xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/TailDuplicator.cpp (revision 2fec3ae8964c8864a9e75d6a2f0ed137ede489a7)
1 //===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This utility class duplicates basic blocks ending in unconditional branches
10 // into the tails of their predecessors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TailDuplicator.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/MachineSizeOpts.h"
32 #include "llvm/CodeGen/MachineSSAUpdater.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Target/TargetMachine.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "tailduplication"
51 
52 STATISTIC(NumTails, "Number of tails duplicated");
53 STATISTIC(NumTailDups, "Number of tail duplicated blocks");
54 STATISTIC(NumTailDupAdded,
55           "Number of instructions added due to tail duplication");
56 STATISTIC(NumTailDupRemoved,
57           "Number of instructions removed due to tail duplication");
58 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
59 STATISTIC(NumAddedPHIs, "Number of phis added");
60 
61 // Heuristic for tail duplication.
62 static cl::opt<unsigned> TailDuplicateSize(
63     "tail-dup-size",
64     cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
65     cl::Hidden);
66 
67 static cl::opt<unsigned> TailDupIndirectBranchSize(
68     "tail-dup-indirect-size",
69     cl::desc("Maximum instructions to consider tail duplicating blocks that "
70              "end with indirect branches."), cl::init(20),
71     cl::Hidden);
72 
73 static cl::opt<bool>
74     TailDupVerify("tail-dup-verify",
75                   cl::desc("Verify sanity of PHI instructions during taildup"),
76                   cl::init(false), cl::Hidden);
77 
78 static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
79                                       cl::Hidden);
80 
81 void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc,
82                             const MachineBranchProbabilityInfo *MBPIin,
83                             MBFIWrapper *MBFIin,
84                             ProfileSummaryInfo *PSIin,
85                             bool LayoutModeIn, unsigned TailDupSizeIn) {
86   MF = &MFin;
87   TII = MF->getSubtarget().getInstrInfo();
88   TRI = MF->getSubtarget().getRegisterInfo();
89   MRI = &MF->getRegInfo();
90   MMI = &MF->getMMI();
91   MBPI = MBPIin;
92   MBFI = MBFIin;
93   PSI = PSIin;
94   TailDupSize = TailDupSizeIn;
95 
96   assert(MBPI != nullptr && "Machine Branch Probability Info required");
97 
98   LayoutMode = LayoutModeIn;
99   this->PreRegAlloc = PreRegAlloc;
100 }
101 
102 static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
103   for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) {
104     MachineBasicBlock *MBB = &*I;
105     SmallSetVector<MachineBasicBlock *, 8> Preds(MBB->pred_begin(),
106                                                  MBB->pred_end());
107     MachineBasicBlock::iterator MI = MBB->begin();
108     while (MI != MBB->end()) {
109       if (!MI->isPHI())
110         break;
111       for (MachineBasicBlock *PredBB : Preds) {
112         bool Found = false;
113         for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
114           MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
115           if (PHIBB == PredBB) {
116             Found = true;
117             break;
118           }
119         }
120         if (!Found) {
121           dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
122                  << *MI;
123           dbgs() << "  missing input from predecessor "
124                  << printMBBReference(*PredBB) << '\n';
125           llvm_unreachable(nullptr);
126         }
127       }
128 
129       for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
130         MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
131         if (CheckExtra && !Preds.count(PHIBB)) {
132           dbgs() << "Warning: malformed PHI in " << printMBBReference(*MBB)
133                  << ": " << *MI;
134           dbgs() << "  extra input from predecessor "
135                  << printMBBReference(*PHIBB) << '\n';
136           llvm_unreachable(nullptr);
137         }
138         if (PHIBB->getNumber() < 0) {
139           dbgs() << "Malformed PHI in " << printMBBReference(*MBB) << ": "
140                  << *MI;
141           dbgs() << "  non-existing " << printMBBReference(*PHIBB) << '\n';
142           llvm_unreachable(nullptr);
143         }
144       }
145       ++MI;
146     }
147   }
148 }
149 
150 /// Tail duplicate the block and cleanup.
151 /// \p IsSimple - return value of isSimpleBB
152 /// \p MBB - block to be duplicated
153 /// \p ForcedLayoutPred - If non-null, treat this block as the layout
154 ///     predecessor, instead of using the ordering in MF
155 /// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of
156 ///     all Preds that received a copy of \p MBB.
157 /// \p RemovalCallback - if non-null, called just before MBB is deleted.
158 bool TailDuplicator::tailDuplicateAndUpdate(
159     bool IsSimple, MachineBasicBlock *MBB,
160     MachineBasicBlock *ForcedLayoutPred,
161     SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds,
162     function_ref<void(MachineBasicBlock *)> *RemovalCallback,
163     SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) {
164   // Save the successors list.
