xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SwitchLoweringUtils.cpp (revision d63a631e72441687910b8ec4a9396ac5d05029fb)
1  //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file contains switch inst lowering optimizations and utilities for
10  // codegen, so that it can be used for both SelectionDAG and GlobalISel.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "llvm/CodeGen/MachineJumpTableInfo.h"
15  #include "llvm/CodeGen/SwitchLoweringUtils.h"
16  
17  using namespace llvm;
18  using namespace SwitchCG;
19  
20  uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters,
21                                       unsigned First, unsigned Last) {
22    assert(Last >= First);
23    const APInt &LowCase = Clusters[First].Low->getValue();
24    const APInt &HighCase = Clusters[Last].High->getValue();
25    assert(LowCase.getBitWidth() == HighCase.getBitWidth());
26  
27    // FIXME: A range of consecutive cases has 100% density, but only requires one
28    // comparison to lower. We should discriminate against such consecutive ranges
29    // in jump tables.
30    return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
31  }
32  
33  uint64_t
34  SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
35                                 unsigned First, unsigned Last) {
36    assert(Last >= First);
37    assert(TotalCases[Last] >= TotalCases[First]);
38    uint64_t NumCases =
39        TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
40    return NumCases;
41  }
42  
43  void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters,
44                                                const SwitchInst *SI,
45                                                MachineBasicBlock *DefaultMBB,
46                                                ProfileSummaryInfo *PSI,
47                                                BlockFrequencyInfo *BFI) {
48  #ifndef NDEBUG
49    // Clusters must be non-empty, sorted, and only contain Range clusters.
50    assert(!Clusters.empty());
51    for (CaseCluster &C : Clusters)
52      assert(C.Kind == CC_Range);
53    for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
54      assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
55  #endif
56  
57    assert(TLI && "TLI not set!");
58    if (!TLI->areJTsAllowed(SI->getParent()->getParent()))
59      return;
60  
61    const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries();
62    const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
63  
64    // Bail if not enough cases.
65    const int64_t N = Clusters.size();
66    if (N < 2 || N < MinJumpTableEntries)
67      return;
68  
69    // Accumulated number of cases in each cluster and those prior to it.
70    SmallVector<unsigned, 8> TotalCases(N);
71    for (unsigned i = 0; i < N; ++i) {
72      const APInt &Hi = Clusters[i].High->getValue();
73      const APInt &Lo = Clusters[i].Low->getValue();
74      TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
75      if (i != 0)
76        TotalCases[i] += TotalCases[i - 1];
77    }
78  
79    uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
80    uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
81    assert(NumCases < UINT64_MAX / 100);
82    assert(Range >= NumCases);
83  
84    // Cheap case: the whole range may be suitable for jump table.
85    if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) {
86      CaseCluster JTCluster;
87      if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
88        Clusters[0] = JTCluster;
89        Clusters.resize(1);
90        return;
91      }
92    }
93  
94    // The algorithm below is not suitable for -O0.
95    if (TM->getOptLevel() == CodeGenOpt::None)
96      return;
97  
98    // Split Clusters into minimum number of dense partitions. The algorithm uses
99    // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
100    // for the Case Statement'" (1994), but builds the MinPartitions array in
101    // reverse order to make it easier to reconstruct the partitions in ascending
102    // order. In the choice between two optimal partitionings, it picks the one
103    // which yields more jump tables.
104  
105    // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
106    SmallVector<unsigned, 8> MinPartitions(N);
107    // LastElement[i] is the last element of the partition starting at i.
108    SmallVector<unsigned, 8> LastElement(N);
109    // PartitionsScore[i] is used to break ties when choosing between two
110    // partitionings resulting in the same number of partitions.
111    SmallVector<unsigned, 8> PartitionsScore(N);
112    // For PartitionsScore, a small number of comparisons is considered as good as
113    // a jump table and a single comparison is considered better than a jump
114    // table.
115    enum PartitionScores : unsigned {
116      NoTable = 0,
117      Table = 1,
118      FewCases = 1,
119      SingleCase = 2
120    };
121  
122    // Base case: There is only one way to partition Clusters[N-1].
123    MinPartitions[N - 1] = 1;
124    LastElement[N - 1] = N - 1;
125    PartitionsScore[N - 1] = PartitionScores::SingleCase;
126  
127    // Note: loop indexes are signed to avoid underflow.
