1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass inserts stack protectors into functions which need them. A variable 10 // with a random value in it is stored onto the stack before the local variables 11 // are allocated. Upon exiting the block, the stored value is checked. If it's 12 // changed, then there was some sort of violation and the program aborts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/StackProtector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/Analysis/MemoryLocation.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/User.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include <utility> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "stack-protector" 54 55 STATISTIC(NumFunProtected, "Number of functions protected"); 56 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 57 " taken."); 58 59 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 60 cl::init(true), cl::Hidden); 61 62 char StackProtector::ID = 0; 63 64 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) { 65 initializeStackProtectorPass(*PassRegistry::getPassRegistry()); 66 } 67 68 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 69 "Insert stack protectors", false, true) 70 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 72 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 73 "Insert stack protectors", false, true) 74 75 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 76 77 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 78 AU.addRequired<TargetPassConfig>(); 79 AU.addPreserved<DominatorTreeWrapperPass>(); 80 } 81 82 bool StackProtector::runOnFunction(Function &Fn) { 83 F = &Fn; 84 M = F->getParent(); 85 DominatorTreeWrapperPass *DTWP = 86 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 87 DT = DTWP ? &DTWP->getDomTree() : nullptr; 88 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 89 Trip = TM->getTargetTriple(); 90 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 91 HasPrologue = false; 92 HasIRCheck = false; 93 94 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 95 if (Attr.isStringAttribute() && 96 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 97 return false; // Invalid integer string 98 99 if (!RequiresStackProtector()) 100 return false; 101 102 // TODO(etienneb): Functions with funclets are not correctly supported now. 103 // Do nothing if this is funclet-based personality. 104 if (Fn.hasPersonalityFn()) { 105 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 106 if (isFuncletEHPersonality(Personality)) 107 return false; 108 } 109 110 ++NumFunProtected; 111 return InsertStackProtectors(); 112 } 113 114 /// \param [out] IsLarge is set to true if a protectable array is found and 115 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 116 /// multiple arrays, this gets set if any of them is large. 117 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 118 bool Strong, 119 bool InStruct) const { 120 if (!Ty) 121 return false; 122 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 123 if (!AT->getElementType()->isIntegerTy(8)) { 124 // If we're on a non-Darwin platform or we're inside of a structure, don't 125 // add stack protectors unless the array is a character array. 126 // However, in strong mode any array, regardless of type and size, 127 // triggers a protector. 128 if (!Strong && (InStruct || !Trip.isOSDarwin())) 129 return false; 130 } 131 132 // If an array has more than SSPBufferSize bytes of allocated space, then we 133 // emit stack protectors. 134 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 135 IsLarge = true; 136 return true; 137 } 138 139 if (Strong) 140 // Require a protector for all arrays in strong mode 141 return true; 142 } 143 144 const StructType *ST = dyn_cast<StructType>(Ty); 145 if (!ST) 146 return false; 147 148 bool NeedsProtector = false; 149 for (Type *ET : ST->elements()) 150 if (ContainsProtectableArray(ET, IsLarge, Strong, true)) { 151 // If the element is a protectable array and is large (>= SSPBufferSize) 152 // then we are done. If the protectable array is not large, then 153 // keep looking in case a subsequent element is a large array. 154 if (IsLarge) 155 return true; 156 NeedsProtector = true; 157 } 158 159 return NeedsProtector; 160 } 161 162 bool StackProtector::HasAddressTaken(const Instruction *AI, 163 TypeSize AllocSize) { 164 const DataLayout &DL = M->getDataLayout(); 165 for (const User *U : AI->users()) { 166 const auto *I = cast<Instruction>(U); 167 // If this instruction accesses memory make sure it doesn't access beyond 168 // the bounds of the allocated object. 169 Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I); 170 if (MemLoc && MemLoc->Size.hasValue() && 171 !TypeSize::isKnownGE(AllocSize, 172 TypeSize::getFixed(MemLoc->Size.getValue()))) 173 return true; 174 switch (I->getOpcode()) { 175 case Instruction::Store: 176 if (AI == cast<StoreInst>(I)->getValueOperand()) 177 return true; 178 break; 179 case Instruction::AtomicCmpXchg: 180 // cmpxchg conceptually includes both a load and store from the same 181 // location. So, like store, the value being stored is what matters. 182 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand()) 183 return true; 184 break; 185 case Instruction::PtrToInt: 186 if (AI == cast<PtrToIntInst>(I)->getOperand(0)) 187 return true; 188 break; 189 case Instruction::Call: { 190 // Ignore intrinsics that do not become real instructions. 