xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/SwitchLoweringUtils.cpp (revision b4e38a41f584ad4391c04b8cfec81f46176b18b0)
1 //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains switch inst lowering optimizations and utilities for
10 // codegen, so that it can be used for both SelectionDAG and GlobalISel.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineJumpTableInfo.h"
15 #include "llvm/CodeGen/SwitchLoweringUtils.h"
16 
17 using namespace llvm;
18 using namespace SwitchCG;
19 
20 uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters,
21                                      unsigned First, unsigned Last) {
22   assert(Last >= First);
23   const APInt &LowCase = Clusters[First].Low->getValue();
24   const APInt &HighCase = Clusters[Last].High->getValue();
25   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
26 
27   // FIXME: A range of consecutive cases has 100% density, but only requires one
28   // comparison to lower. We should discriminate against such consecutive ranges
29   // in jump tables.
30   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
31 }
32 
33 uint64_t
34 SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
35                                unsigned First, unsigned Last) {
36   assert(Last >= First);
37   assert(TotalCases[Last] >= TotalCases[First]);
38   uint64_t NumCases =
39       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
40   return NumCases;
41 }
42 
43 void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters,
44                                               const SwitchInst *SI,
45                                               MachineBasicBlock *DefaultMBB,
46                                               ProfileSummaryInfo *PSI,
47                                               BlockFrequencyInfo *BFI) {
48 #ifndef NDEBUG
49   // Clusters must be non-empty, sorted, and only contain Range clusters.
50   assert(!Clusters.empty());
51   for (CaseCluster &C : Clusters)
52     assert(C.Kind == CC_Range);
53   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
54     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
55 #endif
56 
57   assert(TLI && "TLI not set!");
58   if (!TLI->areJTsAllowed(SI->getParent()->getParent()))
59     return;
60 
61   const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries();
62   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
63 
64   // Bail if not enough cases.
65   const int64_t N = Clusters.size();
66   if (N < 2 || N < MinJumpTableEntries)
67     return;
68 
69   // Accumulated number of cases in each cluster and those prior to it.
70   SmallVector<unsigned, 8> TotalCases(N);
71   for (unsigned i = 0; i < N; ++i) {
72     const APInt &Hi = Clusters[i].High->getValue();
73     const APInt &Lo = Clusters[i].Low->getValue();
74     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
75     if (i != 0)
76       TotalCases[i] += TotalCases[i - 1];
77   }
78 
79   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
80   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
81   assert(NumCases < UINT64_MAX / 100);
82   assert(Range >= NumCases);
83 
84   // Cheap case: the whole range may be suitable for jump table.
85   if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) {
86     CaseCluster JTCluster;
87     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
88       Clusters[0] = JTCluster;
89       Clusters.resize(1);
90       return;
91     }
92   }
93 
94   // The algorithm below is not suitable for -O0.
95   if (TM->getOptLevel() == CodeGenOpt::None)
96     return;
97 
98   // Split Clusters into minimum number of dense partitions. The algorithm uses
99   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
100   // for the Case Statement'" (1994), but builds the MinPartitions array in
101   // reverse order to make it easier to reconstruct the partitions in ascending
102   // order. In the choice between two optimal partitionings, it picks the one
103   // which yields more jump tables.
104 
105   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
106   SmallVector<unsigned, 8> MinPartitions(N);
107   // LastElement[i] is the last element of the partition starting at i.
108   SmallVector<unsigned, 8> LastElement(N);
109   // PartitionsScore[i] is used to break ties when choosing between two
110   // partitionings resulting in the same number of partitions.
111   SmallVector<unsigned, 8> PartitionsScore(N);
112   // For PartitionsScore, a small number of comparisons is considered as good as
113   // a jump table and a single comparison is considered better than a jump
114   // table.
115   enum PartitionScores : unsigned {
116     NoTable = 0,
117     Table = 1,
118     FewCases = 1,
119     SingleCase = 2
120   };
121 
122   // Base case: There is only one way to partition Clusters[N-1].
123   MinPartitions[N - 1] = 1;
124   LastElement[N - 1] = N - 1;
125   PartitionsScore[N - 1] = PartitionScores::SingleCase;
126 
127   // Note: loop indexes are signed to avoid underflow.