128    for (int64_t i = N - 2; i >= 0; i--) {
129      // Find optimal partitioning of Clusters[i..N-1].
130      // Baseline: Put Clusters[i] into a partition on its own.
131      MinPartitions[i] = MinPartitions[i + 1] + 1;
132      LastElement[i] = i;
133      PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
134  
135      // Search for a solution that results in fewer partitions.
136      for (int64_t j = N - 1; j > i; j--) {
137        // Try building a partition from Clusters[i..j].
138        Range = getJumpTableRange(Clusters, i, j);
139        NumCases = getJumpTableNumCases(TotalCases, i, j);
140        assert(NumCases < UINT64_MAX / 100);
141        assert(Range >= NumCases);
142  
143        if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) {
144          unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
145          unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
146          int64_t NumEntries = j - i + 1;
147  
148          if (NumEntries == 1)
149            Score += PartitionScores::SingleCase;
150          else if (NumEntries <= SmallNumberOfEntries)
151            Score += PartitionScores::FewCases;
152          else if (NumEntries >= MinJumpTableEntries)
153            Score += PartitionScores::Table;
154  
155          // If this leads to fewer partitions, or to the same number of
156          // partitions with better score, it is a better partitioning.
157          if (NumPartitions < MinPartitions[i] ||
158              (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
159            MinPartitions[i] = NumPartitions;
160            LastElement[i] = j;
161            PartitionsScore[i] = Score;
162          }
163        }
164      }
165    }
166  
167    // Iterate over the partitions, replacing some with jump tables in-place.
168    unsigned DstIndex = 0;
169    for (unsigned First = 0, Last; First < N; First = Last + 1) {
170      Last = LastElement[First];
171      assert(Last >= First);
172      assert(DstIndex <= First);
173      unsigned NumClusters = Last - First + 1;
174  
175      CaseCluster JTCluster;
176      if (NumClusters >= MinJumpTableEntries &&
177          buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
178        Clusters[DstIndex++] = JTCluster;
179      } else {
180        for (unsigned I = First; I <= Last; ++I)
181          std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
182      }
183    }
184    Clusters.resize(DstIndex);
185  }
186  
187  bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters,
188                                                unsigned First, unsigned Last,
189                                                const SwitchInst *SI,
190                                                MachineBasicBlock *DefaultMBB,
191                                                CaseCluster &JTCluster) {
192    assert(First <= Last);
193  
194    auto Prob = BranchProbability::getZero();
195    unsigned NumCmps = 0;
196    std::vector<MachineBasicBlock*> Table;
197    DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
198  
199    // Initialize probabilities in JTProbs.
200    for (unsigned I = First; I <= Last; ++I)
201      JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
202  
203    for (unsigned I = First; I <= Last; ++I) {
204      assert(Clusters[I].Kind == CC_Range);
205      Prob += Clusters[I].Prob;
206      const APInt &Low = Clusters[I].Low->getValue();
207      const APInt &High = Clusters[I].High->getValue();
208      NumCmps += (Low == High) ? 1 : 2;
209      if (I != First) {
210        // Fill the gap between this and the previous cluster.
211        const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
212        assert(PreviousHigh.slt(Low));
213        uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
214        for (uint64_t J = 0; J < Gap; J++)
215          Table.push_back(DefaultMBB);
216      }
217      uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
218      for (uint64_t J = 0; J < ClusterSize; ++J)
219        Table.push_back(Clusters[I].MBB);
220      JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
221    }
222  
223    unsigned NumDests = JTProbs.size();
224    if (TLI->isSuitableForBitTests(NumDests, NumCmps,
225                                   Clusters[First].Low->getValue(),
226                                   Clusters[Last].High->getValue(), *DL)) {
227      // Clusters[First..Last] should be lowered as bit tests instead.
228      return false;
229    }
230  
231    // Create the MBB that will load from and jump through the table.
232    // Note: We create it here, but it's not inserted into the function yet.
233    MachineFunction *CurMF = FuncInfo.MF;
234    MachineBasicBlock *JumpTableMBB =
235        CurMF->CreateMachineBasicBlock(SI->getParent());
236  
237    // Add successors. Note: use table order for determinism.