165   SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
166                                                MBB->succ_end());
167 
168   SmallVector<MachineBasicBlock *, 8> TDBBs;
169   SmallVector<MachineInstr *, 16> Copies;
170   if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred,
171                      TDBBs, Copies, CandidatePtr))
172     return false;
173 
174   ++NumTails;
175 
176   SmallVector<MachineInstr *, 8> NewPHIs;
177   MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);
178 
179   // TailBB's immediate successors are now successors of those predecessors
180   // which duplicated TailBB. Add the predecessors as sources to the PHI
181   // instructions.
182   bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
183   if (PreRegAlloc)
184     updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
185 
186   // If it is dead, remove it.
187   if (isDead) {
188     NumTailDupRemoved += MBB->size();
189     removeDeadBlock(MBB, RemovalCallback);
190     ++NumDeadBlocks;
191   }
192 
193   // Update SSA form.
194   if (!SSAUpdateVRs.empty()) {
195     for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
196       unsigned VReg = SSAUpdateVRs[i];
197       SSAUpdate.Initialize(VReg);
198 
199       // If the original definition is still around, add it as an available
200       // value.
201       MachineInstr *DefMI = MRI->getVRegDef(VReg);
202       MachineBasicBlock *DefBB = nullptr;
203       if (DefMI) {
204         DefBB = DefMI->getParent();
205         SSAUpdate.AddAvailableValue(DefBB, VReg);
206       }
207 
208       // Add the new vregs as available values.
209       DenseMap<Register, AvailableValsTy>::iterator LI =
210           SSAUpdateVals.find(VReg);
211       for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
212         MachineBasicBlock *SrcBB = LI->second[j].first;
213         Register SrcReg = LI->second[j].second;
214         SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
215       }
216 
217       // Rewrite uses that are outside of the original def's block.
218       MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
219       while (UI != MRI->use_end()) {
220         MachineOperand &UseMO = *UI;
221         MachineInstr *UseMI = UseMO.getParent();
222         ++UI;
223         if (UseMI->isDebugValue()) {
224           // SSAUpdate can replace the use with an undef. That creates
225           // a debug instruction that is a kill.
226           // FIXME: Should it SSAUpdate job to delete debug instructions
227           // instead of replacing the use with undef?
228           UseMI->eraseFromParent();
229           continue;
230         }
231         if (UseMI->getParent() == DefBB && !UseMI->isPHI())
232           continue;
233         SSAUpdate.RewriteUse(UseMO);
234       }
235     }
236 
237     SSAUpdateVRs.clear();
238     SSAUpdateVals.clear();
239   }
240 
241   // Eliminate some of the copies inserted by tail duplication to maintain
242   // SSA form.
243   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
244     MachineInstr *Copy = Copies[i];
245     if (!Copy->isCopy())
246       continue;
247     Register Dst = Copy->getOperand(0).getReg();
248     Register Src = Copy->getOperand(1).getReg();
249     if (MRI->hasOneNonDBGUse(Src) &&
250         MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) {
251       // Copy is the only use. Do trivial copy propagation here.
252       MRI->replaceRegWith(Dst, Src);
253       Copy->eraseFromParent();
254     }
255   }
256 
257   if (NewPHIs.size())
258     NumAddedPHIs += NewPHIs.size();
259 
260   if (DuplicatedPreds)
261     *DuplicatedPreds = std::move(TDBBs);
262 
263   return true;
264 }
265 
266 /// Look for small blocks that are unconditionally branched to and do not fall
267 /// through. Tail-duplicate their instructions into their predecessors to
268 /// eliminate (dynamic) branches.
269 bool TailDuplicator::tailDuplicateBlocks() {
270   bool MadeChange = false;
271 
272   if (PreRegAlloc && TailDupVerify) {
273     LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
274     VerifyPHIs(*MF, true);
275   }
276 
277   for (MachineFunction::iterator I = ++MF->begin(), E = MF->end(); I != E;) {
278     MachineBasicBlock *MBB = &*I++;
279 
280     if (NumTails == TailDupLimit)
281       break;
282 
283     bool IsSimple = isSimpleBB(MBB);
284 
285     if (!shouldTailDuplicate(IsSimple, *MBB))
286       continue;
287 
288     MadeChange |= tailDuplicateAndUpdate(IsSimple, MBB, nullptr);
289   }
290 
291   if (PreRegAlloc && TailDupVerify)
292     VerifyPHIs(*MF, false);
293 
294   return MadeChange;
295 }
296 
297 static bool isDefLiveOut(Register Reg, MachineBasicBlock *BB,
298                          const MachineRegisterInfo *MRI) {
299   for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
300     if (UseMI.isDebugValue())
301       continue;
302     if (UseMI.getParent() != BB)
303       return true;
304   }
305   return false;
306 }
307 
308 static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
309   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
310     if (MI->getOperand(i + 1).getMBB() == SrcBB)
311       return i;
312   return 0;
313 }
314 
315 // Remember which registers are used by phis in this block. This is
316 // used to determine which registers are liveout while modifying the
317 // block (which is why we need to copy the information).
