for (auto *MI : InstrsToRemove)
239         MI->eraseFromParent();
240     }
241 
242     SSAUpdateVRs.clear();
243     SSAUpdateVals.clear();
244   }
245 
246   // Eliminate some of the copies inserted by tail duplication to maintain
247   // SSA form.
248   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
249     MachineInstr *Copy = Copies[i];
250     if (!Copy->isCopy())
251       continue;
252     Register Dst = Copy->getOperand(0).getReg();
253     Register Src = Copy->getOperand(1).getReg();
254     if (MRI->hasOneNonDBGUse(Src) &&
255         MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) {
256       // Copy is the only use. Do trivial copy propagation here.
257       MRI->replaceRegWith(Dst, Src);
258       Copy->eraseFromParent();
259     }
260   }
261 
262   if (NewPHIs.size())
263     NumAddedPHIs += NewPHIs.size();
264 
265   if (DuplicatedPreds)
266     *DuplicatedPreds = std::move(TDBBs);
267 
268   return true;
269 }
270 
271 /// Look for small blocks that are unconditionally branched to and do not fall
272 /// through. Tail-duplicate their instructions into their predecessors to
273 /// eliminate (dynamic) branches.
274 bool TailDuplicator::tailDuplicateBlocks() {
275   bool MadeChange = false;
276 
277   if (PreRegAlloc && TailDupVerify) {
278     LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
279     VerifyPHIs(*MF, true);
280   }
281 
282   for (MachineFunction::iterator I = ++MF->begin(), E = MF->end(); I != E;) {
283     MachineBasicBlock *MBB = &*I++;
284 
285     if (NumTails == TailDupLimit)
286       break;
287 
288     bool IsSimple = isSimpleBB(MBB);
289 
290     if (!shouldTailDuplicate(IsSimple, *MBB))
291       continue;
292 
293     MadeChange |= tailDuplicateAndUpdate(IsSimple, MBB, nullptr);
294   }
295 
296   if (PreRegAlloc && TailDupVerify)
297     VerifyPHIs(*MF, false);
298 
299   return MadeChange;
300 }
301 
302 static bool isDefLiveOut(Register Reg, MachineBasicBlock *BB,
303                          const MachineRegisterInfo *MRI) {
304   for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
305     if (UseMI.isDebugValue())
306       continue;
307     if (UseMI.getParent() != BB)
308       return true;
309   }
310   return false;
311 }
312 
313 static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
314   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
315     if (MI->getOperand(i + 1).getMBB() == SrcBB)
316       return i;
317   return 0;
318 }
319 
320 // Remember which registers are used by phis in this block. This is
321 // used to determine which registers are liveout while modifying the
322 // block (which is why we need to copy the information).
323 static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
324                               DenseSet<Register> *UsedByPhi) {
325   for (const auto &MI : BB) {
326     if (!MI.isPHI())
327       break;
328     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
329       Register SrcReg = MI.getOperand(i).getReg();
330       UsedByPhi->insert(SrcReg);
331     }
332   }
333 }
334 
335 /// Add a definition and source virtual registers pair for SSA update.
336 void TailDuplicator::addSSAUpdateEntry(Register OrigReg, Register NewReg,
337                                        MachineBasicBlock *BB) {
338   DenseMap<Register, AvailableValsTy>::iterator LI =
339       SSAUpdateVals.find(OrigReg);
340   if (LI != SSAUpdateVals.end())
341     LI->second.push_back(std::make_pair(BB, NewReg));
342   else {
343     AvailableValsTy Vals;
344     Vals.push_back(std::make_pair(BB, NewReg));
345     SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
346     SSAUpdateVRs.push_back(OrigReg);
347   }
348 }
349 
350 /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the
351 /// source register that's contributed by PredBB and update SSA update map.
352 void TailDuplicator::processPHI(
353     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
354     DenseMap<Register, RegSubRegPair> &LocalVRMap,
355     SmallVectorImpl<std::pair<Register, RegSubRegPair>> &Copies,
356     const DenseSet<Register> &RegsUsedByPhi, bool Remove) {
357   Register DefReg = MI->getOperand(0).getReg();
358   unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
359   assert(SrcOpIdx && "Unable to find matching PHI source?");
360   Register SrcReg = MI->getOperand(SrcOpIdx).getReg();
361   unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg();
362   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
363   LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg)));
364 
365   // Insert a copy from source to the end of the block. The def register is the
366   // available value liveout of the block.