128   for (int64_t i = N - 2; i >= 0; i--) {
129     // Find optimal partitioning of Clusters[i..N-1].
130     // Baseline: Put Clusters[i] into a partition on its own.
131     MinPartitions[i] = MinPartitions[i + 1] + 1;
132     LastElement[i] = i;
133     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
134 
135     // Search for a solution that results in fewer partitions.
136     for (int64_t j = N - 1; j > i; j--) {
137       // Try building a partition from Clusters[i..j].
138       Range = getJumpTableRange(Clusters, i, j);
139       NumCases = getJumpTableNumCases(TotalCases, i, j);
140       assert(NumCases < UINT64_MAX / 100);
141       assert(Range >= NumCases);
142 
143       if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) {
144         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
145         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
146         int64_t NumEntries = j - i + 1;
147 
148         if (NumEntries == 1)
149           Score += PartitionScores::SingleCase;
150         else if (NumEntries <= SmallNumberOfEntries)
151           Score += PartitionScores::FewCases;
152         else if (NumEntries >= MinJumpTableEntries)
153           Score += PartitionScores::Table;
154 
155         // If this leads to fewer partitions, or to the same number of
156         // partitions with better score, it is a better partitioning.
157         if (NumPartitions < MinPartitions[i] ||
158             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
159           MinPartitions[i] = NumPartitions;
160           LastElement[i] = j;
161           PartitionsScore[i] = Score;
162         }
163       }
164     }
165   }
166 
167   // Iterate over the partitions, replacing some with jump tables in-place.
168   unsigned DstIndex = 0;
169   for (unsigned First = 0, Last; First < N; First = Last + 1) {
170     Last = LastElement[First];
171     assert(Last >= First);
172     assert(DstIndex <= First);
173     unsigned NumClusters = Last - First + 1;
174 
175     CaseCluster JTCluster;
176     if (NumClusters >= MinJumpTableEntries &&
177         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
178       Clusters[DstIndex++] = JTCluster;
179     } else {
180       for (unsigned I = First; I <= Last; ++I)
181         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
182     }
183   }
184   Clusters.resize(DstIndex);
185 }
186 
187 bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters,
188                                               unsigned First, unsigned Last,
189                                               const SwitchInst *SI,
190                                               MachineBasicBlock *DefaultMBB,
191                                               CaseCluster &JTCluster) {
192   assert(First <= Last);
193 
194   auto Prob = BranchProbability::getZero();
195   unsigned NumCmps = 0;
196   std::vector<MachineBasicBlock*> Table;
197   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
198 
199   // Initialize probabilities in JTProbs.
200   for (unsigned I = First; I <= Last; ++I)
201     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
202 
203   for (unsigned I = First; I <= Last; ++I) {
204     assert(Clusters[I].Kind == CC_Range);
205     Prob += Clusters[I].Prob;
206     const APInt &Low = Clusters[I].Low->getValue();
207     const APInt &High = Clusters[I].High->getValue();
208     NumCmps += (Low == High) ? 1 : 2;
209     if (I != First) {
210       // Fill the gap between this and the previous cluster.
211       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
212       assert(PreviousHigh.slt(Low));
213       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
214       for (uint64_t J = 0; J < Gap; J++)
215         Table.push_back(DefaultMBB);
216     }
217     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
218     for (uint64_t J = 0; J < ClusterSize; ++J)
219       Table.push_back(Clusters[I].MBB);
220     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
221   }
222 
223   unsigned NumDests = JTProbs.size();
224   if (TLI->isSuitableForBitTests(NumDests, NumCmps,
225                                  Clusters[First].Low->getValue(),
226                                  Clusters[Last].High->getValue(), *DL)) {
227     // Clusters[First..Last] should be lowered as bit tests instead.
228     return false;
229   }
230 
231   // Create the MBB that will load from and jump through the table.
232   // Note: We create it here, but it's not inserted into the function yet.
233   MachineFunction *CurMF = FuncInfo.MF;
234   MachineBasicBlock *JumpTableMBB =
235       CurMF->CreateMachineBasicBlock(SI->getParent());
236 
237   // Add successors. Note: use table order for determinism.