318 static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
319                               DenseSet<Register> *UsedByPhi) {
320   for (const auto &MI : BB) {
321     if (!MI.isPHI())
322       break;
323     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
324       Register SrcReg = MI.getOperand(i).getReg();
325       UsedByPhi->insert(SrcReg);
326     }
327   }
328 }
329 
330 /// Add a definition and source virtual registers pair for SSA update.
331 void TailDuplicator::addSSAUpdateEntry(Register OrigReg, Register NewReg,
332                                        MachineBasicBlock *BB) {
333   DenseMap<Register, AvailableValsTy>::iterator LI =
334       SSAUpdateVals.find(OrigReg);
335   if (LI != SSAUpdateVals.end())
336     LI->second.push_back(std::make_pair(BB, NewReg));
337   else {
338     AvailableValsTy Vals;
339     Vals.push_back(std::make_pair(BB, NewReg));
340     SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
341     SSAUpdateVRs.push_back(OrigReg);
342   }
343 }
344 
345 /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the
346 /// source register that's contributed by PredBB and update SSA update map.
347 void TailDuplicator::processPHI(
348     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
349     DenseMap<Register, RegSubRegPair> &LocalVRMap,
350     SmallVectorImpl<std::pair<Register, RegSubRegPair>> &Copies,
351     const DenseSet<Register> &RegsUsedByPhi, bool Remove) {
352   Register DefReg = MI->getOperand(0).getReg();
353   unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
354   assert(SrcOpIdx && "Unable to find matching PHI source?");
355   Register SrcReg = MI->getOperand(SrcOpIdx).getReg();
356   unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg();
357   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
358   LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg)));
359 
360   // Insert a copy from source to the end of the block. The def register is the
361   // available value liveout of the block.
362   Register NewDef = MRI->createVirtualRegister(RC);
363   Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg)));
364   if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
365     addSSAUpdateEntry(DefReg, NewDef, PredBB);
366 
367   if (!Remove)
368     return;
369 
370   // Remove PredBB from the PHI node.
371   MI->RemoveOperand(SrcOpIdx + 1);
372   MI->RemoveOperand(SrcOpIdx);
373   if (MI->getNumOperands() == 1)
374     MI->eraseFromParent();
375 }
376 
377 /// Duplicate a TailBB instruction to PredBB and update
378 /// the source operands due to earlier PHI translation.
379 void TailDuplicator::duplicateInstruction(
380     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
381     DenseMap<Register, RegSubRegPair> &LocalVRMap,
382     const DenseSet<Register> &UsedByPhi) {
383   // Allow duplication of CFI instructions.
384   if (MI->isCFIInstruction()) {
385     BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()),
386       TII->get(TargetOpcode::CFI_INSTRUCTION)).addCFIIndex(
387       MI->getOperand(0).getCFIIndex());
388     return;
389   }
390   MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI);
391   if (PreRegAlloc) {
392     for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) {
393       MachineOperand &MO = NewMI.getOperand(i);
394       if (!MO.isReg())
395         continue;
396       Register Reg = MO.getReg();
397       if (!Register::isVirtualRegister(Reg))
398         continue;
399       if (MO.isDef()) {
400         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
401         Register NewReg = MRI->createVirtualRegister(RC);
402         MO.setReg(NewReg);
403         LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
404         if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
405           addSSAUpdateEntry(Reg, NewReg, PredBB);
406       } else {
407         auto VI = LocalVRMap.find(Reg);
408         if (VI != LocalVRMap.end()) {
409           // Need to make sure that the register class of the mapped register
410           // will satisfy the constraints of the class of the register being
411           // replaced.
412           auto *OrigRC = MRI->getRegClass(Reg);
413           auto *MappedRC = MRI->getRegClass(VI->second.Reg);
414           const TargetRegisterClass *ConstrRC;
415           if (VI->second.SubReg != 0) {
416             ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC,
417                                                      VI->second.SubReg);
418             if (ConstrRC) {
419               // The actual constraining (as in "find appropriate new class")
420               // is done by getMatchingSuperRegClass, so now we only need to
421               // change the class of the mapped register.