367   Register NewDef = MRI->createVirtualRegister(RC);
368   Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg)));
369   if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
370     addSSAUpdateEntry(DefReg, NewDef, PredBB);
371 
372   if (!Remove)
373     return;
374 
375   // Remove PredBB from the PHI node.
376   MI->RemoveOperand(SrcOpIdx + 1);
377   MI->RemoveOperand(SrcOpIdx);
378   if (MI->getNumOperands() == 1)
379     MI->eraseFromParent();
380 }
381 
382 /// Duplicate a TailBB instruction to PredBB and update
383 /// the source operands due to earlier PHI translation.
384 void TailDuplicator::duplicateInstruction(
385     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
386     DenseMap<Register, RegSubRegPair> &LocalVRMap,
387     const DenseSet<Register> &UsedByPhi) {
388   // Allow duplication of CFI instructions.
389   if (MI->isCFIInstruction()) {
390     BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()),
391       TII->get(TargetOpcode::CFI_INSTRUCTION)).addCFIIndex(
392       MI->getOperand(0).getCFIIndex());
393     return;
394   }
395   MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI);
396   if (PreRegAlloc) {
397     for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) {
398       MachineOperand &MO = NewMI.getOperand(i);
399       if (!MO.isReg())
400         continue;
401       Register Reg = MO.getReg();
402       if (!Register::isVirtualRegister(Reg))
403         continue;
404       if (MO.isDef()) {
405         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
406         Register NewReg = MRI->createVirtualRegister(RC);
407         MO.setReg(NewReg);
408         LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
409         if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
410           addSSAUpdateEntry(Reg, NewReg, PredBB);
411       } else {
412         auto VI = LocalVRMap.find(Reg);
413         if (VI != LocalVRMap.end()) {
414           // Need to make sure that the register class of the mapped register
415           // will satisfy the constraints of the class of the register being
416           // replaced.
417           auto *OrigRC = MRI->getRegClass(Reg);
418           auto *MappedRC = MRI->getRegClass(VI->second.Reg);
419           const TargetRegisterClass *ConstrRC;
420           if (VI->second.SubReg != 0) {
421             ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC,
422                                                      VI->second.SubReg);
423             if (ConstrRC) {
424               // The actual constraining (as in "find appropriate new class")
425               // is done by getMatchingSuperRegClass, so now we only need to
426               // change the class of the mapped register.
427               MRI->setRegClass(VI->second.Reg, ConstrRC);
428             }
429           } else {
430             // For mapped registers that do not have sub-registers, simply
431             // restrict their class to match the original one.
432             ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC);
433           }
434 
435           if (ConstrRC) {
436             // If the class constraining succeeded, we can simply replace
437             // the old register with the mapped one.
438             MO.setReg(VI->second.Reg);
439             // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a
440             // sub-register, we need to compose the sub-register indices.
441             MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(),
442                                                    VI->second.SubReg));
443           } else {
444             // The direct replacement is not possible, due to failing register
445             // class constraints. An explicit COPY is necessary. Create one
446             // that can be reused
447             auto *NewRC = MI->getRegClassConstraint(i, TII, TRI);
448             if (NewRC == nullptr)
449               NewRC = OrigRC;
450             Register NewReg = MRI->createVirtualRegister(NewRC);
451             BuildMI(*PredBB, NewMI, NewMI.getDebugLoc(),
452                     TII->get(TargetOpcode::COPY), NewReg)
453                 .addReg(VI->second.Reg, 0, VI->second.SubReg);
454             LocalVRMap.erase(VI);
455             LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
456             MO.setReg(NewReg);
457             // The composed VI.Reg:VI.SubReg is replaced with NewReg, which
458             // is equivalent to the whole register Reg. Hence, Reg:subreg
459             // is same as NewReg:subreg, so keep the sub-register index
460             // unchanged.
461           }
462           // Clear any kill flags from this operand.  The new register could
463           // have uses after this one, so kills are not valid here.
464           MO.setIsKill(false);
465         }
466       }
467     }
468   }
469 }
470 
471 /// After FromBB is tail duplicated into its predecessor blocks, the successors
472 /// have gained new predecessors. Update the PHI instructions in them
473 /// accordingly.
