1 //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains switch inst lowering optimizations and utilities for 10 // codegen, so that it can be used for both SelectionDAG and GlobalISel. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineJumpTableInfo.h" 15 #include "llvm/CodeGen/SwitchLoweringUtils.h" 16 #include "llvm/Target/TargetMachine.h" 17 18 using namespace llvm; 19 using namespace SwitchCG; 20 21 uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters, 22 unsigned First, unsigned Last) { 23 assert(Last >= First); 24 const APInt &LowCase = Clusters[First].Low->getValue(); 25 const APInt &HighCase = Clusters[Last].High->getValue(); 26 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 27 28 // FIXME: A range of consecutive cases has 100% density, but only requires one 29 // comparison to lower. We should discriminate against such consecutive ranges 30 // in jump tables. 31 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 32 } 33 34 uint64_t 35 SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, 36 unsigned First, unsigned Last) { 37 assert(Last >= First); 38 assert(TotalCases[Last] >= TotalCases[First]); 39 uint64_t NumCases = 40 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 41 return NumCases; 42 } 43 44 void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters, 45 const SwitchInst *SI, 46 MachineBasicBlock *DefaultMBB, 47 ProfileSummaryInfo *PSI, 48 BlockFrequencyInfo *BFI) { 49 #ifndef NDEBUG 50 // Clusters must be non-empty, sorted, and only contain Range clusters. 51 assert(!Clusters.empty()); 52 for (CaseCluster &C : Clusters) 53 assert(C.Kind == CC_Range); 54 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 55 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 56 #endif 57 58 assert(TLI && "TLI not set!"); 59 if (!TLI->areJTsAllowed(SI->getParent()->getParent())) 60 return; 61 62 const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries(); 63 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 64 65 // Bail if not enough cases. 66 const int64_t N = Clusters.size(); 67 if (N < 2 || N < MinJumpTableEntries) 68 return; 69 70 // Accumulated number of cases in each cluster and those prior to it. 71 SmallVector<unsigned, 8> TotalCases(N); 72 for (unsigned i = 0; i < N; ++i) { 73 const APInt &Hi = Clusters[i].High->getValue(); 74 const APInt &Lo = Clusters[i].Low->getValue(); 75 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 76 if (i != 0) 77 TotalCases[i] += TotalCases[i - 1]; 78 } 79 80 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 81 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 82 assert(NumCases < UINT64_MAX / 100); 83 assert(Range >= NumCases); 84 85 // Cheap case: the whole range may be suitable for jump table. 86 if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { 87 CaseCluster JTCluster; 88 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 89 Clusters[0] = JTCluster; 90 Clusters.resize(1); 91 return; 92 } 93 } 94 95 // The algorithm below is not suitable for -O0. 96 if (TM->getOptLevel() == CodeGenOpt::None) 97 return; 98 99 // Split Clusters into minimum number of dense partitions. The algorithm uses 100 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 101 // for the Case Statement'" (1994), but builds the MinPartitions array in 102 // reverse order to make it easier to reconstruct the partitions in ascending 103 // order. In the choice between two optimal partitionings, it picks the one 104 // which yields more jump tables. 105 106 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 107 SmallVector<unsigned, 8> MinPartitions(N); 108 // LastElement[i] is the last element of the partition starting at i. 109 SmallVector<unsigned, 8> LastElement(N); 110 // PartitionsScore[i] is used to break ties when choosing between two 111 // partitionings resulting in the same number of partitions. 112 SmallVector<unsigned, 8> PartitionsScore(N); 113 // For PartitionsScore, a small number of comparisons is considered as good as 114 // a jump table and a single comparison is considered better than a jump 115 // table. 116 enum PartitionScores : unsigned { 117 NoTable = 0, 118 Table = 1, 119 FewCases = 1, 120 SingleCase = 2 121 }; 122 123 // Base case: There is only one way to partition Clusters[N-1]. 