xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/StackProtector.cpp (revision e40139ff33b48b56a24c808b166b04b8ee6f5b21)
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/User.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <utility>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "stack-protector"
54 
55 STATISTIC(NumFunProtected, "Number of functions protected");
56 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
57                         " taken.");
58 
59 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
60                                           cl::init(true), cl::Hidden);
61 
62 char StackProtector::ID = 0;
63 
64 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
65                       "Insert stack protectors", false, true)
66 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
67 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
68                     "Insert stack protectors", false, true)
69 
70 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
71 
72 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
73   AU.addRequired<TargetPassConfig>();
74   AU.addPreserved<DominatorTreeWrapperPass>();
75 }
76 
77 bool StackProtector::runOnFunction(Function &Fn) {
78   F = &Fn;
79   M = F->getParent();
80   DominatorTreeWrapperPass *DTWP =
81       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
82   DT = DTWP ? &DTWP->getDomTree() : nullptr;
83   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
84   Trip = TM->getTargetTriple();
85   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
86   HasPrologue = false;
87   HasIRCheck = false;
88 
89   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
90   if (Attr.isStringAttribute() &&
91       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
92     return false; // Invalid integer string
93 
94   if (!RequiresStackProtector())
95     return false;
96 
97   // TODO(etienneb): Functions with funclets are not correctly supported now.
98   // Do nothing if this is funclet-based personality.
99   if (Fn.hasPersonalityFn()) {
100     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
101     if (isFuncletEHPersonality(Personality))
102       return false;
103   }
104 
105   ++NumFunProtected;
106   return InsertStackProtectors();
107 }
108 
109 /// \param [out] IsLarge is set to true if a protectable array is found and
110 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
111 /// multiple arrays, this gets set if any of them is large.
112 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
113                                               bool Strong,
114                                               bool InStruct) const {
115   if (!Ty)
116     return false;
117   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
118     if (!AT->getElementType()->isIntegerTy(8)) {
119       // If we're on a non-Darwin platform or we're inside of a structure, don't
120       // add stack protectors unless the array is a character array.
121       // However, in strong mode any array, regardless of type and size,
122       // triggers a protector.
123       if (!Strong && (InStruct || !Trip.isOSDarwin()))
124         return false;
125     }
126 
127     // If an array has more than SSPBufferSize bytes of allocated space, then we
128     // emit stack protectors.
129     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
130       IsLarge = true;
131       return true;
132     }
133 
134     if (Strong)
135       // Require a protector for all arrays in strong mode
136       return true;
137   }
138 
139   const StructType *ST = dyn_cast<StructType>(Ty);
140   if (!ST)
141     return false;
142 
143   bool NeedsProtector = false;
144   for (StructType::element_iterator I = ST->element_begin(),
145                                     E = ST->element_end();
146        I != E; ++I)
147     if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
148       // If the element is a protectable array and is large (>= SSPBufferSize)
149       // then we are done.  If the protectable array is not large, then
150       // keep looking in case a subsequent element is a large array.
151       if (IsLarge)
152         return true;
153       NeedsProtector = true;
154     }
155 
156   return NeedsProtector;
157 }
158 
159 bool StackProtector::HasAddressTaken(const Instruction *AI) {
160   for (const User *U : AI->users()) {
161     const auto *I = cast<Instruction>(U);
162     switch (I->getOpcode()) {
163     case Instruction::Store:
164       if (AI == cast<StoreInst>(I)->getValueOperand())
165         return true;
166       break;
167     case Instruction::AtomicCmpXchg:
168       // cmpxchg conceptually includes both a load and store from the same
169       // location. So, like store, the value being stored is what matters.
170       if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
171         return true;
172       break;
173     case Instruction::PtrToInt:
174       if (AI == cast<PtrToIntInst>(I)->getOperand(0))
175         return true;
176       break;
177     case Instruction::Call: {
178       // Ignore intrinsics that do not become real instructions.
179       // TODO: Narrow this to intrinsics that have store-like effects.