422               MRI->setRegClass(VI->second.Reg, ConstrRC);
423             }
424           } else {
425             // For mapped registers that do not have sub-registers, simply
426             // restrict their class to match the original one.
427             ConstrRC = MRI->constrainRegClass(VI->second.Reg, OrigRC);
428           }
429 
430           if (ConstrRC) {
431             // If the class constraining succeeded, we can simply replace
432             // the old register with the mapped one.
433             MO.setReg(VI->second.Reg);
434             // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a
435             // sub-register, we need to compose the sub-register indices.
436             MO.setSubReg(TRI->composeSubRegIndices(MO.getSubReg(),
437                                                    VI->second.SubReg));
438           } else {
439             // The direct replacement is not possible, due to failing register
440             // class constraints. An explicit COPY is necessary. Create one
441             // that can be reused
442             auto *NewRC = MI->getRegClassConstraint(i, TII, TRI);
443             if (NewRC == nullptr)
444               NewRC = OrigRC;
445             Register NewReg = MRI->createVirtualRegister(NewRC);
446             BuildMI(*PredBB, NewMI, NewMI.getDebugLoc(),
447                     TII->get(TargetOpcode::COPY), NewReg)
448                 .addReg(VI->second.Reg, 0, VI->second.SubReg);
449             LocalVRMap.erase(VI);
450             LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
451             MO.setReg(NewReg);
452             // The composed VI.Reg:VI.SubReg is replaced with NewReg, which
453             // is equivalent to the whole register Reg. Hence, Reg:subreg
454             // is same as NewReg:subreg, so keep the sub-register index
455             // unchanged.
456           }
457           // Clear any kill flags from this operand.  The new register could
458           // have uses after this one, so kills are not valid here.
459           MO.setIsKill(false);
460         }
461       }
462     }
463   }
464 }
465 
466 /// After FromBB is tail duplicated into its predecessor blocks, the successors
467 /// have gained new predecessors. Update the PHI instructions in them
468 /// accordingly.
469 void TailDuplicator::updateSuccessorsPHIs(
470     MachineBasicBlock *FromBB, bool isDead,
471     SmallVectorImpl<MachineBasicBlock *> &TDBBs,
472     SmallSetVector<MachineBasicBlock *, 8> &Succs) {
473   for (MachineBasicBlock *SuccBB : Succs) {
474     for (MachineInstr &MI : *SuccBB) {
475       if (!MI.isPHI())
476         break;
477       MachineInstrBuilder MIB(*FromBB->getParent(), MI);
478       unsigned Idx = 0;
479       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
480         MachineOperand &MO = MI.getOperand(i + 1);
481         if (MO.getMBB() == FromBB) {
482           Idx = i;
483           break;
484         }
485       }
486 
487       assert(Idx != 0);
488       MachineOperand &MO0 = MI.getOperand(Idx);
489       Register Reg = MO0.getReg();
490       if (isDead) {
491         // Folded into the previous BB.
492         // There could be duplicate phi source entries. FIXME: Should sdisel
493         // or earlier pass fixed this?
494         for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
495           MachineOperand &MO = MI.getOperand(i + 1);
496           if (MO.getMBB() == FromBB) {
497             MI.RemoveOperand(i + 1);
498             MI.RemoveOperand(i);
499           }
500         }
501       } else
502         Idx = 0;
503 
504       // If Idx is set, the operands at Idx and Idx+1 must be removed.
505       // We reuse the location to avoid expensive RemoveOperand calls.
506 
507       DenseMap<Register, AvailableValsTy>::iterator LI =
508           SSAUpdateVals.find(Reg);
509       if (LI != SSAUpdateVals.end()) {
510         // This register is defined in the tail block.
511         for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
512           MachineBasicBlock *SrcBB = LI->second[j].first;
513           // If we didn't duplicate a bb into a particular predecessor, we
514           // might still have added an entry to SSAUpdateVals to correcly
515           // recompute SSA. If that case, avoid adding a dummy extra argument
516           // this PHI.
517           if (!SrcBB->isSuccessor(SuccBB))
518             continue;
519 
520           Register SrcReg = LI->second[j].second;
521           if (Idx != 0) {
522             MI.getOperand(Idx).setReg(SrcReg);
523             MI.getOperand(Idx + 1).setMBB(SrcBB);
524             Idx = 0;
525           } else {
526             MIB.addReg(SrcReg).addMBB(SrcBB);
527           }
528         }
529       } else {
530         // Live in tail block, must also be live in predecessors.
