xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TailDuplicator.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This utility class duplicates basic blocks ending in unconditional branches
10 // into the tails of their predecessors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TailDuplicator.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/MachineSizeOpts.h"
32 #include "llvm/CodeGen/MachineSSAUpdater.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "tailduplication"
51 
52 STATISTIC(NumTails, "Number of tails duplicated");
53 STATISTIC(NumTailDups, "Number of tail duplicated blocks");
54 STATISTIC(NumTailDupAdded,
55           "Number of instructions added due to tail duplication");
56 STATISTIC(NumTailDupRemoved,
57           "Number of instructions removed due to tail duplication");
58 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
59 STATISTIC(NumAddedPHIs, "Number of phis added");
60 
61 // Heuristic for tail duplication.
62 static cl::opt<unsigned> TailDuplicateSize(
63     "tail-dup-size",
64     cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
65     cl::Hidden);
66 
67 static cl::opt<unsigned> TailDupIndirectBranchSize(
68     "tail-dup-indirect-size",
69     cl::desc("Maximum instructions to consider tail duplicating blocks that "
70              "end with indirect branches."), cl::init(20),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> TailDupJmpTableLoopSize(
74     "tail-dup-jmptable-loop-size",
75     cl::desc("Maximum loop latches to consider tail duplication that are "
76              "successors of loop header."),
77     cl::init(128), cl::Hidden);
78 
79 static cl::opt<bool>
80     TailDupVerify("tail-dup-verify",
81                   cl::desc("Verify sanity of PHI instructions during taildup"),
82                   cl::init(false), cl::Hidden);
83 
84 static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
85                                       cl::Hidden);
86 
87 void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc,
88                             const MachineBranchProbabilityInfo *MBPIin,
89                             MBFIWrapper *MBFIin,
90                             ProfileSummaryInfo *PSIin,
91                             bool LayoutModeIn, unsigned TailDupSizeIn) {
92   MF = &MFin;
93   TII = MF->getSubtarget().getInstrInfo();
94   TRI = MF->getSubtarget().getRegisterInfo();
95   MRI = &MF->getRegInfo();
96   MMI = &MF->getMMI();
97   MBPI = MBPIin;
98   MBFI = MBFIin;
99   PSI = PSIin;
100   TailDupSize = TailDupSizeIn;
101 
102   assert(MBPI != nullptr && "Machine Branch Probability Info required");
103 
104   LayoutMode = LayoutModeIn;
105   this->PreRegAlloc = PreRegAlloc;
106 }
107 
108 static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
109   for (MachineBasicBlock &MBB : llvm::drop_begin(MF)) {
110     SmallSetVector<MachineBasicBlock *, 8> Preds(MBB.pred_begin(),
111                                                  MBB.pred_end());
112     MachineBasicBlock::iterator MI = MBB.begin();
113     while (MI != MBB.end()) {
114       if (!MI->isPHI())
115         break;
116       for (MachineBasicBlock *PredBB : Preds) {
117         bool Found = false;
118         for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
119           MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
120           if (PHIBB == PredBB) {
121             Found = true;
122             break;
123           }
124         }
125         if (!Found) {
126           dbgs() << "Malformed PHI in " << printMBBReference(MBB) << ": "
127                  << *MI;
128           dbgs() << "  missing input from predecessor "
129                  << printMBBReference(*PredBB) << '\n';
130           llvm_unreachable(nullptr);
131         }
132       }
133 
134       for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
135         MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
136         if (CheckExtra && !Preds.count(PHIBB)) {
137           dbgs() << "Warning: malformed PHI in " << printMBBReference(MBB)
138                  << ": " << *MI;
139           dbgs() << "  extra input from predecessor "
140                  << printMBBReference(*PHIBB) << '\n';
141           llvm_unreachable(nullptr);
142         }
143         if (PHIBB->getNumber() < 0) {
144           dbgs() << "Malformed PHI in " << printMBBReference(MBB) << ": "
145                  << *MI;
146           dbgs() << "  non-existing " << printMBBReference(*PHIBB) << '\n';
147           llvm_unreachable(nullptr);
148         }
149       }
150       ++MI;
151     }
152   }
153 }
154 
155 /// Tail duplicate the block and cleanup.
156 /// \p IsSimple - return value of isSimpleBB
157 /// \p MBB - block to be duplicated
158 /// \p ForcedLayoutPred - If non-null, treat this block as the layout
159 ///     predecessor, instead of using the ordering in MF
160 /// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of
161 ///     all Preds that received a copy of \p MBB.
162 /// \p RemovalCallback - if non-null, called just before MBB is deleted.
163 bool TailDuplicator::tailDuplicateAndUpdate(
164     bool IsSimple, MachineBasicBlock *MBB,
165     MachineBasicBlock *ForcedLayoutPred,
166     SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds,
167     function_ref<void(MachineBasicBlock *)> *RemovalCallback,
168     SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) {
169   // Save the successors list.