124 MinPartitions[N - 1] = 1; 125 LastElement[N - 1] = N - 1; 126 PartitionsScore[N - 1] = PartitionScores::SingleCase; 127 128 // Note: loop indexes are signed to avoid underflow. 129 for (int64_t i = N - 2; i >= 0; i--) { 130 // Find optimal partitioning of Clusters[i..N-1]. 131 // Baseline: Put Clusters[i] into a partition on its own. 132 MinPartitions[i] = MinPartitions[i + 1] + 1; 133 LastElement[i] = i; 134 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 135 136 // Search for a solution that results in fewer partitions. 137 for (int64_t j = N - 1; j > i; j--) { 138 // Try building a partition from Clusters[i..j]. 139 Range = getJumpTableRange(Clusters, i, j); 140 NumCases = getJumpTableNumCases(TotalCases, i, j); 141 assert(NumCases < UINT64_MAX / 100); 142 assert(Range >= NumCases); 143 144 if (TLI->isSuitableForJumpTable(SI, NumCases, Range, PSI, BFI)) { 145 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 146 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 147 int64_t NumEntries = j - i + 1; 148 149 if (NumEntries == 1) 150 Score += PartitionScores::SingleCase; 151 else if (NumEntries <= SmallNumberOfEntries) 152 Score += PartitionScores::FewCases; 153 else if (NumEntries >= MinJumpTableEntries) 154 Score += PartitionScores::Table; 155 156 // If this leads to fewer partitions, or to the same number of 157 // partitions with better score, it is a better partitioning. 158 if (NumPartitions < MinPartitions[i] || 159 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 160 MinPartitions[i] = NumPartitions; 161 LastElement[i] = j; 162 PartitionsScore[i] = Score; 163 } 164 } 165 } 166 } 167 168 // Iterate over the partitions, replacing some with jump tables in-place. 169 unsigned DstIndex = 0; 170 for (unsigned First = 0, Last; First < N; First = Last + 1) { 171 Last = LastElement[First]; 172 assert(Last >= First); 173 assert(DstIndex <= First); 174 unsigned NumClusters = Last - First + 1; 175 176 CaseCluster JTCluster; 177 if (NumClusters >= MinJumpTableEntries && 178 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 179 Clusters[DstIndex++] = JTCluster; 180 } else { 181 for (unsigned I = First; I <= Last; ++I) 182 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 183 } 184 } 185 Clusters.resize(DstIndex); 186 } 187 188 bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters, 189 unsigned First, unsigned Last, 190 const SwitchInst *SI, 191 MachineBasicBlock *DefaultMBB, 192 CaseCluster &JTCluster) { 193 assert(First <= Last); 194 195 auto Prob = BranchProbability::getZero(); 196 unsigned NumCmps = 0; 197 std::vector<MachineBasicBlock*> Table; 198 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 199 200 // Initialize probabilities in JTProbs. 201 for (unsigned I = First; I <= Last; ++I) 202 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 203 204 for (unsigned I = First; I <= Last; ++I) { 205 assert(Clusters[I].Kind == CC_Range); 206 Prob += Clusters[I].Prob; 207 const APInt &Low = Clusters[I].Low->getValue(); 208 const APInt &High = Clusters[I].High->getValue(); 209 NumCmps += (Low == High) ? 1 : 2; 210 if (I != First) { 211 // Fill the gap between this and the previous cluster. 212 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 213 assert(PreviousHigh.slt(Low)); 214 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 215 for (uint64_t J = 0; J < Gap; J++) 216 Table.push_back(DefaultMBB); 217 } 218 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 219 for (uint64_t J = 0; J < ClusterSize; ++J) 220 Table.push_back(Clusters[I].MBB); 221 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 222 } 223 224 unsigned NumDests = JTProbs.size(); 225 if (TLI->isSuitableForBitTests(NumDests, NumCmps, 226 Clusters[First].Low->getValue(), 227 Clusters[Last].High->getValue(), *DL)) { 228 // Clusters[First..Last] should be lowered as bit tests instead. 229 return false; 230 } 231 232 // Create the MBB that will load from and jump through the table. 233 // Note: We create it here, but it's not inserted into the function yet. 234 MachineFunction *CurMF = FuncInfo.MF; 235 MachineBasicBlock *JumpTableMBB = 236 CurMF->CreateMachineBasicBlock(SI->getParent()); 237 238 // Add successors. Note: use table order for determinism. 