191 // TODO: Narrow this to intrinsics that have store-like effects. 192 const auto *CI = cast<CallInst>(I); 193 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd()) 194 return true; 195 break; 196 } 197 case Instruction::Invoke: 198 return true; 199 case Instruction::GetElementPtr: { 200 // If the GEP offset is out-of-bounds, or is non-constant and so has to be 201 // assumed to be potentially out-of-bounds, then any memory access that 202 // would use it could also be out-of-bounds meaning stack protection is 203 // required. 204 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 205 unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType()); 206 APInt Offset(IndexSize, 0); 207 if (!GEP->accumulateConstantOffset(DL, Offset)) 208 return true; 209 TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue()); 210 if (!TypeSize::isKnownGT(AllocSize, OffsetSize)) 211 return true; 212 // Adjust AllocSize to be the space remaining after this offset. 213 // We can't subtract a fixed size from a scalable one, so in that case 214 // assume the scalable value is of minimum size. 215 TypeSize NewAllocSize = 216 TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize; 217 if (HasAddressTaken(I, NewAllocSize)) 218 return true; 219 break; 220 } 221 case Instruction::BitCast: 222 case Instruction::Select: 223 case Instruction::AddrSpaceCast: 224 if (HasAddressTaken(I, AllocSize)) 225 return true; 226 break; 227 case Instruction::PHI: { 228 // Keep track of what PHI nodes we have already visited to ensure 229 // they are only visited once. 230 const auto *PN = cast<PHINode>(I); 231 if (VisitedPHIs.insert(PN).second) 232 if (HasAddressTaken(PN, AllocSize)) 233 return true; 234 break; 235 } 236 case Instruction::Load: 237 case Instruction::AtomicRMW: 238 case Instruction::Ret: 239 // These instructions take an address operand, but have load-like or 240 // other innocuous behavior that should not trigger a stack protector. 241 // atomicrmw conceptually has both load and store semantics, but the 242 // value being stored must be integer; so if a pointer is being stored, 243 // we'll catch it in the PtrToInt case above. 244 break; 245 default: 246 // Conservatively return true for any instruction that takes an address 247 // operand, but is not handled above. 248 return true; 249 } 250 } 251 return false; 252 } 253 254 /// Search for the first call to the llvm.stackprotector intrinsic and return it 255 /// if present. 256 static const CallInst *findStackProtectorIntrinsic(Function &F) { 257 for (const BasicBlock &BB : F) 258 for (const Instruction &I : BB) 259 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) 260 if (II->getIntrinsicID() == Intrinsic::stackprotector) 261 return II; 262 return nullptr; 263 } 264 265 /// Check whether or not this function needs a stack protector based 266 /// upon the stack protector level. 267 /// 268 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 269 /// The standard heuristic which will add a guard variable to functions that 270 /// call alloca with a either a variable size or a size >= SSPBufferSize, 271 /// functions with character buffers larger than SSPBufferSize, and functions 272 /// with aggregates containing character buffers larger than SSPBufferSize. The 273 /// strong heuristic will add a guard variables to functions that call alloca 274 /// regardless of size, functions with any buffer regardless of type and size, 275 /// functions with aggregates that contain any buffer regardless of type and 276 /// size, and functions that contain stack-based variables that have had their 277 /// address taken. 278 bool StackProtector::RequiresStackProtector() { 279 bool Strong = false; 280 bool NeedsProtector = false; 281 282 if (F->hasFnAttribute(Attribute::SafeStack)) 283 return false; 284 285 // We are constructing the OptimizationRemarkEmitter on the fly rather than 286 // using the analysis pass to avoid building DominatorTree and LoopInfo which 287 // are not available this late in the IR pipeline. 288 OptimizationRemarkEmitter ORE(F); 289 290 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 291 ORE.emit([&]() { 292 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 293 << "Stack protection applied to function " 294 << ore::NV("Function", F) 295 << " due to a function attribute or command-line switch"; 296 }); 297 NeedsProtector = true; 298 Strong = true; // Use the same heuristic as strong to determine SSPLayout 299 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 300 Strong = true; 301 else if (!F->hasFnAttribute(Attribute::StackProtect)) 302 return false; 303 304 for (const BasicBlock &BB : *F) { 305 for (const Instruction &I : BB) { 306 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 307 if (AI->isArrayAllocation()) { 308 auto RemarkBuilder = [&]() { 309 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 310 &I) 311 << "Stack protection applied to function " 312 << ore::NV("Function", F) 313 << " due to a call to alloca or use of a variable length " 314 "array"; 315 }; 316 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 317 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 318 // A call to alloca with size >= SSPBufferSize requires 319 // stack protectors. 