238   SmallPtrSet<MachineBasicBlock *, 8> Done;
239   for (MachineBasicBlock *Succ : Table) {
240     if (Done.count(Succ))
241       continue;
242     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
243     Done.insert(Succ);
244   }
245   JumpTableMBB->normalizeSuccProbs();
246 
247   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding())
248                      ->createJumpTableIndex(Table);
249 
250   // Set up the jump table info.
251   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
252   JumpTableHeader JTH(Clusters[First].Low->getValue(),
253                       Clusters[Last].High->getValue(), SI->getCondition(),
254                       nullptr, false);
255   JTCases.emplace_back(std::move(JTH), std::move(JT));
256 
257   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
258                                      JTCases.size() - 1, Prob);
259   return true;
260 }
261 
262 void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters,
263                                                    const SwitchInst *SI) {
264   // Partition Clusters into as few subsets as possible, where each subset has a
265   // range that fits in a machine word and has <= 3 unique destinations.
266 
267 #ifndef NDEBUG
268   // Clusters must be sorted and contain Range or JumpTable clusters.
269   assert(!Clusters.empty());
270   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
271   for (const CaseCluster &C : Clusters)
272     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
273   for (unsigned i = 1; i < Clusters.size(); ++i)
274     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
275 #endif
276 
277   // The algorithm below is not suitable for -O0.
278   if (TM->getOptLevel() == CodeGenOpt::None)
279     return;
280 
281   // If target does not have legal shift left, do not emit bit tests at all.
282   EVT PTy = TLI->getPointerTy(*DL);
283   if (!TLI->isOperationLegal(ISD::SHL, PTy))
284     return;
285 
286   int BitWidth = PTy.getSizeInBits();
287   const int64_t N = Clusters.size();
288 
289   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
290   SmallVector<unsigned, 8> MinPartitions(N);
291   // LastElement[i] is the last element of the partition starting at i.
292   SmallVector<unsigned, 8> LastElement(N);
293 
294   // FIXME: This might not be the best algorithm for finding bit test clusters.
295 
296   // Base case: There is only one way to partition Clusters[N-1].
297   MinPartitions[N - 1] = 1;
298   LastElement[N - 1] = N - 1;
299 
300   // Note: loop indexes are signed to avoid underflow.
301   for (int64_t i = N - 2; i >= 0; --i) {
302     // Find optimal partitioning of Clusters[i..N-1].
303     // Baseline: Put Clusters[i] into a partition on its own.
304     MinPartitions[i] = MinPartitions[i + 1] + 1;
305     LastElement[i] = i;
306 
307     // Search for a solution that results in fewer partitions.
308     // Note: the search is limited by BitWidth, reducing time complexity.
309     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
310       // Try building a partition from Clusters[i..j].
311 
312       // Check the range.
313       if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(),
314                                 Clusters[j].High->getValue(), *DL))
315         continue;
316 
317       // Check nbr of destinations and cluster types.
318       // FIXME: This works, but doesn't seem very efficient.
319       bool RangesOnly = true;
320       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
321       for (int64_t k = i; k <= j; k++) {
322         if (Clusters[k].Kind != CC_Range) {
323           RangesOnly = false;
324           break;
325         }
326         Dests.set(Clusters[k].MBB->getNumber());
327       }
328       if (!RangesOnly || Dests.count() > 3)
329         break;
330 
331       // Check if it's a better partition.
332       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
333       if (NumPartitions < MinPartitions[i]) {
334         // Found a better partition.
335         MinPartitions[i] = NumPartitions;
336         LastElement[i] = j;
337       }
338     }
339   }
340 
341   // Iterate over the partitions, replacing with bit-test clusters in-place.