170   SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
171                                                MBB->succ_end());
172 
173   SmallVector<MachineBasicBlock *, 8> TDBBs;
174   SmallVector<MachineInstr *, 16> Copies;
175   if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred,
176                      TDBBs, Copies, CandidatePtr))
177     return false;
178 
179   ++NumTails;
180 
181   SmallVector<MachineInstr *, 8> NewPHIs;
182   MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);
183 
184   // TailBB's immediate successors are now successors of those predecessors
185   // which duplicated TailBB. Add the predecessors as sources to the PHI
186   // instructions.
187   bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
188   if (PreRegAlloc)
189     updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
190 
191   // If it is dead, remove it.
192   if (isDead) {
193     NumTailDupRemoved += MBB->size();
194     removeDeadBlock(MBB, RemovalCallback);
195     ++NumDeadBlocks;
196   }
197 
198   // Update SSA form.
199   if (!SSAUpdateVRs.empty()) {
200     for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
201       unsigned VReg = SSAUpdateVRs[i];
202       SSAUpdate.Initialize(VReg);
203 
204       // If the original definition is still around, add it as an available
205       // value.
206       MachineInstr *DefMI = MRI->getVRegDef(VReg);
207       MachineBasicBlock *DefBB = nullptr;
208       if (DefMI) {
209         DefBB = DefMI->getParent();
210         SSAUpdate.AddAvailableValue(DefBB, VReg);
211       }
212 
213       // Add the new vregs as available values.
214       DenseMap<Register, AvailableValsTy>::iterator LI =
215           SSAUpdateVals.find(VReg);
216       for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
217         MachineBasicBlock *SrcBB = LI->second[j].first;
218         Register SrcReg = LI->second[j].second;
219         SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
220       }
221 
222       // Rewrite uses that are outside of the original def's block.
223       MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
224       // Only remove instructions after loop, as DBG_VALUE_LISTs with multiple
225       // uses of VReg may invalidate the use iterator when erased.
226       SmallPtrSet<MachineInstr *, 4> InstrsToRemove;
227       while (UI != MRI->use_end()) {
228         MachineOperand &UseMO = *UI;
229         MachineInstr *UseMI = UseMO.getParent();
230         ++UI;
231         if (UseMI->isDebugValue()) {
232           // SSAUpdate can replace the use with an undef. That creates
233           // a debug instruction that is a kill.
234           // FIXME: Should it SSAUpdate job to delete debug instructions
235           // instead of replacing the use with undef?
236           InstrsToRemove.insert(UseMI);
237           continue;
238         }
239         if (UseMI->getParent() == DefBB && !UseMI->isPHI())
240           continue;
241         SSAUpdate.RewriteUse(UseMO);
242       }
243       for (auto *MI : InstrsToRemove)
244         MI->eraseFromParent();
245     }
246 
247     SSAUpdateVRs.clear();
248     SSAUpdateVals.clear();
249   }
250 
251   // Eliminate some of the copies inserted by tail duplication to maintain
252   // SSA form.
253   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
254     MachineInstr *Copy = Copies[i];
255     if (!Copy->isCopy())
256       continue;
257     Register Dst = Copy->getOperand(0).getReg();
258     Register Src = Copy->getOperand(1).getReg();
259     if (MRI->hasOneNonDBGUse(Src) &&
260         MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) {
261       // Copy is the only use. Do trivial copy propagation here.
262       MRI->replaceRegWith(Dst, Src);
263       Copy->eraseFromParent();
264     }
265   }
266 
267   if (NewPHIs.size())
268     NumAddedPHIs += NewPHIs.size();
269 
270   if (DuplicatedPreds)
271     *DuplicatedPreds = std::move(TDBBs);
272 
273   return true;
274 }
275 
276 /// Look for small blocks that are unconditionally branched to and do not fall
277 /// through. Tail-duplicate their instructions into their predecessors to
278 /// eliminate (dynamic) branches.
279 bool TailDuplicator::tailDuplicateBlocks() {
280   bool MadeChange = false;
281 
282   if (PreRegAlloc && TailDupVerify) {
283     LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
284     VerifyPHIs(*MF, true);
285   }
286 
287   for (MachineBasicBlock &MBB :
288        llvm::make_early_inc_range(llvm::drop_begin(*MF))) {
289     if (NumTails == TailDupLimit)
290       break;
291 
292     bool IsSimple = isSimpleBB(&MBB);
293 
294     if (!shouldTailDuplicate(IsSimple, MBB))
295       continue;
296 
297     MadeChange |= tailDuplicateAndUpdate(IsSimple, &MBB, nullptr);
298   }
299 
300   if (PreRegAlloc && TailDupVerify)
301     VerifyPHIs(*MF, false);
302 
303   return MadeChange;
304 }
305 
306 static bool isDefLiveOut(Register Reg, MachineBasicBlock *BB,
307                          const MachineRegisterInfo *MRI) {
308   for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
309     if (UseMI.isDebugValue())
310       continue;
311     if (UseMI.getParent() != BB)
312       return true;
313   }
314   return false;
315 }
316 
317 static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
318   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
319     if (MI->getOperand(i + 1).getMBB() == SrcBB)
320       return i;
321   return 0;
322 }
323 
324 // Remember which registers are used by phis in this block. This is
325 // used to determine which registers are liveout while modifying the
326 // block (which is why we need to copy the information).