531         for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
532           MachineBasicBlock *SrcBB = TDBBs[j];
533           if (Idx != 0) {
534             MI.getOperand(Idx).setReg(Reg);
535             MI.getOperand(Idx + 1).setMBB(SrcBB);
536             Idx = 0;
537           } else {
538             MIB.addReg(Reg).addMBB(SrcBB);
539           }
540         }
541       }
542       if (Idx != 0) {
543         MI.RemoveOperand(Idx + 1);
544         MI.RemoveOperand(Idx);
545       }
546     }
547   }
548 }
549 
550 /// Determine if it is profitable to duplicate this block.
551 bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
552                                          MachineBasicBlock &TailBB) {
553   // When doing tail-duplication during layout, the block ordering is in flux,
554   // so canFallThrough returns a result based on incorrect information and
555   // should just be ignored.
556   if (!LayoutMode && TailBB.canFallThrough())
557     return false;
558 
559   // Don't try to tail-duplicate single-block loops.
560   if (TailBB.isSuccessor(&TailBB))
561     return false;
562 
563   // Set the limit on the cost to duplicate. When optimizing for size,
564   // duplicate only one, because one branch instruction can be eliminated to
565   // compensate for the duplication.
566   unsigned MaxDuplicateCount;
567   bool OptForSize = MF->getFunction().hasOptSize() ||
568                     llvm::shouldOptimizeForSize(&TailBB, PSI, MBFI);
569   if (TailDupSize == 0)
570     MaxDuplicateCount = TailDuplicateSize;
571   else
572     MaxDuplicateCount = TailDupSize;
573   if (OptForSize)
574     MaxDuplicateCount = 1;
575 
576   // If the block to be duplicated ends in an unanalyzable fallthrough, don't
577   // duplicate it.
578   // A similar check is necessary in MachineBlockPlacement to make sure pairs of
579   // blocks with unanalyzable fallthrough get layed out contiguously.
580   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
581   SmallVector<MachineOperand, 4> PredCond;
582   if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
583       TailBB.canFallThrough())
584     return false;
585 
586   // If the target has hardware branch prediction that can handle indirect
587   // branches, duplicating them can often make them predictable when there
588   // are common paths through the code.  The limit needs to be high enough
589   // to allow undoing the effects of tail merging and other optimizations
590   // that rearrange the predecessors of the indirect branch.
591 
592   bool HasIndirectbr = false;
593   if (!TailBB.empty())
594     HasIndirectbr = TailBB.back().isIndirectBranch();
595 
596   if (HasIndirectbr && PreRegAlloc)
597     MaxDuplicateCount = TailDupIndirectBranchSize;
598 
599   // Check the instructions in the block to determine whether tail-duplication
600   // is invalid or unlikely to be profitable.
601   unsigned InstrCount = 0;
602   for (MachineInstr &MI : TailBB) {
603     // Non-duplicable things shouldn't be tail-duplicated.
604     // CFI instructions are marked as non-duplicable, because Darwin compact
605     // unwind info emission can't handle multiple prologue setups. In case of
606     // DWARF, allow them be duplicated, so that their existence doesn't prevent
607     // tail duplication of some basic blocks, that would be duplicated otherwise.
608     if (MI.isNotDuplicable() &&
609         (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() ||
610         !MI.isCFIInstruction()))
611       return false;
612 
613     // Convergent instructions can be duplicated only if doing so doesn't add
614     // new control dependencies, which is what we're going to do here.
615     if (MI.isConvergent())
616       return false;
617 
618     // Do not duplicate 'return' instructions if this is a pre-regalloc run.
619     // A return may expand into a lot more instructions (e.g. reload of callee
620     // saved registers) after PEI.
621     if (PreRegAlloc && MI.isReturn())
622       return false;
623 
624     // Avoid duplicating calls before register allocation. Calls presents a
625     // barrier to register allocation so duplicating them may end up increasing
626     // spills.
627     if (PreRegAlloc && MI.isCall())
628       return false;
629 
630     // TailDuplicator::appendCopies will erroneously place COPYs after
631     // INLINEASM_BR instructions after 4b0aa5724fea, which demonstrates the same
632     // bug that was fixed in f7a53d82c090.
633     // FIXME: Use findPHICopyInsertPoint() to find the correct insertion point
634     //        for the COPY when replacing PHIs.
635     if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
636       return false;
637 
638     if (MI.isBundle())
639       InstrCount += MI.getBundleSize();
640     else if (!MI.isPHI() && !MI.isMetaInstruction())
641       InstrCount += 1;
642 
643     if (InstrCount > MaxDuplicateCount)
644       return false;
645   }
646 
647   // Check if any of the successors of TailBB has a PHI node in which the
648   // value corresponding to TailBB uses a subregister.
649   // If a phi node uses a register paired with a subregister, the actual
650   // "value type" of the phi may differ from the type of the register without
651   // any subregisters. Due to a bug, tail duplication may add a new operand
652   // without a necessary subregister, producing an invalid code. This is
653   // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
654   // Disable tail duplication for this case for now, until the problem is
655   // fixed.