342   unsigned DstIndex = 0;
343   for (unsigned First = 0, Last; First < N; First = Last + 1) {
344     Last = LastElement[First];
345     assert(First <= Last);
346     assert(DstIndex <= First);
347 
348     CaseCluster BitTestCluster;
349     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
350       Clusters[DstIndex++] = BitTestCluster;
351     } else {
352       size_t NumClusters = Last - First + 1;
353       std::memmove(&Clusters[DstIndex], &Clusters[First],
354                    sizeof(Clusters[0]) * NumClusters);
355       DstIndex += NumClusters;
356     }
357   }
358   Clusters.resize(DstIndex);
359 }
360 
361 bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters,
362                                              unsigned First, unsigned Last,
363                                              const SwitchInst *SI,
364                                              CaseCluster &BTCluster) {
365   assert(First <= Last);
366   if (First == Last)
367     return false;
368 
369   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
370   unsigned NumCmps = 0;
371   for (int64_t I = First; I <= Last; ++I) {
372     assert(Clusters[I].Kind == CC_Range);
373     Dests.set(Clusters[I].MBB->getNumber());
374     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
375   }
376   unsigned NumDests = Dests.count();
377 
378   APInt Low = Clusters[First].Low->getValue();
379   APInt High = Clusters[Last].High->getValue();
380   assert(Low.slt(High));
381 
382   if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL))
383     return false;
384 
385   APInt LowBound;
386   APInt CmpRange;
387 
388   const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits();
389   assert(TLI->rangeFitsInWord(Low, High, *DL) &&
390          "Case range must fit in bit mask!");
391 
392   // Check if the clusters cover a contiguous range such that no value in the
393   // range will jump to the default statement.
394   bool ContiguousRange = true;
395   for (int64_t I = First + 1; I <= Last; ++I) {
396     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
397       ContiguousRange = false;
398       break;
399     }
400   }
401 
402   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
403     // Optimize the case where all the case values fit in a word without having
404     // to subtract minValue. In this case, we can optimize away the subtraction.
405     LowBound = APInt::getNullValue(Low.getBitWidth());
406     CmpRange = High;
407     ContiguousRange = false;
408   } else {
409     LowBound = Low;
410     CmpRange = High - Low;
411   }
412 
413   CaseBitsVector CBV;
414   auto TotalProb = BranchProbability::getZero();
415   for (unsigned i = First; i <= Last; ++i) {
416     // Find the CaseBits for this destination.
417     unsigned j;
418     for (j = 0; j < CBV.size(); ++j)
419       if (CBV[j].BB == Clusters[i].MBB)
420         break;
421     if (j == CBV.size())
422       CBV.push_back(
423           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
424     CaseBits *CB = &CBV[j];
425 
426     // Update Mask, Bits and ExtraProb.
427     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
428     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
429     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
430     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
431     CB->Bits += Hi - Lo + 1;
432     CB->ExtraProb += Clusters[i].Prob;
433     TotalProb += Clusters[i].Prob;
434   }
435 
436   BitTestInfo BTI;
437   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
438     // Sort by probability first, number of bits second, bit mask third.
439     if (a.ExtraProb != b.ExtraProb)
440       return a.ExtraProb > b.ExtraProb;
441     if (a.Bits != b.Bits)
442       return a.Bits > b.Bits;
443     return a.Mask < b.Mask;
444   });
445 
446   for (auto &CB : CBV) {
447     MachineBasicBlock *BitTestBB =
448         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
449     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
450   }
451   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
452                             SI->getCondition(), -1U, MVT::Other, false,
453                             ContiguousRange, nullptr, nullptr, std::move(BTI),
454                             TotalProb);
455 
456   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
457                                     BitTestCases.size() - 1, TotalProb);
458   return true;
459 }
460 
461 void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) {
462 #ifndef NDEBUG
463   for (const CaseCluster &CC : Clusters)
464     assert(CC.Low == CC.High && "Input clusters must be single-case");
465 #endif
466 
467   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
468     return a.Low->getValue().slt(b.Low->getValue());
469   });
470 
471   // Merge adjacent clusters with the same destination.
472   const unsigned N = Clusters.size();
473   unsigned DstIndex = 0;
474   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
475     CaseCluster &CC = Clusters[SrcIndex];
476     const ConstantInt *CaseVal = CC.Low;
477     MachineBasicBlock *Succ = CC.MBB;
478 
479     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
480         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
481       // If this case has the same successor and is a neighbour, merge it into
482       // the previous cluster.
483       Clusters[DstIndex - 1].High = CaseVal;
484       Clusters[DstIndex - 1].Prob += CC.Prob;
485     } else {
486       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
487                    sizeof(Clusters[SrcIndex]));
488     }
489   }
490   Clusters.resize(DstIndex);
491 }
492