327 static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
328                               DenseSet<Register> *UsedByPhi) {
329   for (const auto &MI : BB) {
330     if (!MI.isPHI())
331       break;
332     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
333       Register SrcReg = MI.getOperand(i).getReg();
334       UsedByPhi->insert(SrcReg);
335     }
336   }
337 }
338 
339 /// Add a definition and source virtual registers pair for SSA update.
340 void TailDuplicator::addSSAUpdateEntry(Register OrigReg, Register NewReg,
341                                        MachineBasicBlock *BB) {
342   DenseMap<Register, AvailableValsTy>::iterator LI =
343       SSAUpdateVals.find(OrigReg);
344   if (LI != SSAUpdateVals.end())
345     LI->second.push_back(std::make_pair(BB, NewReg));
346   else {
347     AvailableValsTy Vals;
348     Vals.push_back(std::make_pair(BB, NewReg));
349     SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
350     SSAUpdateVRs.push_back(OrigReg);
351   }
352 }
353 
354 /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the
355 /// source register that's contributed by PredBB and update SSA update map.
356 void TailDuplicator::processPHI(
357     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
358     DenseMap<Register, RegSubRegPair> &LocalVRMap,
359     SmallVectorImpl<std::pair<Register, RegSubRegPair>> &Copies,
360     const DenseSet<Register> &RegsUsedByPhi, bool Remove) {
361   Register DefReg = MI->getOperand(0).getReg();
362   unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
363   assert(SrcOpIdx && "Unable to find matching PHI source?");
364   Register SrcReg = MI->getOperand(SrcOpIdx).getReg();
365   unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg();
366   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
367   LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg)));
368 
369   // Insert a copy from source to the end of the block. The def register is the
370   // available value liveout of the block.
371   Register NewDef = MRI->createVirtualRegister(RC);
372   Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg)));
373   if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
374     addSSAUpdateEntry(DefReg, NewDef, PredBB);
375 
376   if (!Remove)
377     return;
378 
379   // Remove PredBB from the PHI node.
380   MI->RemoveOperand(SrcOpIdx + 1);
381   MI->RemoveOperand(SrcOpIdx);
382   if (MI->getNumOperands() == 1)
383     MI->eraseFromParent();
384 }
385 
386 /// Duplicate a TailBB instruction to PredBB and update
387 /// the source operands due to earlier PHI translation.
388 void TailDuplicator::duplicateInstruction(
389     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
390     DenseMap<Register, RegSubRegPair> &LocalVRMap,
391     const DenseSet<Register> &UsedByPhi) {
392   // Allow duplication of CFI instructions.
393   if (MI->isCFIInstruction()) {
394     BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()),
395       TII->get(TargetOpcode::CFI_INSTRUCTION)).addCFIIndex(
396       MI->getOperand(0).getCFIIndex());
397     return;
398   }
399   MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI);
400   if (PreRegAlloc) {
401     for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) {
402       MachineOperand &MO = NewMI.getOperand(i);
403       if (!MO.isReg())
404         continue;
405       Register Reg = MO.getReg();
406       if (!Register::isVirtualRegister(Reg))
407         continue;
408       if (MO.isDef()) {
409         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
410         Register NewReg = MRI->createVirtualRegister(RC);
411         MO.setReg(NewReg);
412         LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
413         if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
414           addSSAUpdateEntry(Reg, NewReg, PredBB);
415       } else {
416         auto VI = LocalVRMap.find(Reg);
417         if (VI != LocalVRMap.end()) {
418           // Need to make sure that the register class of the mapped register
419           // will satisfy the constraints of the class of the register being
420           // replaced.
421           auto *OrigRC = MRI->getRegClass(Reg);
422           auto *MappedRC = MRI->getRegClass(VI->second.Reg);
423           const TargetRegisterClass *ConstrRC;
424           if (VI->second.SubReg != 0) {
425             ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC,
426                                                      VI->second.SubReg);
427             if (ConstrRC) {
428               // The actual constraining (as in "find appropriate new class")
429               // is done by getMatchingSuperRegClass, so now we only need to
430               // change the class of the mapped register.
431               MRI->setRegClass(VI->second.Reg, ConstrRC);
432             }
433           } else {
434             // For mapped registers that do not have sub-registers, simply
435             // restrict their class to match the original one.
436             ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC);
437           }
438 
439           if (ConstrRC) {
440             // If the class constraining succeeded, we can simply replace
441             // the old register with the mapped one.