180       const auto *CI = cast<CallInst>(I);
181       if (!isa<DbgInfoIntrinsic>(CI) && !CI->isLifetimeStartOrEnd())
182         return true;
183       break;
184     }
185     case Instruction::Invoke:
186       return true;
187     case Instruction::BitCast:
188     case Instruction::GetElementPtr:
189     case Instruction::Select:
190     case Instruction::AddrSpaceCast:
191       if (HasAddressTaken(I))
192         return true;
193       break;
194     case Instruction::PHI: {
195       // Keep track of what PHI nodes we have already visited to ensure
196       // they are only visited once.
197       const auto *PN = cast<PHINode>(I);
198       if (VisitedPHIs.insert(PN).second)
199         if (HasAddressTaken(PN))
200           return true;
201       break;
202     }
203     case Instruction::Load:
204     case Instruction::AtomicRMW:
205     case Instruction::Ret:
206       // These instructions take an address operand, but have load-like or
207       // other innocuous behavior that should not trigger a stack protector.
208       // atomicrmw conceptually has both load and store semantics, but the
209       // value being stored must be integer; so if a pointer is being stored,
210       // we'll catch it in the PtrToInt case above.
211       break;
212     default:
213       // Conservatively return true for any instruction that takes an address
214       // operand, but is not handled above.
215       return true;
216     }
217   }
218   return false;
219 }
220 
221 /// Search for the first call to the llvm.stackprotector intrinsic and return it
222 /// if present.
223 static const CallInst *findStackProtectorIntrinsic(Function &F) {
224   for (const BasicBlock &BB : F)
225     for (const Instruction &I : BB)
226       if (const CallInst *CI = dyn_cast<CallInst>(&I))
227         if (CI->getCalledFunction() ==
228             Intrinsic::getDeclaration(F.getParent(), Intrinsic::stackprotector))
229           return CI;
230   return nullptr;
231 }
232 
233 /// Check whether or not this function needs a stack protector based
234 /// upon the stack protector level.
235 ///
236 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
237 /// The standard heuristic which will add a guard variable to functions that
238 /// call alloca with a either a variable size or a size >= SSPBufferSize,
239 /// functions with character buffers larger than SSPBufferSize, and functions
240 /// with aggregates containing character buffers larger than SSPBufferSize. The
241 /// strong heuristic will add a guard variables to functions that call alloca
242 /// regardless of size, functions with any buffer regardless of type and size,
243 /// functions with aggregates that contain any buffer regardless of type and
244 /// size, and functions that contain stack-based variables that have had their
245 /// address taken.
246 bool StackProtector::RequiresStackProtector() {
247   bool Strong = false;
248   bool NeedsProtector = false;
249   HasPrologue = findStackProtectorIntrinsic(*F);
250 
251   if (F->hasFnAttribute(Attribute::SafeStack))
252     return false;
253 
254   // We are constructing the OptimizationRemarkEmitter on the fly rather than
255   // using the analysis pass to avoid building DominatorTree and LoopInfo which
256   // are not available this late in the IR pipeline.
257   OptimizationRemarkEmitter ORE(F);
258 
259   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
260     ORE.emit([&]() {
261       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
262              << "Stack protection applied to function "
263              << ore::NV("Function", F)
264              << " due to a function attribute or command-line switch";
265     });
266     NeedsProtector = true;
267     Strong = true; // Use the same heuristic as strong to determine SSPLayout
268   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
269     Strong = true;
270   else if (HasPrologue)
271     NeedsProtector = true;
272   else if (!F->hasFnAttribute(Attribute::StackProtect))
273     return false;
274 
275   for (const BasicBlock &BB : *F) {
276     for (const Instruction &I : BB) {
277       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
278         if (AI->isArrayAllocation()) {
279           auto RemarkBuilder = [&]() {
280             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
281                                       &I)
282                    << "Stack protection applied to function "
283                    << ore::NV("Function", F)
284                    << " due to a call to alloca or use of a variable length "
285                       "array";
286           };
287           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
288             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
289               // A call to alloca with size >= SSPBufferSize requires
290               // stack protectors.
291               Layout.insert(std::make_pair(AI,
292                                            MachineFrameInfo::SSPLK_LargeArray));
293               ORE.emit(RemarkBuilder);
294               NeedsProtector = true;
295             } else if (Strong) {
296               // Require protectors for all alloca calls in strong mode.