238    SmallPtrSet<MachineBasicBlock *, 8> Done;
239    for (MachineBasicBlock *Succ : Table) {
240      if (Done.count(Succ))
241        continue;
242      addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
243      Done.insert(Succ);
244    }
245    JumpTableMBB->normalizeSuccProbs();
246  
247    unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding())
248                       ->createJumpTableIndex(Table);
249  
250    // Set up the jump table info.
251    JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
252    JumpTableHeader JTH(Clusters[First].Low->getValue(),
253                        Clusters[Last].High->getValue(), SI->getCondition(),
254                        nullptr, false);
255    JTCases.emplace_back(std::move(JTH), std::move(JT));
256  
257    JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
258                                       JTCases.size() - 1, Prob);
259    return true;
260  }
261  
262  void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters,
263                                                     const SwitchInst *SI) {
264    // Partition Clusters into as few subsets as possible, where each subset has a
265    // range that fits in a machine word and has <= 3 unique destinations.
266  
267  #ifndef NDEBUG
268    // Clusters must be sorted and contain Range or JumpTable clusters.
269    assert(!Clusters.empty());
270    assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
271    for (const CaseCluster &C : Clusters)
272      assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
273    for (unsigned i = 1; i < Clusters.size(); ++i)
274      assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
275  #endif
276  
277    // The algorithm below is not suitable for -O0.
278    if (TM->getOptLevel() == CodeGenOpt::None)
279      return;
280  
281    // If target does not have legal shift left, do not emit bit tests at all.
282    EVT PTy = TLI->getPointerTy(*DL);
283    if (!TLI->isOperationLegal(ISD::SHL, PTy))
284      return;
285  
286    int BitWidth = PTy.getSizeInBits();
287    const int64_t N = Clusters.size();
288  
289    // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
290    SmallVector<unsigned, 8> MinPartitions(N);
291    // LastElement[i] is the last element of the partition starting at i.
292    SmallVector<unsigned, 8> LastElement(N);
293  
294    // FIXME: This might not be the best algorithm for finding bit test clusters.
295  
296    // Base case: There is only one way to partition Clusters[N-1].
297    MinPartitions[N - 1] = 1;
298    LastElement[N - 1] = N - 1;
299  
300    // Note: loop indexes are signed to avoid underflow.
301    for (int64_t i = N - 2; i >= 0; --i) {
302      // Find optimal partitioning of Clusters[i..N-1].
303      // Baseline: Put Clusters[i] into a partition on its own.
304      MinPartitions[i] = MinPartitions[i + 1] + 1;
305      LastElement[i] = i;
306  
307      // Search for a solution that results in fewer partitions.
308      // Note: the search is limited by BitWidth, reducing time complexity.
309      for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
310        // Try building a partition from Clusters[i..j].
311  
312        // Check the range.
313        if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(),
314                                  Clusters[j].High->getValue(), *DL))
315          continue;
316  
317        // Check nbr of destinations and cluster types.
318        // FIXME: This works, but doesn't seem very efficient.
319        bool RangesOnly = true;
320        BitVector Dests(FuncInfo.MF->getNumBlockIDs());
321        for (int64_t k = i; k <= j; k++) {
322          if (Clusters[k].Kind != CC_Range) {
323            RangesOnly = false;
324            break;
325          }
326          Dests.set(Clusters[k].MBB->getNumber());
327        }
328        if (!RangesOnly || Dests.count() > 3)
329          break;
330  
331        // Check if it's a better partition.
332        unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
333        if (NumPartitions < MinPartitions[i]) {
334          // Found a better partition.
335          MinPartitions[i] = NumPartitions;
336          LastElement[i] = j;
337        }
338      }
339    }
340  
341    // Iterate over the partitions, replacing with bit-test clusters in-place.