442             MO.setReg(VI->second.Reg);
443             // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a
444             // sub-register, we need to compose the sub-register indices.
445             MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(),
446                                                    VI->second.SubReg));
447           } else {
448             // The direct replacement is not possible, due to failing register
449             // class constraints. An explicit COPY is necessary. Create one
450             // that can be reused
451             auto *NewRC = MI->getRegClassConstraint(i, TII, TRI);
452             if (NewRC == nullptr)
453               NewRC = OrigRC;
454             Register NewReg = MRI->createVirtualRegister(NewRC);
455             BuildMI(*PredBB, NewMI, NewMI.getDebugLoc(),
456                     TII->get(TargetOpcode::COPY), NewReg)
457                 .addReg(VI->second.Reg, 0, VI->second.SubReg);
458             LocalVRMap.erase(VI);
459             LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
460             MO.setReg(NewReg);
461             // The composed VI.Reg:VI.SubReg is replaced with NewReg, which
462             // is equivalent to the whole register Reg. Hence, Reg:subreg
463             // is same as NewReg:subreg, so keep the sub-register index
464             // unchanged.
465           }
466           // Clear any kill flags from this operand.  The new register could
467           // have uses after this one, so kills are not valid here.
468           MO.setIsKill(false);
469         }
470       }
471     }
472   }
473 }
474 
475 /// After FromBB is tail duplicated into its predecessor blocks, the successors
476 /// have gained new predecessors. Update the PHI instructions in them
477 /// accordingly.
478 void TailDuplicator::updateSuccessorsPHIs(
479     MachineBasicBlock *FromBB, bool isDead,
480     SmallVectorImpl<MachineBasicBlock *> &TDBBs,
481     SmallSetVector<MachineBasicBlock *, 8> &Succs) {
482   for (MachineBasicBlock *SuccBB : Succs) {
483     for (MachineInstr &MI : *SuccBB) {
484       if (!MI.isPHI())
485         break;
486       MachineInstrBuilder MIB(*FromBB->getParent(), MI);
487       unsigned Idx = 0;
488       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
489         MachineOperand &MO = MI.getOperand(i + 1);
490         if (MO.getMBB() == FromBB) {
491           Idx = i;
492           break;
493         }
494       }
495 
496       assert(Idx != 0);
497       MachineOperand &MO0 = MI.getOperand(Idx);
498       Register Reg = MO0.getReg();
499       if (isDead) {
500         // Folded into the previous BB.
501         // There could be duplicate phi source entries. FIXME: Should sdisel
502         // or earlier pass fixed this?
503         for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
504           MachineOperand &MO = MI.getOperand(i + 1);
505           if (MO.getMBB() == FromBB) {
506             MI.RemoveOperand(i + 1);
507             MI.RemoveOperand(i);
508           }
509         }
510       } else
511         Idx = 0;
512 
513       // If Idx is set, the operands at Idx and Idx+1 must be removed.
514       // We reuse the location to avoid expensive RemoveOperand calls.
515 
516       DenseMap<Register, AvailableValsTy>::iterator LI =
517           SSAUpdateVals.find(Reg);
518       if (LI != SSAUpdateVals.end()) {
519         // This register is defined in the tail block.
520         for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
521           MachineBasicBlock *SrcBB = LI->second[j].first;
522           // If we didn't duplicate a bb into a particular predecessor, we
523           // might still have added an entry to SSAUpdateVals to correcly
524           // recompute SSA. If that case, avoid adding a dummy extra argument
525           // this PHI.
526           if (!SrcBB->isSuccessor(SuccBB))
527             continue;
528 
529           Register SrcReg = LI->second[j].second;
530           if (Idx != 0) {
531             MI.getOperand(Idx).setReg(SrcReg);
532             MI.getOperand(Idx + 1).setMBB(SrcBB);
533             Idx = 0;
534           } else {
535             MIB.addReg(SrcReg).addMBB(SrcBB);
536           }
537         }
538       } else {
539         // Live in tail block, must also be live in predecessors.
540         for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
541           MachineBasicBlock *SrcBB = TDBBs[j];
542           if (Idx != 0) {
543             MI.getOperand(Idx).setReg(Reg);
544             MI.getOperand(Idx + 1).setMBB(SrcBB);
545             Idx = 0;
546           } else {
547             MIB.addReg(Reg).addMBB(SrcBB);
548           }
549         }
550       }
551       if (Idx != 0) {
552         MI.RemoveOperand(Idx + 1);
553         MI.RemoveOperand(Idx);
554       }
555     }
556   }
557 }
558 
559 /// Determine if it is profitable to duplicate this block.
560 bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
561                                          MachineBasicBlock &TailBB) {
562   // When doing tail-duplication during layout, the block ordering is in flux,
563   // so canFallThrough returns a result based on incorrect information and
564   // should just be ignored.