656   for (auto SB : TailBB.successors()) {
657     for (auto &I : *SB) {
658       if (!I.isPHI())
659         break;
660       unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
661       assert(Idx != 0);
662       MachineOperand &PU = I.getOperand(Idx);
663       if (PU.getSubReg() != 0)
664         return false;
665     }
666   }
667 
668   if (HasIndirectbr && PreRegAlloc)
669     return true;
670 
671   if (IsSimple)
672     return true;
673 
674   if (!PreRegAlloc)
675     return true;
676 
677   return canCompletelyDuplicateBB(TailBB);
678 }
679 
680 /// True if this BB has only one unconditional jump.
681 bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) {
682   if (TailBB->succ_size() != 1)
683     return false;
684   if (TailBB->pred_empty())
685     return false;
686   MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr();
687   if (I == TailBB->end())
688     return true;
689   return I->isUnconditionalBranch();
690 }
691 
692 static bool bothUsedInPHI(const MachineBasicBlock &A,
693                           const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) {
694   for (MachineBasicBlock *BB : A.successors())
695     if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
696       return true;
697 
698   return false;
699 }
700 
701 bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
702   for (MachineBasicBlock *PredBB : BB.predecessors()) {
703     if (PredBB->succ_size() > 1)
704       return false;
705 
706     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
707     SmallVector<MachineOperand, 4> PredCond;
708     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
709       return false;
710 
711     if (!PredCond.empty())
712       return false;
713   }
714   return true;
715 }
716 
717 bool TailDuplicator::duplicateSimpleBB(
718     MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs,
719     const DenseSet<Register> &UsedByPhi,
720     SmallVectorImpl<MachineInstr *> &Copies) {
721   SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(),
722                                             TailBB->succ_end());
723   SmallVector<MachineBasicBlock *, 8> Preds(TailBB->pred_begin(),
724                                             TailBB->pred_end());
725   bool Changed = false;
726   for (MachineBasicBlock *PredBB : Preds) {
727     if (PredBB->hasEHPadSuccessor() || PredBB->mayHaveInlineAsmBr())
728       continue;
729 
730     if (bothUsedInPHI(*PredBB, Succs))
731       continue;
732 
733     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
734     SmallVector<MachineOperand, 4> PredCond;
735     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
736       continue;
737 
738     Changed = true;
739     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
740                       << "From simple Succ: " << *TailBB);
741 
742     MachineBasicBlock *NewTarget = *TailBB->succ_begin();
743     MachineBasicBlock *NextBB = PredBB->getNextNode();
744 
745     // Make PredFBB explicit.
746     if (PredCond.empty())
747       PredFBB = PredTBB;
748 
749     // Make fall through explicit.
750     if (!PredTBB)
751       PredTBB = NextBB;
752     if (!PredFBB)
753       PredFBB = NextBB;
754 
755     // Redirect
756     if (PredFBB == TailBB)
757       PredFBB = NewTarget;
758     if (PredTBB == TailBB)
759       PredTBB = NewTarget;
760 
761     // Make the branch unconditional if possible
762     if (PredTBB == PredFBB) {
763       PredCond.clear();
764       PredFBB = nullptr;
765     }
766 
767     // Avoid adding fall through branches.
768     if (PredFBB == NextBB)
769       PredFBB = nullptr;
770     if (PredTBB == NextBB && PredFBB == nullptr)
771       PredTBB = nullptr;
772 
773     auto DL = PredBB->findBranchDebugLoc();
774     TII->removeBranch(*PredBB);
775 
776     if (!PredBB->isSuccessor(NewTarget))
777       PredBB->replaceSuccessor(TailBB, NewTarget);
778     else {
779       PredBB->removeSuccessor(TailBB, true);
780       assert(PredBB->succ_size() <= 1);
781     }
782 
783     if (PredTBB)
784       TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL);
785 
786     TDBBs.push_back(PredBB);
787   }
788   return Changed;
789 }
790 
791 bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
792                                       MachineBasicBlock *PredBB) {
793   // EH edges are ignored by analyzeBranch.
794   if (PredBB->succ_size() > 1)
795     return false;
796 
797   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
798   SmallVector<MachineOperand, 4> PredCond;
799   if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
800     return false;
801   if (!PredCond.empty())
802     return false;
803   return true;
804 }
805 
806 /// If it is profitable, duplicate TailBB's contents in each
807 /// of its predecessors.
808 /// \p IsSimple result of isSimpleBB
809 /// \p TailBB   Block to be duplicated.