474 void TailDuplicator::updateSuccessorsPHIs(
475     MachineBasicBlock *FromBB, bool isDead,
476     SmallVectorImpl<MachineBasicBlock *> &TDBBs,
477     SmallSetVector<MachineBasicBlock *, 8> &Succs) {
478   for (MachineBasicBlock *SuccBB : Succs) {
479     for (MachineInstr &MI : *SuccBB) {
480       if (!MI.isPHI())
481         break;
482       MachineInstrBuilder MIB(*FromBB->getParent(), MI);
483       unsigned Idx = 0;
484       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
485         MachineOperand &MO = MI.getOperand(i + 1);
486         if (MO.getMBB() == FromBB) {
487           Idx = i;
488           break;
489         }
490       }
491 
492       assert(Idx != 0);
493       MachineOperand &MO0 = MI.getOperand(Idx);
494       Register Reg = MO0.getReg();
495       if (isDead) {
496         // Folded into the previous BB.
497         // There could be duplicate phi source entries. FIXME: Should sdisel
498         // or earlier pass fixed this?
499         for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
500           MachineOperand &MO = MI.getOperand(i + 1);
501           if (MO.getMBB() == FromBB) {
502             MI.RemoveOperand(i + 1);
503             MI.RemoveOperand(i);
504           }
505         }
506       } else
507         Idx = 0;
508 
509       // If Idx is set, the operands at Idx and Idx+1 must be removed.
510       // We reuse the location to avoid expensive RemoveOperand calls.
511 
512       DenseMap<Register, AvailableValsTy>::iterator LI =
513           SSAUpdateVals.find(Reg);
514       if (LI != SSAUpdateVals.end()) {
515         // This register is defined in the tail block.
516         for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
517           MachineBasicBlock *SrcBB = LI->second[j].first;
518           // If we didn't duplicate a bb into a particular predecessor, we
519           // might still have added an entry to SSAUpdateVals to correcly
520           // recompute SSA. If that case, avoid adding a dummy extra argument
521           // this PHI.
522           if (!SrcBB->isSuccessor(SuccBB))
523             continue;
524 
525           Register SrcReg = LI->second[j].second;
526           if (Idx != 0) {
527             MI.getOperand(Idx).setReg(SrcReg);
528             MI.getOperand(Idx + 1).setMBB(SrcBB);
529             Idx = 0;
530           } else {
531             MIB.addReg(SrcReg).addMBB(SrcBB);
532           }
533         }
534       } else {
535         // Live in tail block, must also be live in predecessors.
536         for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
537           MachineBasicBlock *SrcBB = TDBBs[j];
538           if (Idx != 0) {
539             MI.getOperand(Idx).setReg(Reg);
540             MI.getOperand(Idx + 1).setMBB(SrcBB);
541             Idx = 0;
542           } else {
543             MIB.addReg(Reg).addMBB(SrcBB);
544           }
545         }
546       }
547       if (Idx != 0) {
548         MI.RemoveOperand(Idx + 1);
549         MI.RemoveOperand(Idx);
550       }
551     }
552   }
553 }
554 
555 /// Determine if it is profitable to duplicate this block.
556 bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
557                                          MachineBasicBlock &TailBB) {
558   // When doing tail-duplication during layout, the block ordering is in flux,
559   // so canFallThrough returns a result based on incorrect information and
560   // should just be ignored.
561   if (!LayoutMode && TailBB.canFallThrough())
562     return false;
563 
564   // Don't try to tail-duplicate single-block loops.
565   if (TailBB.isSuccessor(&TailBB))
566     return false;
567 
568   // Set the limit on the cost to duplicate. When optimizing for size,
569   // duplicate only one, because one branch instruction can be eliminated to
570   // compensate for the duplication.
571   unsigned MaxDuplicateCount;
572   bool OptForSize = MF->getFunction().hasOptSize() ||
573                     llvm::shouldOptimizeForSize(&TailBB, PSI, MBFI);
574   if (TailDupSize == 0)
575     MaxDuplicateCount = TailDuplicateSize;
576   else
577     MaxDuplicateCount = TailDupSize;
578   if (OptForSize)
579     MaxDuplicateCount = 1;
580 
581   // If the block to be duplicated ends in an unanalyzable fallthrough, don't
582   // duplicate it.