239 SmallPtrSet<MachineBasicBlock *, 8> Done; 240 for (MachineBasicBlock *Succ : Table) { 241 if (Done.count(Succ)) 242 continue; 243 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 244 Done.insert(Succ); 245 } 246 JumpTableMBB->normalizeSuccProbs(); 247 248 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding()) 249 ->createJumpTableIndex(Table); 250 251 // Set up the jump table info. 252 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 253 JumpTableHeader JTH(Clusters[First].Low->getValue(), 254 Clusters[Last].High->getValue(), SI->getCondition(), 255 nullptr, false); 256 JTCases.emplace_back(std::move(JTH), std::move(JT)); 257 258 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 259 JTCases.size() - 1, Prob); 260 return true; 261 } 262 263 void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters, 264 const SwitchInst *SI) { 265 // Partition Clusters into as few subsets as possible, where each subset has a 266 // range that fits in a machine word and has <= 3 unique destinations. 267 268 #ifndef NDEBUG 269 // Clusters must be sorted and contain Range or JumpTable clusters. 270 assert(!Clusters.empty()); 271 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 272 for (const CaseCluster &C : Clusters) 273 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 274 for (unsigned i = 1; i < Clusters.size(); ++i) 275 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 276 #endif 277 278 // The algorithm below is not suitable for -O0. 279 if (TM->getOptLevel() == CodeGenOpt::None) 280 return; 281 282 // If target does not have legal shift left, do not emit bit tests at all. 283 EVT PTy = TLI->getPointerTy(*DL); 284 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 285 return; 286 287 int BitWidth = PTy.getSizeInBits(); 288 const int64_t N = Clusters.size(); 289 290 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 291 SmallVector<unsigned, 8> MinPartitions(N); 292 // LastElement[i] is the last element of the partition starting at i. 293 SmallVector<unsigned, 8> LastElement(N); 294 295 // FIXME: This might not be the best algorithm for finding bit test clusters. 296 297 // Base case: There is only one way to partition Clusters[N-1]. 298 MinPartitions[N - 1] = 1; 299 LastElement[N - 1] = N - 1; 300 301 // Note: loop indexes are signed to avoid underflow. 302 for (int64_t i = N - 2; i >= 0; --i) { 303 // Find optimal partitioning of Clusters[i..N-1]. 304 // Baseline: Put Clusters[i] into a partition on its own. 305 MinPartitions[i] = MinPartitions[i + 1] + 1; 306 LastElement[i] = i; 307 308 // Search for a solution that results in fewer partitions. 309 // Note: the search is limited by BitWidth, reducing time complexity. 310 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 311 // Try building a partition from Clusters[i..j]. 312 313 // Check the range. 314 if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(), 315 Clusters[j].High->getValue(), *DL)) 316 continue; 317 318 // Check nbr of destinations and cluster types. 319 // FIXME: This works, but doesn't seem very efficient. 320 bool RangesOnly = true; 321 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 322 for (int64_t k = i; k <= j; k++) { 323 if (Clusters[k].Kind != CC_Range) { 324 RangesOnly = false; 325 break; 326 } 327 Dests.set(Clusters[k].MBB->getNumber()); 328 } 329 if (!RangesOnly || Dests.count() > 3) 330 break; 331 332 // Check if it's a better partition. 333 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 334 if (NumPartitions < MinPartitions[i]) { 335 // Found a better partition. 336 MinPartitions[i] = NumPartitions; 337 LastElement[i] = j; 338 } 339 } 340 } 341 342 // Iterate over the partitions, replacing with bit-test clusters in-place. 343 unsigned DstIndex = 0; 344 for (unsigned First = 0, Last; First < N; First = Last + 1) { 345 Last = LastElement[First]; 346 assert(First <= Last); 347 assert(DstIndex <= First); 348 349 CaseCluster BitTestCluster; 350 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 351 Clusters[DstIndex++] = BitTestCluster; 352 } else { 353 size_t NumClusters = Last - First + 1; 354 std::memmove(&Clusters[DstIndex], &Clusters[First], 355 sizeof(Clusters[0]) * NumClusters); 356 DstIndex += NumClusters; 357 } 358 } 359 Clusters.resize(DstIndex); 360 } 361 362 bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters, 363 unsigned First, unsigned Last, 364 const