810 /// \p ForcedLayoutPred  When non-null, use this block as the layout predecessor
811 ///                      instead of the previous block in MF's order.
812 /// \p TDBBs             A vector to keep track of all blocks tail-duplicated
813 ///                      into.
814 /// \p Copies            A vector of copy instructions inserted. Used later to
815 ///                      walk all the inserted copies and remove redundant ones.
816 bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
817                           MachineBasicBlock *ForcedLayoutPred,
818                           SmallVectorImpl<MachineBasicBlock *> &TDBBs,
819                           SmallVectorImpl<MachineInstr *> &Copies,
820                           SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) {
821   LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB)
822                     << '\n');
823 
824   bool ShouldUpdateTerminators = TailBB->canFallThrough();
825 
826   DenseSet<Register> UsedByPhi;
827   getRegsUsedByPHIs(*TailBB, &UsedByPhi);
828 
829   if (IsSimple)
830     return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
831 
832   // Iterate through all the unique predecessors and tail-duplicate this
833   // block into them, if possible. Copying the list ahead of time also
834   // avoids trouble with the predecessor list reallocating.
835   bool Changed = false;
836   SmallSetVector<MachineBasicBlock *, 8> Preds;
837   if (CandidatePtr)
838     Preds.insert(CandidatePtr->begin(), CandidatePtr->end());
839   else
840     Preds.insert(TailBB->pred_begin(), TailBB->pred_end());
841 
842   for (MachineBasicBlock *PredBB : Preds) {
843     assert(TailBB != PredBB &&
844            "Single-block loop should have been rejected earlier!");
845 
846     if (!canTailDuplicate(TailBB, PredBB))
847       continue;
848 
849     // Don't duplicate into a fall-through predecessor (at least for now).
850     // If profile is available, findDuplicateCandidates can choose better
851     // fall-through predecessor.
852     if (!(MF->getFunction().hasProfileData() && LayoutMode)) {
853       bool IsLayoutSuccessor = false;
854       if (ForcedLayoutPred)
855         IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
856       else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
857         IsLayoutSuccessor = true;
858       if (IsLayoutSuccessor)
859         continue;
860     }
861 
862     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
863                       << "From Succ: " << *TailBB);
864 
865     TDBBs.push_back(PredBB);
866 
867     // Remove PredBB's unconditional branch.
868     TII->removeBranch(*PredBB);
869 
870     // Clone the contents of TailBB into PredBB.
871     DenseMap<Register, RegSubRegPair> LocalVRMap;
872     SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
873     for (MachineBasicBlock::iterator I = TailBB->begin(), E = TailBB->end();
874          I != E; /* empty */) {
875       MachineInstr *MI = &*I;
876       ++I;
877       if (MI->isPHI()) {
878         // Replace the uses of the def of the PHI with the register coming
879         // from PredBB.
880         processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
881       } else {
882         // Replace def of virtual registers with new registers, and update
883         // uses with PHI source register or the new registers.
884         duplicateInstruction(MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
885       }
886     }
887     appendCopies(PredBB, CopyInfos, Copies);
888 
889     NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch
890 
891     // Update the CFG.
892     PredBB->removeSuccessor(PredBB->succ_begin());
893     assert(PredBB->succ_empty() &&
894            "TailDuplicate called on block with multiple successors!");
895     for (MachineBasicBlock *Succ : TailBB->successors())
896       PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));
897 
898     // Update branches in pred to jump to tail's layout successor if needed.
899     if (ShouldUpdateTerminators)
900       PredBB->updateTerminator(TailBB->getNextNode());
901 
902     Changed = true;
903     ++NumTailDups;
904   }
905 
906   // If TailBB was duplicated into all its predecessors except for the prior
907   // block, which falls through unconditionally, move the contents of this
908   // block into the prior block.
909   MachineBasicBlock *PrevBB = ForcedLayoutPred;
910   if (!PrevBB)
911     PrevBB = &*std::prev(TailBB->getIterator());
912   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
913   SmallVector<MachineOperand, 4> PriorCond;
914   // This has to check PrevBB->succ_size() because EH edges are ignored by
915   // analyzeBranch.
916   if (PrevBB->succ_size() == 1 &&
917       // Layout preds are not always CFG preds. Check.
918       *PrevBB->succ_begin() == TailBB &&
919       !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
920       PriorCond.empty() &&
921       (!PriorTBB || PriorTBB == TailBB) &&
922       TailBB->pred_size() == 1 &&
923       !TailBB->hasAddressTaken()) {
924     LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
925                       << "From MBB: " << *TailBB);
926     // There may be a branch to the layout successor. This is unlikely but it
927     // happens. The correct thing to do is to remove the branch before
928     // duplicating the instructions in all cases.