583   // A similar check is necessary in MachineBlockPlacement to make sure pairs of
584   // blocks with unanalyzable fallthrough get layed out contiguously.
585   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
586   SmallVector<MachineOperand, 4> PredCond;
587   if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
588       TailBB.canFallThrough())
589     return false;
590 
591   // If the target has hardware branch prediction that can handle indirect
592   // branches, duplicating them can often make them predictable when there
593   // are common paths through the code.  The limit needs to be high enough
594   // to allow undoing the effects of tail merging and other optimizations
595   // that rearrange the predecessors of the indirect branch.
596 
597   bool HasIndirectbr = false;
598   if (!TailBB.empty())
599     HasIndirectbr = TailBB.back().isIndirectBranch();
600 
601   if (HasIndirectbr && PreRegAlloc)
602     MaxDuplicateCount = TailDupIndirectBranchSize;
603 
604   // Check the instructions in the block to determine whether tail-duplication
605   // is invalid or unlikely to be profitable.
606   unsigned InstrCount = 0;
607   for (MachineInstr &MI : TailBB) {
608     // Non-duplicable things shouldn't be tail-duplicated.
609     // CFI instructions are marked as non-duplicable, because Darwin compact
610     // unwind info emission can't handle multiple prologue setups. In case of
611     // DWARF, allow them be duplicated, so that their existence doesn't prevent
612     // tail duplication of some basic blocks, that would be duplicated otherwise.
613     if (MI.isNotDuplicable() &&
614         (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() ||
615         !MI.isCFIInstruction()))
616       return false;
617 
618     // Convergent instructions can be duplicated only if doing so doesn't add
619     // new control dependencies, which is what we're going to do here.
620     if (MI.isConvergent())
621       return false;
622 
623     // Do not duplicate 'return' instructions if this is a pre-regalloc run.
624     // A return may expand into a lot more instructions (e.g. reload of callee
625     // saved registers) after PEI.
626     if (PreRegAlloc && MI.isReturn())
627       return false;
628 
629     // Avoid duplicating calls before register allocation. Calls presents a
630     // barrier to register allocation so duplicating them may end up increasing
631     // spills.
632     if (PreRegAlloc && MI.isCall())
633       return false;
634 
635     // TailDuplicator::appendCopies will erroneously place COPYs after
636     // INLINEASM_BR instructions after 4b0aa5724fea, which demonstrates the same
637     // bug that was fixed in f7a53d82c090.
638     // FIXME: Use findPHICopyInsertPoint() to find the correct insertion point
639     //        for the COPY when replacing PHIs.
640     if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
641       return false;
642 
643     if (MI.isBundle())
644       InstrCount += MI.getBundleSize();
645     else if (!MI.isPHI() && !MI.isMetaInstruction())
646       InstrCount += 1;
647 
648     if (InstrCount > MaxDuplicateCount)
649       return false;
650   }
651 
652   // Check if any of the successors of TailBB has a PHI node in which the
653   // value corresponding to TailBB uses a subregister.
654   // If a phi node uses a register paired with a subregister, the actual
655   // "value type" of the phi may differ from the type of the register without
656   // any subregisters. Due to a bug, tail duplication may add a new operand
657   // without a necessary subregister, producing an invalid code. This is
658   // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
659   // Disable tail duplication for this case for now, until the problem is
660   // fixed.
661   for (auto SB : TailBB.successors()) {
662     for (auto &I : *SB) {
663       if (!I.isPHI())
664         break;
665       unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
666       assert(Idx != 0);
667       MachineOperand &PU = I.getOperand(Idx);
668       if (PU.getSubReg() != 0)
669         return false;
670     }
671   }
672 
673   if (HasIndirectbr && PreRegAlloc)
674     return true;
675 
676   if (IsSimple)
677     return true;
678 
679   if (!PreRegAlloc)
680     return true;
681 
682   return canCompletelyDuplicateBB(TailBB);
683 }
684 
685 /// True if this BB has only one unconditional jump.