565   if (!LayoutMode && TailBB.canFallThrough())
566     return false;
567 
568   // Don't try to tail-duplicate single-block loops.
569   if (TailBB.isSuccessor(&TailBB))
570     return false;
571 
572   // When doing tail-duplication with jumptable loops like:
573   //    1 -> 2 <-> 3                 |
574   //          \  <-> 4               |
575   //           \   <-> 5             |
576   //            \    <-> ...         |
577   //             \---> rest          |
578   // quadratic number of edges and much more loops are added to CFG. This
579   // may cause compile time regression when jumptable is quiet large.
580   // So set the limit on jumptable cases.
581   auto isLargeJumpTableLoop = [](const MachineBasicBlock &TailBB) {
582     const SmallPtrSet<const MachineBasicBlock *, 8> Preds(TailBB.pred_begin(),
583                                                           TailBB.pred_end());
584     // Check the basic block has large number of successors, all of them only
585     // have one successor which is the basic block itself.
586     return llvm::count_if(
587                TailBB.successors(), [&](const MachineBasicBlock *SuccBB) {
588                  return Preds.count(SuccBB) && SuccBB->succ_size() == 1;
589                }) > TailDupJmpTableLoopSize;
590   };
591 
592   if (isLargeJumpTableLoop(TailBB))
593     return false;
594 
595   // Set the limit on the cost to duplicate. When optimizing for size,
596   // duplicate only one, because one branch instruction can be eliminated to
597   // compensate for the duplication.
598   unsigned MaxDuplicateCount;
599   bool OptForSize = MF->getFunction().hasOptSize() ||
600                     llvm::shouldOptimizeForSize(&TailBB, PSI, MBFI);
601   if (TailDupSize == 0)
602     MaxDuplicateCount = TailDuplicateSize;
603   else
604     MaxDuplicateCount = TailDupSize;
605   if (OptForSize)
606     MaxDuplicateCount = 1;
607 
608   // If the block to be duplicated ends in an unanalyzable fallthrough, don't
609   // duplicate it.
610   // A similar check is necessary in MachineBlockPlacement to make sure pairs of
611   // blocks with unanalyzable fallthrough get layed out contiguously.
612   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
613   SmallVector<MachineOperand, 4> PredCond;
614   if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
615       TailBB.canFallThrough())
616     return false;
617 
618   // If the target has hardware branch prediction that can handle indirect
619   // branches, duplicating them can often make them predictable when there
620   // are common paths through the code.  The limit needs to be high enough
621   // to allow undoing the effects of tail merging and other optimizations
622   // that rearrange the predecessors of the indirect branch.
623 
624   bool HasIndirectbr = false;
625   if (!TailBB.empty())
626     HasIndirectbr = TailBB.back().isIndirectBranch();
627 
628   if (HasIndirectbr && PreRegAlloc)
629     MaxDuplicateCount = TailDupIndirectBranchSize;
630 
631   // Check the instructions in the block to determine whether tail-duplication
632   // is invalid or unlikely to be profitable.
633   unsigned InstrCount = 0;
634   for (MachineInstr &MI : TailBB) {
635     // Non-duplicable things shouldn't be tail-duplicated.
636     // CFI instructions are marked as non-duplicable, because Darwin compact
637     // unwind info emission can't handle multiple prologue setups. In case of
638     // DWARF, allow them be duplicated, so that their existence doesn't prevent
639     // tail duplication of some basic blocks, that would be duplicated otherwise.
640     if (MI.isNotDuplicable() &&
641         (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() ||
642         !MI.isCFIInstruction()))
643       return false;
644 
645     // Convergent instructions can be duplicated only if doing so doesn't add
646     // new control dependencies, which is what we're going to do here.
647     if (MI.isConvergent())
648       return false;
649 
650     // Do not duplicate 'return' instructions if this is a pre-regalloc run.
651     // A return may expand into a lot more instructions (e.g. reload of callee
652     // saved registers) after PEI.
653     if (PreRegAlloc && MI.isReturn())
654       return false;
655 
656     // Avoid duplicating calls before register allocation. Calls presents a
657     // barrier to register allocation so duplicating them may end up increasing
658     // spills.
659     if (PreRegAlloc && MI.isCall())
660       return false;
661 
662     // TailDuplicator::appendCopies will erroneously place COPYs after
663     // INLINEASM_BR instructions after 4b0aa5724fea, which demonstrates the same
664     // bug that was fixed in f7a53d82c090.
665     // FIXME: Use findPHICopyInsertPoint() to find the correct insertion point
666     //        for the COPY when replacing PHIs.
667     if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
668       return false;
669 
670     if (MI.isBundle())
671       InstrCount += MI.getBundleSize();
672     else if (!MI.isPHI() && !MI.isMetaInstruction())
673       InstrCount += 1;
674 
675     if (InstrCount > MaxDuplicateCount)
676       return false;
677   }
678 
679   // Check if any of the successors of TailBB has a PHI node in which the
680   // value corresponding to TailBB uses a subregister.