297               Layout.insert(std::make_pair(AI,
298                                            MachineFrameInfo::SSPLK_SmallArray));
299               ORE.emit(RemarkBuilder);
300               NeedsProtector = true;
301             }
302           } else {
303             // A call to alloca with a variable size requires protectors.
304             Layout.insert(std::make_pair(AI,
305                                          MachineFrameInfo::SSPLK_LargeArray));
306             ORE.emit(RemarkBuilder);
307             NeedsProtector = true;
308           }
309           continue;
310         }
311 
312         bool IsLarge = false;
313         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
314           Layout.insert(std::make_pair(AI, IsLarge
315                                        ? MachineFrameInfo::SSPLK_LargeArray
316                                        : MachineFrameInfo::SSPLK_SmallArray));
317           ORE.emit([&]() {
318             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
319                    << "Stack protection applied to function "
320                    << ore::NV("Function", F)
321                    << " due to a stack allocated buffer or struct containing a "
322                       "buffer";
323           });
324           NeedsProtector = true;
325           continue;
326         }
327 
328         if (Strong && HasAddressTaken(AI)) {
329           ++NumAddrTaken;
330           Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
331           ORE.emit([&]() {
332             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
333                                       &I)
334                    << "Stack protection applied to function "
335                    << ore::NV("Function", F)
336                    << " due to the address of a local variable being taken";
337           });
338           NeedsProtector = true;
339         }
340       }
341     }
342   }
343 
344   return NeedsProtector;
345 }
346 
347 /// Create a stack guard loading and populate whether SelectionDAG SSP is
348 /// supported.
349 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
350                             IRBuilder<> &B,
351                             bool *SupportsSelectionDAGSP = nullptr) {
352   if (Value *Guard = TLI->getIRStackGuard(B))
353     return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
354 
355   // Use SelectionDAG SSP handling, since there isn't an IR guard.
356   //
357   // This is more or less weird, since we optionally output whether we
358   // should perform a SelectionDAG SP here. The reason is that it's strictly
359   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
360   // mutating. There is no way to get this bit without mutating the IR, so
361   // getting this bit has to happen in this right time.
362   //
363   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
364   // will put more burden on the backends' overriding work, especially when it
365   // actually conveys the same information getIRStackGuard() already gives.
366   if (SupportsSelectionDAGSP)
367     *SupportsSelectionDAGSP = true;
368   TLI->insertSSPDeclarations(*M);
369   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
370 }
371 
372 /// Insert code into the entry block that stores the stack guard
373 /// variable onto the stack:
374 ///
375 ///   entry:
376 ///     StackGuardSlot = alloca i8*
377 ///     StackGuard = <stack guard>
378 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
379 ///
380 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
381 /// node.
382 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
383                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
384   bool SupportsSelectionDAGSP = false;
385   IRBuilder<> B(&F->getEntryBlock().front());
386   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
387   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
388 
389   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
390   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
391                {GuardSlot, AI});
392   return SupportsSelectionDAGSP;
393 }
394 
395 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
396 /// function.
397 ///
398 ///  - The prologue code loads and stores the stack guard onto the stack.
399 ///  - The epilogue checks the value stored in the prologue against the original
400 ///    value. It calls __stack_chk_fail if they differ.
401 bool StackProtector::InsertStackProtectors() {
402   // If the target wants to XOR the frame pointer into the guard value, it's
403   // impossible to emit the check in IR, so the target *must* support stack
404   // protection in SDAG.
405   bool SupportsSelectionDAGSP =
406       TLI->useStackGuardXorFP() ||
407       (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
408        !TM->Options.EnableGlobalISel);
409   AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
410 
411   for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
412     BasicBlock *BB = &*I++;
413     ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
414     if (!RI)
415       continue;
416 
417     // Generate prologue instrumentation if not already generated.
418     if (!HasPrologue) {
419       HasPrologue = true;
420       SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
421     }
422 
423     // SelectionDAG based code generation. Nothing else needs to be done here.
424     // The epilogue instrumentation is postponed to SelectionDAG.
425     if (SupportsSelectionDAGSP)
426       break;
427 
428     // Find the stack guard slot if the prologue was not created by this pass
429     // itself via a previous call to CreatePrologue().