686 bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) {
687   if (TailBB->succ_size() != 1)
688     return false;
689   if (TailBB->pred_empty())
690     return false;
691   MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr(true);
692   if (I == TailBB->end())
693     return true;
694   return I->isUnconditionalBranch();
695 }
696 
697 static bool bothUsedInPHI(const MachineBasicBlock &A,
698                           const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) {
699   for (MachineBasicBlock *BB : A.successors())
700     if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
701       return true;
702 
703   return false;
704 }
705 
706 bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
707   for (MachineBasicBlock *PredBB : BB.predecessors()) {
708     if (PredBB->succ_size() > 1)
709       return false;
710 
711     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
712     SmallVector<MachineOperand, 4> PredCond;
713     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
714       return false;
715 
716     if (!PredCond.empty())
717       return false;
718   }
719   return true;
720 }
721 
722 bool TailDuplicator::duplicateSimpleBB(
723     MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs,
724     const DenseSet<Register> &UsedByPhi,
725     SmallVectorImpl<MachineInstr *> &Copies) {
726   SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(),
727                                             TailBB->succ_end());
728   SmallVector<MachineBasicBlock *, 8> Preds(TailBB->predecessors());
729   bool Changed = false;
730   for (MachineBasicBlock *PredBB : Preds) {
731     if (PredBB->hasEHPadSuccessor() || PredBB->mayHaveInlineAsmBr())
732       continue;
733 
734     if (bothUsedInPHI(*PredBB, Succs))
735       continue;
736 
737     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
738     SmallVector<MachineOperand, 4> PredCond;
739     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
740       continue;
741 
742     Changed = true;
743     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
744                       << "From simple Succ: " << *TailBB);
745 
746     MachineBasicBlock *NewTarget = *TailBB->succ_begin();
747     MachineBasicBlock *NextBB = PredBB->getNextNode();
748 
749     // Make PredFBB explicit.
750     if (PredCond.empty())
751       PredFBB = PredTBB;
752 
753     // Make fall through explicit.
754     if (!PredTBB)
755       PredTBB = NextBB;
756     if (!PredFBB)
757       PredFBB = NextBB;
758 
759     // Redirect
760     if (PredFBB == TailBB)
761       PredFBB = NewTarget;
762     if (PredTBB == TailBB)
763       PredTBB = NewTarget;
764 
765     // Make the branch unconditional if possible
766     if (PredTBB == PredFBB) {
767       PredCond.clear();
768       PredFBB = nullptr;
769     }
770 
771     // Avoid adding fall through branches.
772     if (PredFBB == NextBB)
773       PredFBB = nullptr;
774     if (PredTBB == NextBB && PredFBB == nullptr)
775       PredTBB = nullptr;
776 
777     auto DL = PredBB->findBranchDebugLoc();
778     TII->removeBranch(*PredBB);
779 
780     if (!PredBB->isSuccessor(NewTarget))
781       PredBB->replaceSuccessor(TailBB, NewTarget);
782     else {
783       PredBB->removeSuccessor(TailBB, true);
784       assert(PredBB->succ_size() <= 1);
785     }
786 
787     if (PredTBB)
788       TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL);
789 
790     TDBBs.push_back(PredBB);
791   }
792   return Changed;
793 }
794 
795 bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
796                                       MachineBasicBlock *PredBB) {
797   // EH edges are ignored by analyzeBranch.
798   if (PredBB->succ_size() > 1)
799     return false;
800 
801   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
802   SmallVector<MachineOperand, 4> PredCond;
803   if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
804     return false;
805   if (!PredCond.empty())
806     return false;
807   return true;
808 }
809 
810 /// If it is profitable, duplicate TailBB's contents in each
811 /// of its predecessors.
812 /// \p IsSimple result of isSimpleBB
813 /// \p TailBB   Block to be duplicated.
814 /// \p ForcedLayoutPred  When non-null, use this block as the layout predecessor
815 ///                      instead of the previous block in MF's order.
816 /// \p TDBBs             A vector to keep track of all blocks tail-duplicated
817 ///                      into.
818 /// \p Copies            A vector of copy instructions inserted. Used later to
819 ///                      walk all the inserted copies and remove redundant ones.
820 bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
821                           MachineBasicBlock *ForcedLayoutPred,
822                           SmallVectorImpl<MachineBasicBlock *> &TDBBs,
823                           SmallVectorImpl<MachineInstr *> &Copies,
824                           SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) {
825   LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB)
826                     << '\n');
827 
828   bool ShouldUpdateTerminators = TailBB->canFallThrough();
829 
830   DenseSet<Register> UsedByPhi;
831   getRegsUsedByPHIs(*TailBB, &UsedByPhi);
832 
833   if (IsSimple)
834     return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
835 
836   // Iterate through all the unique predecessors and tail-duplicate this
837   // block into them, if possible. Copying the list ahead of time also
838   // avoids trouble with the predecessor list reallocating.