SwitchInst *SI, 365 CaseCluster &BTCluster) { 366 assert(First <= Last); 367 if (First == Last) 368 return false; 369 370 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 371 unsigned NumCmps = 0; 372 for (int64_t I = First; I <= Last; ++I) { 373 assert(Clusters[I].Kind == CC_Range); 374 Dests.set(Clusters[I].MBB->getNumber()); 375 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 376 } 377 unsigned NumDests = Dests.count(); 378 379 APInt Low = Clusters[First].Low->getValue(); 380 APInt High = Clusters[Last].High->getValue(); 381 assert(Low.slt(High)); 382 383 if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL)) 384 return false; 385 386 APInt LowBound; 387 APInt CmpRange; 388 389 const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits(); 390 assert(TLI->rangeFitsInWord(Low, High, *DL) && 391 "Case range must fit in bit mask!"); 392 393 // Check if the clusters cover a contiguous range such that no value in the 394 // range will jump to the default statement. 395 bool ContiguousRange = true; 396 for (int64_t I = First + 1; I <= Last; ++I) { 397 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 398 ContiguousRange = false; 399 break; 400 } 401 } 402 403 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 404 // Optimize the case where all the case values fit in a word without having 405 // to subtract minValue. In this case, we can optimize away the subtraction. 406 LowBound = APInt::getNullValue(Low.getBitWidth()); 407 CmpRange = High; 408 ContiguousRange = false; 409 } else { 410 LowBound = Low; 411 CmpRange = High - Low; 412 } 413 414 CaseBitsVector CBV; 415 auto TotalProb = BranchProbability::getZero(); 416 for (unsigned i = First; i <= Last; ++i) { 417 // Find the CaseBits for this destination. 418 unsigned j; 419 for (j = 0; j < CBV.size(); ++j) 420 if (CBV[j].BB == Clusters[i].MBB) 421 break; 422 if (j == CBV.size()) 423 CBV.push_back( 424 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 425 CaseBits *CB = &CBV[j]; 426 427 // Update Mask, Bits and ExtraProb. 428 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 429 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 430 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 431 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 432 CB->Bits += Hi - Lo + 1; 433 CB->ExtraProb += Clusters[i].Prob; 434 TotalProb += Clusters[i].Prob; 435 } 436 437 BitTestInfo BTI; 438 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 439 // Sort by probability first, number of bits second, bit mask third. 440 if (a.ExtraProb != b.ExtraProb) 441 return a.ExtraProb > b.ExtraProb; 442 if (a.Bits != b.Bits) 443 return a.Bits > b.Bits; 444 return a.Mask < b.Mask; 445 }); 446 447 for (auto &CB : CBV) { 448 MachineBasicBlock *BitTestBB = 449 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 450 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 451 } 452 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 453 SI->getCondition(), -1U, MVT::Other, false, 454 ContiguousRange, nullptr, nullptr, std::move(BTI), 455 TotalProb); 456 457 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 458 BitTestCases.size() - 1, TotalProb); 459 return true; 460 } 461 462 void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) { 463 #ifndef NDEBUG 464 for (const CaseCluster &CC : Clusters) 465 assert(CC.Low == CC.High && "Input clusters must be single-case"); 466 #endif 467 468 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 469 return a.Low->getValue().slt(b.Low->getValue()); 470 }); 471 472 // Merge adjacent clusters with the same destination. 473 const unsigned N = Clusters.size(); 474 unsigned DstIndex = 0; 475 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 476 CaseCluster &CC = Clusters[SrcIndex]; 477 const ConstantInt *CaseVal = CC.Low; 478 MachineBasicBlock *Succ = CC.MBB; 479 480 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 481 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 482 // If this case has the same successor and is a neighbour, merge it into 483 // the previous cluster. 484 Clusters[DstIndex - 1].High = CaseVal; 485 Clusters[DstIndex - 1].Prob += CC.Prob; 486 } else { 487 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 488 sizeof(Clusters[SrcIndex])); 489 } 490 } 491 Clusters.resize(DstIndex); 492 } 493