320 Layout.insert(std::make_pair(AI, 321 MachineFrameInfo::SSPLK_LargeArray)); 322 ORE.emit(RemarkBuilder); 323 NeedsProtector = true; 324 } else if (Strong) { 325 // Require protectors for all alloca calls in strong mode. 326 Layout.insert(std::make_pair(AI, 327 MachineFrameInfo::SSPLK_SmallArray)); 328 ORE.emit(RemarkBuilder); 329 NeedsProtector = true; 330 } 331 } else { 332 // A call to alloca with a variable size requires protectors. 333 Layout.insert(std::make_pair(AI, 334 MachineFrameInfo::SSPLK_LargeArray)); 335 ORE.emit(RemarkBuilder); 336 NeedsProtector = true; 337 } 338 continue; 339 } 340 341 bool IsLarge = false; 342 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 343 Layout.insert(std::make_pair(AI, IsLarge 344 ? MachineFrameInfo::SSPLK_LargeArray 345 : MachineFrameInfo::SSPLK_SmallArray)); 346 ORE.emit([&]() { 347 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 348 << "Stack protection applied to function " 349 << ore::NV("Function", F) 350 << " due to a stack allocated buffer or struct containing a " 351 "buffer"; 352 }); 353 NeedsProtector = true; 354 continue; 355 } 356 357 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize( 358 AI->getAllocatedType()))) { 359 ++NumAddrTaken; 360 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); 361 ORE.emit([&]() { 362 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 363 &I) 364 << "Stack protection applied to function " 365 << ore::NV("Function", F) 366 << " due to the address of a local variable being taken"; 367 }); 368 NeedsProtector = true; 369 } 370 // Clear any PHIs that we visited, to make sure we examine all uses of 371 // any subsequent allocas that we look at. 372 VisitedPHIs.clear(); 373 } 374 } 375 } 376 377 return NeedsProtector; 378 } 379 380 /// Create a stack guard loading and populate whether SelectionDAG SSP is 381 /// supported. 382 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 383 IRBuilder<> &B, 384 bool *SupportsSelectionDAGSP = nullptr) { 385 Value *Guard = TLI->getIRStackGuard(B); 386 StringRef GuardMode = M->getStackProtectorGuard(); 387 if ((GuardMode == "tls" || GuardMode.empty()) && Guard) 388 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard"); 389 390 // Use SelectionDAG SSP handling, since there isn't an IR guard. 391 // 392 // This is more or less weird, since we optionally output whether we 393 // should perform a SelectionDAG SP here. The reason is that it's strictly 394 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 395 // mutating. There is no way to get this bit without mutating the IR, so 396 // getting this bit has to happen in this right time. 397 // 398 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 399 // will put more burden on the backends' overriding work, especially when it 400 // actually conveys the same information getIRStackGuard() already gives. 401 if (SupportsSelectionDAGSP) 402 *SupportsSelectionDAGSP = true; 403 TLI->insertSSPDeclarations(*M); 404 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 405 } 406 407 /// Insert code into the entry block that stores the stack guard 408 /// variable onto the stack: 409 /// 410 /// entry: 411 /// StackGuardSlot = alloca i8* 412 /// StackGuard = <stack guard> 413 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 414 /// 415 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 416 /// node. 417 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 418 const TargetLoweringBase *TLI, AllocaInst *&AI) { 419 bool SupportsSelectionDAGSP = false; 420 IRBuilder<> B(&F->getEntryBlock().front()); 421 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 422 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 423 424 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 425 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 426 {GuardSlot, AI}); 427 return SupportsSelectionDAGSP; 428 } 429 430 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 431 /// function. 432 /// 433 /// - The prologue code loads and stores the stack guard onto the stack. 434 /// - The epilogue checks the value stored in the prologue against the original 435 /// value. It calls __stack_chk_fail if they differ. 436 bool StackProtector::InsertStackProtectors() { 437 // If the target wants to XOR the frame pointer into the guard value, it's 438 // impossible to emit the check in IR, so the target *must* support stack 439 // protection in SDAG. 440 bool SupportsSelectionDAGSP = 441 TLI->useStackGuardXorFP() || 442 (EnableSelectionDAGSP && !TM->Options.EnableFastISel); 443 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 444 445 for (BasicBlock &BB : llvm::make_early_inc_range(*F)) { 446 ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()); 447 if (!RI) 448 continue; 449 450 // Generate prologue instrumentation if not already generated. 451 if (!HasPrologue) { 452 HasPrologue = true; 453 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 454 } 455 456 // SelectionDAG based code generation. Nothing else needs to be done here. 457 // The epilogue instrumentation is postponed to SelectionDAG. 458 if (SupportsSelectionDAGSP) 459 break; 460 461 // Find the stack guard slot if the prologue was not created by this pass 462 // itself via a previous call to CreatePrologue(). 