839   bool Changed = false;
840   SmallSetVector<MachineBasicBlock *, 8> Preds;
841   if (CandidatePtr)
842     Preds.insert(CandidatePtr->begin(), CandidatePtr->end());
843   else
844     Preds.insert(TailBB->pred_begin(), TailBB->pred_end());
845 
846   for (MachineBasicBlock *PredBB : Preds) {
847     assert(TailBB != PredBB &&
848            "Single-block loop should have been rejected earlier!");
849 
850     if (!canTailDuplicate(TailBB, PredBB))
851       continue;
852 
853     // Don't duplicate into a fall-through predecessor (at least for now).
854     // If profile is available, findDuplicateCandidates can choose better
855     // fall-through predecessor.
856     if (!(MF->getFunction().hasProfileData() && LayoutMode)) {
857       bool IsLayoutSuccessor = false;
858       if (ForcedLayoutPred)
859         IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
860       else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
861         IsLayoutSuccessor = true;
862       if (IsLayoutSuccessor)
863         continue;
864     }
865 
866     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
867                       << "From Succ: " << *TailBB);
868 
869     TDBBs.push_back(PredBB);
870 
871     // Remove PredBB's unconditional branch.
872     TII->removeBranch(*PredBB);
873 
874     // Clone the contents of TailBB into PredBB.
875     DenseMap<Register, RegSubRegPair> LocalVRMap;
876     SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
877     for (MachineBasicBlock::iterator I = TailBB->begin(), E = TailBB->end();
878          I != E; /* empty */) {
879       MachineInstr *MI = &*I;
880       ++I;
881       if (MI->isPHI()) {
882         // Replace the uses of the def of the PHI with the register coming
883         // from PredBB.
884         processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
885       } else {
886         // Replace def of virtual registers with new registers, and update
887         // uses with PHI source register or the new registers.
888         duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
889       }
890     }
891     appendCopies(PredBB, CopyInfos, Copies);
892 
893     NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch
894 
895     // Update the CFG.
896     PredBB->removeSuccessor(PredBB->succ_begin());
897     assert(PredBB->succ_empty() &&
898            "TailDuplicate called on block with multiple successors!");
899     for (MachineBasicBlock *Succ : TailBB->successors())
900       PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));
901 
902     // Update branches in pred to jump to tail's layout successor if needed.
903     if (ShouldUpdateTerminators)
904       PredBB->updateTerminator(TailBB->getNextNode());
905 
906     Changed = true;
907     ++NumTailDups;
908   }
909 
910   // If TailBB was duplicated into all its predecessors except for the prior
911   // block, which falls through unconditionally, move the contents of this
912   // block into the prior block.
913   MachineBasicBlock *PrevBB = ForcedLayoutPred;
914   if (!PrevBB)
915     PrevBB = &*std::prev(TailBB->getIterator());
916   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
917   SmallVector<MachineOperand, 4> PriorCond;
918   // This has to check PrevBB->succ_size() because EH edges are ignored by
919   // analyzeBranch.
920   if (PrevBB->succ_size() == 1 &&
921       // Layout preds are not always CFG preds. Check.
922       *PrevBB->succ_begin() == TailBB &&
923       !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
924       PriorCond.empty() &&
925       (!PriorTBB || PriorTBB == TailBB) &&
926       TailBB->pred_size() == 1 &&
927       !TailBB->hasAddressTaken()) {
928     LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
929                       << "From MBB: " << *TailBB);
930     // There may be a branch to the layout successor. This is unlikely but it
931     // happens. The correct thing to do is to remove the branch before
932     // duplicating the instructions in all cases.
933     TII->removeBranch(*PrevBB);
934     if (PreRegAlloc) {
935       DenseMap<Register, RegSubRegPair> LocalVRMap;
936       SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
937       MachineBasicBlock::iterator I = TailBB->begin();
938       // Process PHI instructions first.
939       while (I != TailBB->end() && I->isPHI()) {
940         // Replace the uses of the def of the PHI with the register coming
941         // from PredBB.