929     TII->removeBranch(*PrevBB);
930     if (PreRegAlloc) {
931       DenseMap<Register, RegSubRegPair> LocalVRMap;
932       SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
933       MachineBasicBlock::iterator I = TailBB->begin();
934       // Process PHI instructions first.
935       while (I != TailBB->end() && I->isPHI()) {
936         // Replace the uses of the def of the PHI with the register coming
937         // from PredBB.
938         MachineInstr *MI = &*I++;
939         processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
940       }
941 
942       // Now copy the non-PHI instructions.
943       while (I != TailBB->end()) {
944         // Replace def of virtual registers with new registers, and update
945         // uses with PHI source register or the new registers.
946         MachineInstr *MI = &*I++;
947         assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
948         duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
949         MI->eraseFromParent();
950       }
951       appendCopies(PrevBB, CopyInfos, Copies);
952     } else {
953       TII->removeBranch(*PrevBB);
954       // No PHIs to worry about, just splice the instructions over.
955       PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
956     }
957     PrevBB->removeSuccessor(PrevBB->succ_begin());
958     assert(PrevBB->succ_empty());
959     PrevBB->transferSuccessors(TailBB);
960 
961     // Update branches in PrevBB based on Tail's layout successor.
962     if (ShouldUpdateTerminators)
963       PrevBB->updateTerminator(TailBB->getNextNode());
964 
965     TDBBs.push_back(PrevBB);
966     Changed = true;
967   }
968 
969   // If this is after register allocation, there are no phis to fix.
970   if (!PreRegAlloc)
971     return Changed;
972 
973   // If we made no changes so far, we are safe.
974   if (!Changed)
975     return Changed;
976 
977   // Handle the nasty case in that we duplicated a block that is part of a loop
978   // into some but not all of its predecessors. For example:
979   //    1 -> 2 <-> 3                 |
980   //          \                      |
981   //           \---> rest            |
982   // if we duplicate 2 into 1 but not into 3, we end up with
983   // 12 -> 3 <-> 2 -> rest           |
984   //   \             /               |
985   //    \----->-----/                |
986   // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
987   // with a phi in 3 (which now dominates 2).
988   // What we do here is introduce a copy in 3 of the register defined by the
989   // phi, just like when we are duplicating 2 into 3, but we don't copy any
990   // real instructions or remove the 3 -> 2 edge from the phi in 2.
991   for (MachineBasicBlock *PredBB : Preds) {
992     if (is_contained(TDBBs, PredBB))
993       continue;
994 
995     // EH edges
996     if (PredBB->succ_size() != 1)
997       continue;
998 
999     DenseMap<Register, RegSubRegPair> LocalVRMap;
1000     SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
1001     MachineBasicBlock::iterator I = TailBB->begin();
1002     // Process PHI instructions first.
1003     while (I != TailBB->end() && I->isPHI()) {
1004       // Replace the uses of the def of the PHI with the register coming
1005       // from PredBB.
1006       MachineInstr *MI = &*I++;
1007       processPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
1008     }
1009     appendCopies(PredBB, CopyInfos, Copies);
1010   }
1011 
1012   return Changed;
1013 }
1014 
1015 /// At the end of the block \p MBB generate COPY instructions between registers
1016 /// described by \p CopyInfos. Append resulting instructions to \p Copies.
1017 void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
1018       SmallVectorImpl<std::pair<Register, RegSubRegPair>> &CopyInfos,
1019       SmallVectorImpl<MachineInstr*> &Copies) {
1020   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1021   const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY);
1022   for (auto &CI : CopyInfos) {
1023     auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first)
1024                 .addReg(CI.second.Reg, 0, CI.second.SubReg);
1025     Copies.push_back(C);
1026   }
1027 }
1028 
1029 /// Remove the specified dead machine basic block from the function, updating
1030 /// the CFG.
1031 void TailDuplicator::removeDeadBlock(
1032     MachineBasicBlock *MBB,
1033     function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
1034   assert(MBB->pred_empty() && "MBB must be dead!");
1035   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
1036 
1037   MachineFunction *MF = MBB->getParent();
1038   // Update the call site info.
1039   std::for_each(MBB->begin(), MBB->end(), [MF](const MachineInstr &MI) {
1040     if (MI.shouldUpdateCallSiteInfo())
1041       MF->eraseCallSiteInfo(&MI);
1042   });
1043 
1044   if (RemovalCallback)
1045     (*RemovalCallback)(MBB);
1046 
1047   // Remove all successors.
1048   while (!MBB->succ_empty())
1049     MBB->removeSuccessor(MBB->succ_end() - 1);
1050 
1051   // Remove the block.
1052   MBB->eraseFromParent();
1053 }
1054