681   // If a phi node uses a register paired with a subregister, the actual
682   // "value type" of the phi may differ from the type of the register without
683   // any subregisters. Due to a bug, tail duplication may add a new operand
684   // without a necessary subregister, producing an invalid code. This is
685   // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
686   // Disable tail duplication for this case for now, until the problem is
687   // fixed.
688   for (auto SB : TailBB.successors()) {
689     for (auto &I : *SB) {
690       if (!I.isPHI())
691         break;
692       unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
693       assert(Idx != 0);
694       MachineOperand &PU = I.getOperand(Idx);
695       if (PU.getSubReg() != 0)
696         return false;
697     }
698   }
699 
700   if (HasIndirectbr && PreRegAlloc)
701     return true;
702 
703   if (IsSimple)
704     return true;
705 
706   if (!PreRegAlloc)
707     return true;
708 
709   return canCompletelyDuplicateBB(TailBB);
710 }
711 
712 /// True if this BB has only one unconditional jump.
713 bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) {
714   if (TailBB->succ_size() != 1)
715     return false;
716   if (TailBB->pred_empty())
717     return false;
718   MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr(true);
719   if (I == TailBB->end())
720     return true;
721   return I->isUnconditionalBranch();
722 }
723 
724 static bool bothUsedInPHI(const MachineBasicBlock &A,
725                           const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) {
726   for (MachineBasicBlock *BB : A.successors())
727     if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
728       return true;
729 
730   return false;
731 }
732 
733 bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
734   for (MachineBasicBlock *PredBB : BB.predecessors()) {
735     if (PredBB->succ_size() > 1)
736       return false;
737 
738     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
739     SmallVector<MachineOperand, 4> PredCond;
740     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
741       return false;
742 
743     if (!PredCond.empty())
744       return false;
745   }
746   return true;
747 }
748 
749 bool TailDuplicator::duplicateSimpleBB(
750     MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs,
751     const DenseSet<Register> &UsedByPhi,
752     SmallVectorImpl<MachineInstr *> &Copies) {
753   SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(),
754                                             TailBB->succ_end());
755   SmallVector<MachineBasicBlock *, 8> Preds(TailBB->predecessors());
756   bool Changed = false;
757   for (MachineBasicBlock *PredBB : Preds) {
758     if (PredBB->hasEHPadSuccessor() || PredBB->mayHaveInlineAsmBr())
759       continue;
760 
761     if (bothUsedInPHI(*PredBB, Succs))
762       continue;
763 
764     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
765     SmallVector<MachineOperand, 4> PredCond;
766     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
767       continue;
768 
769     Changed = true;
770     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
771                       << "From simple Succ: " << *TailBB);
772 
773     MachineBasicBlock *NewTarget = *TailBB->succ_begin();
774     MachineBasicBlock *NextBB = PredBB->getNextNode();
775 
776     // Make PredFBB explicit.
777     if (PredCond.empty())
778       PredFBB = PredTBB;
779 
780     // Make fall through explicit.
781     if (!PredTBB)
782       PredTBB = NextBB;
783     if (!PredFBB)
784       PredFBB = NextBB;
785 
786     // Redirect
787     if (PredFBB == TailBB)
788       PredFBB = NewTarget;
789     if (PredTBB == TailBB)
790       PredTBB = NewTarget;
791 
792     // Make the branch unconditional if possible
793     if (PredTBB == PredFBB) {
794       PredCond.clear();
795       PredFBB = nullptr;
796     }
797 
798     // Avoid adding fall through branches.
799     if (PredFBB == NextBB)
800       PredFBB = nullptr;
801     if (PredTBB == NextBB && PredFBB == nullptr)
802       PredTBB = nullptr;
803 
804     auto DL = PredBB->findBranchDebugLoc();
805     TII->removeBranch(*PredBB);
806 
807     if (!PredBB->isSuccessor(NewTarget))
808       PredBB->replaceSuccessor(TailBB, NewTarget);
809     else {
810       PredBB->removeSuccessor(TailBB, true);
811       assert(PredBB->succ_size() <= 1);
812     }
813 
814     if (PredTBB)
815       TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL);
816 
817     TDBBs.push_back(PredBB);
818   }
819   return Changed;
820 }
821 
822 bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
823                                       MachineBasicBlock *PredBB) {
824   // EH edges are ignored by analyzeBranch.
825   if (PredBB->succ_size() > 1)
826     return false;
827 
828   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
829   SmallVector<MachineOperand, 4> PredCond;
830   if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
831     return false;
832   if (!PredCond.empty())
833     return false;
834   return true;
835 }
836 
837 /// If it is profitable, duplicate TailBB's contents in each
838 /// of its predecessors.
839 /// \p IsSimple result of isSimpleBB
840 /// \p TailBB   Block to be duplicated.