430     if (!AI) {
431       const CallInst *SPCall = findStackProtectorIntrinsic(*F);
432       assert(SPCall && "Call to llvm.stackprotector is missing");
433       AI = cast<AllocaInst>(SPCall->getArgOperand(1));
434     }
435 
436     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
437     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
438     // instrumentation has already been generated.
439     HasIRCheck = true;
440 
441     // Generate epilogue instrumentation. The epilogue intrumentation can be
442     // function-based or inlined depending on which mechanism the target is
443     // providing.
444     if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
445       // Generate the function-based epilogue instrumentation.
446       // The target provides a guard check function, generate a call to it.
447       IRBuilder<> B(RI);
448       LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
449       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
450       Call->setAttributes(GuardCheck->getAttributes());
451       Call->setCallingConv(GuardCheck->getCallingConv());
452     } else {
453       // Generate the epilogue with inline instrumentation.
454       // If we do not support SelectionDAG based tail calls, generate IR level
455       // tail calls.
456       //
457       // For each block with a return instruction, convert this:
458       //
459       //   return:
460       //     ...
461       //     ret ...
462       //
463       // into this:
464       //
465       //   return:
466       //     ...
467       //     %1 = <stack guard>
468       //     %2 = load StackGuardSlot
469       //     %3 = cmp i1 %1, %2
470       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
471       //
472       //   SP_return:
473       //     ret ...
474       //
475       //   CallStackCheckFailBlk:
476       //     call void @__stack_chk_fail()
477       //     unreachable
478 
479       // Create the FailBB. We duplicate the BB every time since the MI tail
480       // merge pass will merge together all of the various BB into one including
481       // fail BB generated by the stack protector pseudo instruction.
482       BasicBlock *FailBB = CreateFailBB();
483 
484       // Split the basic block before the return instruction.
485       BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
486 
487       // Update the dominator tree if we need to.
488       if (DT && DT->isReachableFromEntry(BB)) {
489         DT->addNewBlock(NewBB, BB);
490         DT->addNewBlock(FailBB, BB);
491       }
492 
493       // Remove default branch instruction to the new BB.
494       BB->getTerminator()->eraseFromParent();
495 
496       // Move the newly created basic block to the point right after the old
497       // basic block so that it's in the "fall through" position.
498       NewBB->moveAfter(BB);
499 
500       // Generate the stack protector instructions in the old basic block.
501       IRBuilder<> B(BB);
502       Value *Guard = getStackGuard(TLI, M, B);
503       LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
504       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
505       auto SuccessProb =
506           BranchProbabilityInfo::getBranchProbStackProtector(true);
507       auto FailureProb =
508           BranchProbabilityInfo::getBranchProbStackProtector(false);
509       MDNode *Weights = MDBuilder(F->getContext())
510                             .createBranchWeights(SuccessProb.getNumerator(),
511                                                  FailureProb.getNumerator());
512       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
513     }
514   }
515 
516   // Return if we didn't modify any basic blocks. i.e., there are no return
517   // statements in the function.
518   return HasPrologue;
519 }
520 
521 /// CreateFailBB - Create a basic block to jump to when the stack protector
522 /// check fails.
523 BasicBlock *StackProtector::CreateFailBB() {
524   LLVMContext &Context = F->getContext();
525   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
526   IRBuilder<> B(FailBB);
527   B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
528   if (Trip.isOSOpenBSD()) {
529     FunctionCallee StackChkFail = M->getOrInsertFunction(
530         "__stack_smash_handler", Type::getVoidTy(Context),
531         Type::getInt8PtrTy(Context));
532 
533     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
534   } else {
535     FunctionCallee StackChkFail =
536         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
537 
538     B.CreateCall(StackChkFail, {});
539   }
540   B.CreateUnreachable();
541   return FailBB;
542 }
543 
544 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
545   return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
546 }
547 
548 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
549   if (Layout.empty())
550     return;
551 
552   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
553     if (MFI.isDeadObjectIndex(I))
554       continue;
555 
556     const AllocaInst *AI = MFI.getObjectAllocation(I);
557     if (!AI)
558       continue;
559 
560     SSPLayoutMap::const_iterator LI = Layout.find(AI);
561     if (LI == Layout.end())
562       continue;
563 
564     MFI.setObjectSSPLayout(I, LI->second);
565   }
566 }
567