342    unsigned DstIndex = 0;
343    for (unsigned First = 0, Last; First < N; First = Last + 1) {
344      Last = LastElement[First];
345      assert(First <= Last);
346      assert(DstIndex <= First);
347  
348      CaseCluster BitTestCluster;
349      if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
350        Clusters[DstIndex++] = BitTestCluster;
351      } else {
352        size_t NumClusters = Last - First + 1;
353        std::memmove(&Clusters[DstIndex], &Clusters[First],
354                     sizeof(Clusters[0]) * NumClusters);
355        DstIndex += NumClusters;
356      }
357    }
358    Clusters.resize(DstIndex);
359  }
360  
361  bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters,
362                                               unsigned First, unsigned Last,
363                                               const SwitchInst *SI,
364                                               CaseCluster &BTCluster) {
365    assert(First <= Last);
366    if (First == Last)
367      return false;
368  
369    BitVector Dests(FuncInfo.MF->getNumBlockIDs());
370    unsigned NumCmps = 0;
371    for (int64_t I = First; I <= Last; ++I) {
372      assert(Clusters[I].Kind == CC_Range);
373      Dests.set(Clusters[I].MBB->getNumber());
374      NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
375    }
376    unsigned NumDests = Dests.count();
377  
378    APInt Low = Clusters[First].Low->getValue();
379    APInt High = Clusters[Last].High->getValue();
380    assert(Low.slt(High));
381  
382    if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL))
383      return false;
384  
385    APInt LowBound;
386    APInt CmpRange;
387  
388    const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits();
389    assert(TLI->rangeFitsInWord(Low, High, *DL) &&
390           "Case range must fit in bit mask!");
391  
392    // Check if the clusters cover a contiguous range such that no value in the
393    // range will jump to the default statement.
394    bool ContiguousRange = true;
395    for (int64_t I = First + 1; I <= Last; ++I) {
396      if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
397        ContiguousRange = false;
398        break;
399      }
400    }
401  
402    if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
403      // Optimize the case where all the case values fit in a word without having
404      // to subtract minValue. In this case, we can optimize away the subtraction.
405      LowBound = APInt::getNullValue(Low.getBitWidth());
406      CmpRange = High;
407      ContiguousRange = false;
408    } else {
409      LowBound = Low;
410      CmpRange = High - Low;
411    }
412  
413    CaseBitsVector CBV;
414    auto TotalProb = BranchProbability::getZero();
415    for (unsigned i = First; i <= Last; ++i) {
416      // Find the CaseBits for this destination.
417      unsigned j;
418      for (j = 0; j < CBV.size(); ++j)
419        if (CBV[j].BB == Clusters[i].MBB)
420          break;
421      if (j == CBV.size())
422        CBV.push_back(
423            CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
424      CaseBits *CB = &CBV[j];
425  
426      // Update Mask, Bits and ExtraProb.
427      uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
428      uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
429      assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
430      CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
431      CB->Bits += Hi - Lo + 1;
432      CB->ExtraProb += Clusters[i].Prob;
433      TotalProb += Clusters[i].Prob;
434    }
435  
436    BitTestInfo BTI;
437    llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
438      // Sort by probability first, number of bits second, bit mask third.
439      if (a.ExtraProb != b.ExtraProb)
440        return a.ExtraProb > b.ExtraProb;
441      if (a.Bits != b.Bits)
442        return a.Bits > b.Bits;
443      return a.Mask < b.Mask;
444    });
445  
446    for (auto &CB : CBV) {
447      MachineBasicBlock *BitTestBB =
448          FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
449      BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
450    }
451    BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
452                              SI->getCondition(), -1U, MVT::Other, false,
453                              ContiguousRange, nullptr, nullptr, std::move(BTI),
454                              TotalProb);
455  
456    BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
457                                      BitTestCases.size() - 1, TotalProb);
458    return true;
459  }
460  
461  void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) {
462  #ifndef NDEBUG
463    for (const CaseCluster &CC : Clusters)
464      assert(CC.Low == CC.High && "Input clusters must be single-case");
465  #endif
466  
467    llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
468      return a.Low->getValue().slt(b.Low->getValue());
469    });
470  
471    // Merge adjacent clusters with the same destination.
472    const unsigned N = Clusters.size();
473    unsigned DstIndex = 0;
474    for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
475      CaseCluster &CC = Clusters[SrcIndex];
476      const ConstantInt *CaseVal = CC.Low;
477      MachineBasicBlock *Succ = CC.MBB;
478  
479      if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
480          (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
481        // If this case has the same successor and is a neighbour, merge it into
482        // the previous cluster.
483        Clusters[DstIndex - 1].High = CaseVal;
484        Clusters[DstIndex - 1].Prob += CC.Prob;
485      } else {
486        std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
487                     sizeof(Clusters[SrcIndex]));
488      }
489    }
490    Clusters.resize(DstIndex);
491  }
492