841 /// \p ForcedLayoutPred  When non-null, use this block as the layout predecessor
842 ///                      instead of the previous block in MF's order.
843 /// \p TDBBs             A vector to keep track of all blocks tail-duplicated
844 ///                      into.
845 /// \p Copies            A vector of copy instructions inserted. Used later to
846 ///                      walk all the inserted copies and remove redundant ones.
847 bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
848                           MachineBasicBlock *ForcedLayoutPred,
849                           SmallVectorImpl<MachineBasicBlock *> &TDBBs,
850                           SmallVectorImpl<MachineInstr *> &Copies,
851                           SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) {
852   LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB)
853                     << '\n');
854 
855   bool ShouldUpdateTerminators = TailBB->canFallThrough();
856 
857   DenseSet<Register> UsedByPhi;
858   getRegsUsedByPHIs(*TailBB, &UsedByPhi);
859 
860   if (IsSimple)
861     return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
862 
863   // Iterate through all the unique predecessors and tail-duplicate this
864   // block into them, if possible. Copying the list ahead of time also
865   // avoids trouble with the predecessor list reallocating.
866   bool Changed = false;
867   SmallSetVector<MachineBasicBlock *, 8> Preds;
868   if (CandidatePtr)
869     Preds.insert(CandidatePtr->begin(), CandidatePtr->end());
870   else
871     Preds.insert(TailBB->pred_begin(), TailBB->pred_end());
872 
873   for (MachineBasicBlock *PredBB : Preds) {
874     assert(TailBB != PredBB &&
875            "Single-block loop should have been rejected earlier!");
876 
877     if (!canTailDuplicate(TailBB, PredBB))
878       continue;
879 
880     // Don't duplicate into a fall-through predecessor (at least for now).
881     // If profile is available, findDuplicateCandidates can choose better
882     // fall-through predecessor.
883     if (!(MF->getFunction().hasProfileData() && LayoutMode)) {
884       bool IsLayoutSuccessor = false;
885       if (ForcedLayoutPred)
886         IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
887       else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
888         IsLayoutSuccessor = true;
889       if (IsLayoutSuccessor)
890         continue;
891     }
892 
893     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
894                       << "From Succ: " << *TailBB);
895 
896     TDBBs.push_back(PredBB);
897 
898     // Remove PredBB's unconditional branch.
899     TII->removeBranch(*PredBB);
900 
901     // Clone the contents of TailBB into PredBB.
902     DenseMap<Register, RegSubRegPair> LocalVRMap;
903     SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
904     for (MachineInstr &MI : llvm::make_early_inc_range(*TailBB)) {
905       if (MI.isPHI()) {
906         // Replace the uses of the def of the PHI with the register coming
907         // from PredBB.
908         processPHI(&MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
909       } else {
910         // Replace def of virtual registers with new registers, and update
911         // uses with PHI source register or the new registers.
912         duplicateInstruction(&MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
913       }
914     }
915     appendCopies(PredBB, CopyInfos, Copies);
916 
917     NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch
918 
919     // Update the CFG.
920     PredBB->removeSuccessor(PredBB->succ_begin());
921     assert(PredBB->succ_empty() &&
922            "TailDuplicate called on block with multiple successors!");
923     for (MachineBasicBlock *Succ : TailBB->successors())
924       PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));
925 
926     // Update branches in pred to jump to tail's layout successor if needed.
927     if (ShouldUpdateTerminators)
928       PredBB->updateTerminator(TailBB->getNextNode());
929 
930     Changed = true;
931     ++NumTailDups;
932   }
933 
934   // If TailBB was duplicated into all its predecessors except for the prior
935   // block, which falls through unconditionally, move the contents of this
936   // block into the prior block.
937   MachineBasicBlock *PrevBB = ForcedLayoutPred;
938   if (!PrevBB)
939     PrevBB = &*std::prev(TailBB->getIterator());
940   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
941   SmallVector<MachineOperand, 4> PriorCond;
942   // This has to check PrevBB->succ_size() because EH edges are ignored by
943   // analyzeBranch.
944   if (PrevBB->succ_size() == 1 &&
945       // Layout preds are not always CFG preds. Check.
946       *PrevBB->succ_begin() == TailBB &&
947       !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
948       PriorCond.empty() &&
949       (!PriorTBB || PriorTBB == TailBB) &&
950       TailBB->pred_size() == 1 &&
951       !TailBB->hasAddressTaken()) {
952     LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
953                       << "From MBB: " << *TailBB);
954     // There may be a branch to the layout successor. This is unlikely but it
955     // happens. The correct thing to do is to remove the branch before
956     // duplicating the instructions in all cases.
957     bool RemovedBranches = TII->removeBranch(*PrevBB) != 0;
958 
959     // If there are still tail instructions, abort the merge
960     if (PrevBB->getFirstTerminator() == PrevBB->end()) {
961       if (PreRegAlloc) {
962         DenseMap<Register, RegSubRegPair> LocalVRMap;
963         SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
964         MachineBasicBlock::iterator I = TailBB->begin();
965         // Process PHI instructions first.