942         MachineInstr *MI = &*I++;
943         processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
944       }
945 
946       // Now copy the non-PHI instructions.
947       while (I != TailBB->end()) {
948         // Replace def of virtual registers with new registers, and update
949         // uses with PHI source register or the new registers.
950         MachineInstr *MI = &*I++;
951         assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
952         duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
953         MI->eraseFromParent();
954       }
955       appendCopies(PrevBB, CopyInfos, Copies);
956     } else {
957       TII->removeBranch(*PrevBB);
958       // No PHIs to worry about, just splice the instructions over.
959       PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
960     }
961     PrevBB->removeSuccessor(PrevBB->succ_begin());
962     assert(PrevBB->succ_empty());
963     PrevBB->transferSuccessors(TailBB);
964 
965     // Update branches in PrevBB based on Tail's layout successor.
966     if (ShouldUpdateTerminators)
967       PrevBB->updateTerminator(TailBB->getNextNode());
968 
969     TDBBs.push_back(PrevBB);
970     Changed = true;
971   }
972 
973   // If this is after register allocation, there are no phis to fix.
974   if (!PreRegAlloc)
975     return Changed;
976 
977   // If we made no changes so far, we are safe.
978   if (!Changed)
979     return Changed;
980 
981   // Handle the nasty case in that we duplicated a block that is part of a loop
982   // into some but not all of its predecessors. For example:
983   //    1 -> 2 <-> 3                 |
984   //          \                      |
985   //           \---> rest            |
986   // if we duplicate 2 into 1 but not into 3, we end up with
987   // 12 -> 3 <-> 2 -> rest           |
988   //   \             /               |
989   //    \----->-----/                |
990   // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
991   // with a phi in 3 (which now dominates 2).
992   // What we do here is introduce a copy in 3 of the register defined by the
993   // phi, just like when we are duplicating 2 into 3, but we don't copy any
994   // real instructions or remove the 3 -> 2 edge from the phi in 2.
995   for (MachineBasicBlock *PredBB : Preds) {
996     if (is_contained(TDBBs, PredBB))
997       continue;
998 
999     // EH edges
1000     if (PredBB->succ_size() != 1)
1001       continue;
1002 
1003     DenseMap<Register, RegSubRegPair> LocalVRMap;
1004     SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
1005     MachineBasicBlock::iterator I = TailBB->begin();
1006     // Process PHI instructions first.
1007     while (I != TailBB->end() && I->isPHI()) {
1008       // Replace the uses of the def of the PHI with the register coming
1009       // from PredBB.
1010       MachineInstr *MI = &*I++;
1011       processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
1012     }
1013     appendCopies(PredBB, CopyInfos, Copies);
1014   }
1015 
1016   return Changed;
1017 }
1018 
1019 /// At the end of the block \p MBB generate COPY instructions between registers
1020 /// described by \p CopyInfos. Append resulting instructions to \p Copies.
1021 void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
1022       SmallVectorImpl<std::pair<Register, RegSubRegPair>> &CopyInfos,
1023       SmallVectorImpl<MachineInstr*> &Copies) {
1024   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1025   const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY);
1026   for (auto &CI : CopyInfos) {
1027     auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first)
1028                 .addReg(CI.second.Reg, 0, CI.second.SubReg);
1029     Copies.push_back(C);
1030   }
1031 }
1032 
1033 /// Remove the specified dead machine basic block from the function, updating
1034 /// the CFG.
1035 void TailDuplicator::removeDeadBlock(
1036     MachineBasicBlock *MBB,
1037     function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
1038   assert(MBB->pred_empty() && "MBB must be dead!");
1039   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
1040 
1041   MachineFunction *MF = MBB->getParent();
1042   // Update the call site info.
1043   for (const MachineInstr &MI : *MBB)
1044     if (MI.shouldUpdateCallSiteInfo())
1045       MF->eraseCallSiteInfo(&MI);
1046 
1047   if (RemovalCallback)
1048     (*RemovalCallback)(MBB);
1049 
1050   // Remove all successors.
1051   while (!MBB->succ_empty())
1052     MBB->removeSuccessor(MBB->succ_end() - 1);
1053 
1054   // Remove the block.
1055   MBB->eraseFromParent();
1056 }
1057