463 if (!AI) { 464 const CallInst *SPCall = findStackProtectorIntrinsic(*F); 465 assert(SPCall && "Call to llvm.stackprotector is missing"); 466 AI = cast<AllocaInst>(SPCall->getArgOperand(1)); 467 } 468 469 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 470 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 471 // instrumentation has already been generated. 472 HasIRCheck = true; 473 474 // If we're instrumenting a block with a musttail call, the check has to be 475 // inserted before the call rather than between it and the return. The 476 // verifier guarantees that a musttail call is either directly before the 477 // return or with a single correct bitcast of the return value in between so 478 // we don't need to worry about many situations here. 479 Instruction *CheckLoc = RI; 480 Instruction *Prev = RI->getPrevNonDebugInstruction(); 481 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall()) 482 CheckLoc = Prev; 483 else if (Prev) { 484 Prev = Prev->getPrevNonDebugInstruction(); 485 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall()) 486 CheckLoc = Prev; 487 } 488 489 // Generate epilogue instrumentation. The epilogue intrumentation can be 490 // function-based or inlined depending on which mechanism the target is 491 // providing. 492 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 493 // Generate the function-based epilogue instrumentation. 494 // The target provides a guard check function, generate a call to it. 495 IRBuilder<> B(CheckLoc); 496 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard"); 497 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 498 Call->setAttributes(GuardCheck->getAttributes()); 499 Call->setCallingConv(GuardCheck->getCallingConv()); 500 } else { 501 // Generate the epilogue with inline instrumentation. 502 // If we do not support SelectionDAG based calls, generate IR level 503 // calls. 504 // 505 // For each block with a return instruction, convert this: 506 // 507 // return: 508 // ... 509 // ret ... 510 // 511 // into this: 512 // 513 // return: 514 // ... 515 // %1 = <stack guard> 516 // %2 = load StackGuardSlot 517 // %3 = cmp i1 %1, %2 518 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 519 // 520 // SP_return: 521 // ret ... 522 // 523 // CallStackCheckFailBlk: 524 // call void @__stack_chk_fail() 525 // unreachable 526 527 // Create the FailBB. We duplicate the BB every time since the MI tail 528 // merge pass will merge together all of the various BB into one including 529 // fail BB generated by the stack protector pseudo instruction. 530 BasicBlock *FailBB = CreateFailBB(); 531 532 // Split the basic block before the return instruction. 533 BasicBlock *NewBB = 534 BB.splitBasicBlock(CheckLoc->getIterator(), "SP_return"); 535 536 // Update the dominator tree if we need to. 537 if (DT && DT->isReachableFromEntry(&BB)) { 538 DT->addNewBlock(NewBB, &BB); 539 DT->addNewBlock(FailBB, &BB); 540 } 541 542 // Remove default branch instruction to the new BB. 543 BB.getTerminator()->eraseFromParent(); 544 545 // Move the newly created basic block to the point right after the old 546 // basic block so that it's in the "fall through" position. 547 NewBB->moveAfter(&BB); 548 549 // Generate the stack protector instructions in the old basic block. 550 IRBuilder<> B(&BB); 551 Value *Guard = getStackGuard(TLI, M, B); 552 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true); 553 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 554 auto SuccessProb = 555 BranchProbabilityInfo::getBranchProbStackProtector(true); 556 auto FailureProb = 557 BranchProbabilityInfo::getBranchProbStackProtector(false); 558 MDNode *Weights = MDBuilder(F->getContext()) 559 .createBranchWeights(SuccessProb.getNumerator(), 560 FailureProb.getNumerator()); 561 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 562 } 563 } 564 565 // Return if we didn't modify any basic blocks. i.e., there are no return 566 // statements in the function. 567 return HasPrologue; 568 } 569 570 /// CreateFailBB - Create a basic block to jump to when the stack protector 571 /// check fails. 572 BasicBlock *StackProtector::CreateFailBB() { 573 LLVMContext &Context = F->getContext(); 574 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 575 IRBuilder<> B(FailBB); 576 if (F->getSubprogram()) 577 B.SetCurrentDebugLocation( 578 DILocation::get(Context, 0, 0, F->getSubprogram())); 579 if (Trip.isOSOpenBSD()) { 580 FunctionCallee StackChkFail = M->getOrInsertFunction( 581 "__stack_smash_handler", Type::getVoidTy(Context), 582 Type::getInt8PtrTy(Context)); 583 584 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 585 } else { 586 FunctionCallee StackChkFail = 587 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 588 589 B.CreateCall(StackChkFail, {}); 590 } 591 B.CreateUnreachable(); 592 return FailBB; 593 } 594 595 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 596 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator()); 597 } 598 599 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { 600 if (Layout.empty()) 601 return; 602 603 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 604 if (MFI.isDeadObjectIndex(I)) 605 continue; 606 607 const AllocaInst *AI = MFI.getObjectAllocation(I); 608 if (!AI) 609 continue; 610 611 SSPLayoutMap::const_iterator LI = Layout.find(AI); 612 if (LI == Layout.end()) 613 continue; 614 615 MFI.setObjectSSPLayout(I, LI->second); 616 } 617 } 618