966         while (I != TailBB->end() && I->isPHI()) {
967           // Replace the uses of the def of the PHI with the register coming
968           // from PredBB.
969           MachineInstr *MI = &*I++;
970           processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi,
971                      true);
972         }
973 
974         // Now copy the non-PHI instructions.
975         while (I != TailBB->end()) {
976           // Replace def of virtual registers with new registers, and update
977           // uses with PHI source register or the new registers.
978           MachineInstr *MI = &*I++;
979           assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
980           duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
981           MI->eraseFromParent();
982         }
983         appendCopies(PrevBB, CopyInfos, Copies);
984       } else {
985         TII->removeBranch(*PrevBB);
986         // No PHIs to worry about, just splice the instructions over.
987         PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
988       }
989       PrevBB->removeSuccessor(PrevBB->succ_begin());
990       assert(PrevBB->succ_empty());
991       PrevBB->transferSuccessors(TailBB);
992 
993       // Update branches in PrevBB based on Tail's layout successor.
994       if (ShouldUpdateTerminators)
995         PrevBB->updateTerminator(TailBB->getNextNode());
996 
997       TDBBs.push_back(PrevBB);
998       Changed = true;
999     } else {
1000       LLVM_DEBUG(dbgs() << "Abort merging blocks, the predecessor still "
1001                            "contains terminator instructions");
1002       // Return early if no changes were made
1003       if (!Changed)
1004         return RemovedBranches;
1005     }
1006     Changed |= RemovedBranches;
1007   }
1008 
1009   // If this is after register allocation, there are no phis to fix.
1010   if (!PreRegAlloc)
1011     return Changed;
1012 
1013   // If we made no changes so far, we are safe.
1014   if (!Changed)
1015     return Changed;
1016 
1017   // Handle the nasty case in that we duplicated a block that is part of a loop
1018   // into some but not all of its predecessors. For example:
1019   //    1 -> 2 <-> 3                 |
1020   //          \                      |
1021   //           \---> rest            |
1022   // if we duplicate 2 into 1 but not into 3, we end up with
1023   // 12 -> 3 <-> 2 -> rest           |
1024   //   \             /               |
1025   //    \----->-----/                |
1026   // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
1027   // with a phi in 3 (which now dominates 2).
1028   // What we do here is introduce a copy in 3 of the register defined by the
1029   // phi, just like when we are duplicating 2 into 3, but we don't copy any
1030   // real instructions or remove the 3 -> 2 edge from the phi in 2.
1031   for (MachineBasicBlock *PredBB : Preds) {
1032     if (is_contained(TDBBs, PredBB))
1033       continue;
1034 
1035     // EH edges
1036     if (PredBB->succ_size() != 1)
1037       continue;
1038 
1039     DenseMap<Register, RegSubRegPair> LocalVRMap;
1040     SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
1041     MachineBasicBlock::iterator I = TailBB->begin();
1042     // Process PHI instructions first.
1043     while (I != TailBB->end() && I->isPHI()) {
1044       // Replace the uses of the def of the PHI with the register coming
1045       // from PredBB.
1046       MachineInstr *MI = &*I++;
1047       processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
1048     }
1049     appendCopies(PredBB, CopyInfos, Copies);
1050   }
1051 
1052   return Changed;
1053 }
1054 
1055 /// At the end of the block \p MBB generate COPY instructions between registers
1056 /// described by \p CopyInfos. Append resulting instructions to \p Copies.
1057 void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
1058       SmallVectorImpl<std::pair<Register, RegSubRegPair>> &CopyInfos,
1059       SmallVectorImpl<MachineInstr*> &Copies) {
1060   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1061   const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY);
1062   for (auto &CI : CopyInfos) {
1063     auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first)
1064                 .addReg(CI.second.Reg, 0, CI.second.SubReg);
1065     Copies.push_back(C);
1066   }
1067 }
1068 
1069 /// Remove the specified dead machine basic block from the function, updating
1070 /// the CFG.
1071 void TailDuplicator::removeDeadBlock(
1072     MachineBasicBlock *MBB,
1073     function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
1074   assert(MBB->pred_empty() && "MBB must be dead!");
1075   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
1076 
1077   MachineFunction *MF = MBB->getParent();
1078   // Update the call site info.
1079   for (const MachineInstr &MI : *MBB)
1080     if (MI.shouldUpdateCallSiteInfo())
1081       MF->eraseCallSiteInfo(&MI);
1082 
1083   if (RemovalCallback)
1084     (*RemovalCallback)(MBB);
1085 
1086   // Remove all successors.
1087   while (!MBB->succ_empty())
1088     MBB->removeSuccessor(MBB->succ_end() - 1);
1089 
1090   // Remove the block.
1091   MBB->eraseFromParent();
1092 }
1093