1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass inserts stack protectors into functions which need them. A variable 10 // with a random value in it is stored onto the stack before the local variables 11 // are allocated. Upon exiting the block, the stored value is checked. If it's 12 // changed, then there was some sort of violation and the program aborts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/StackProtector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/Analysis/MemoryLocation.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "stack-protector" 56 57 STATISTIC(NumFunProtected, "Number of functions protected"); 58 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 59 " taken."); 60 61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 62 cl::init(true), cl::Hidden); 63 64 char StackProtector::ID = 0; 65 66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) { 67 initializeStackProtectorPass(*PassRegistry::getPassRegistry()); 68 } 69 70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 71 "Insert stack protectors", false, true) 72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 73 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 74 "Insert stack protectors", false, true) 75 76 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 77 78 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 79 AU.addRequired<TargetPassConfig>(); 80 AU.addPreserved<DominatorTreeWrapperPass>(); 81 } 82 83 bool StackProtector::runOnFunction(Function &Fn) { 84 F = &Fn; 85 M = F->getParent(); 86 DominatorTreeWrapperPass *DTWP = 87 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 88 DT = DTWP ? &DTWP->getDomTree() : nullptr; 89 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 90 Trip = TM->getTargetTriple(); 91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 92 HasPrologue = false; 93 HasIRCheck = false; 94 95 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 96 if (Attr.isStringAttribute() && 97 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 98 return false; // Invalid integer string 99 100 if (!RequiresStackProtector()) 101 return false; 102 103 // TODO(etienneb): Functions with funclets are not correctly supported now. 104 // Do nothing if this is funclet-based personality. 105 if (Fn.hasPersonalityFn()) { 106 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 107 if (isFuncletEHPersonality(Personality)) 108 return false; 109 } 110 111 ++NumFunProtected; 112 return InsertStackProtectors(); 113 } 114 115 /// \param [out] IsLarge is set to true if a protectable array is found and 116 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 117 /// multiple arrays, this gets set if any of them is large. 118 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 119 bool Strong, 120 bool InStruct) const { 121 if (!Ty) 122 return false; 123 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 124 if (!AT->getElementType()->isIntegerTy(8)) { 125 // If we're on a non-Darwin platform or we're inside of a structure, don't 126 // add stack protectors unless the array is a character array. 127 // However, in strong mode any array, regardless of type and size, 128 // triggers a protector. 129 if (!Strong && (InStruct || !Trip.isOSDarwin())) 130 return false; 131 } 132 133 // If an array has more than SSPBufferSize bytes of allocated space, then we 134 // emit stack protectors. 135 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 136 IsLarge = true; 137 return true; 138 } 139 140 if (Strong) 141 // Require a protector for all arrays in strong mode 142 return true; 143 } 144 145 const StructType *ST = dyn_cast<StructType>(Ty); 146 if (!ST) 147 return false; 148 149 bool NeedsProtector = false; 150 for (StructType::element_iterator I = ST->element_begin(), 151 E = ST->element_end(); 152 I != E; ++I) 153 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 154 // If the element is a protectable array and is large (>= SSPBufferSize) 155 // then we are done. If the protectable array is not large, then 156 // keep looking in case a subsequent element is a large array. 157 if (IsLarge) 158 return true; 159 NeedsProtector = true; 160 } 161 162 return NeedsProtector; 163 } 164 165 bool StackProtector::HasAddressTaken(const Instruction *AI, 166 uint64_t AllocSize) { 167 const DataLayout &DL = M->getDataLayout(); 168 for (const User *U : AI->users()) { 169 const auto *I = cast<Instruction>(U); 170 // If this instruction accesses memory make sure it doesn't access beyond 171 // the bounds of the allocated object. 172 Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I); 173 if (MemLoc.hasValue() && MemLoc->Size.hasValue() && 174 MemLoc->Size.getValue() > AllocSize) 175 return true; 176 switch (I->getOpcode()) { 177 case Instruction::Store: 178 if (AI == cast<StoreInst>(I)->getValueOperand()) 179 return true; 180 break; 181 case Instruction::AtomicCmpXchg: 182 // cmpxchg conceptually includes both a load and store from the same 183 // location. So, like store, the value being stored is what matters. 184 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand()) 185 return true; 186 break; 187 case Instruction::PtrToInt: 188 if (AI == cast<PtrToIntInst>(I)->getOperand(0)) 189 return true; 190 break; 191 case Instruction::Call: { 192 // Ignore intrinsics that do not become real instructions. 193 // TODO: Narrow this to intrinsics that have store-like effects. 194 const auto *CI = cast<CallInst>(I); 195 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd()) 196 return true; 197 break; 198 } 199 case Instruction::Invoke: 200 return true; 201 case Instruction::GetElementPtr: { 202 // If the GEP offset is out-of-bounds, or is non-constant and so has to be 203 // assumed to be potentially out-of-bounds, then any memory access that 204 // would use it could also be out-of-bounds meaning stack protection is 205 // required. 206 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 207 unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType()); 208 APInt Offset(TypeSize, 0); 209 APInt MaxOffset(TypeSize, AllocSize); 210 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset)) 211 return true; 212 // Adjust AllocSize to be the space remaining after this offset. 213 if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue())) 214 return true; 215 break; 216 } 217 case Instruction::BitCast: 218 case Instruction::Select: 219 case Instruction::AddrSpaceCast: 220 if (HasAddressTaken(I, AllocSize)) 221 return true; 222 break; 223 case Instruction::PHI: { 224 // Keep track of what PHI nodes we have already visited to ensure 225 // they are only visited once. 226 const auto *PN = cast<PHINode>(I); 227 if (VisitedPHIs.insert(PN).second) 228 if (HasAddressTaken(PN, AllocSize)) 229 return true; 230 break; 231 } 232 case Instruction::Load: 233 case Instruction::AtomicRMW: 234 case Instruction::Ret: 235 // These instructions take an address operand, but have load-like or 236 // other innocuous behavior that should not trigger a stack protector. 237 // atomicrmw conceptually has both load and store semantics, but the 238 // value being stored must be integer; so if a pointer is being stored, 239 // we'll catch it in the PtrToInt case above. 240 break; 241 default: 242 // Conservatively return true for any instruction that takes an address 243 // operand, but is not handled above. 244 return true; 245 } 246 } 247 return false; 248 } 249 250 /// Search for the first call to the llvm.stackprotector intrinsic and return it 251 /// if present. 252 static const CallInst *findStackProtectorIntrinsic(Function &F) { 253 for (const BasicBlock &BB : F) 254 for (const Instruction &I : BB) 255 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) 256 if (II->getIntrinsicID() == Intrinsic::stackprotector) 257 return II; 258 return nullptr; 259 } 260 261 /// Check whether or not this function needs a stack protector based 262 /// upon the stack protector level. 263 /// 264 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 265 /// The standard heuristic which will add a guard variable to functions that 266 /// call alloca with a either a variable size or a size >= SSPBufferSize, 267 /// functions with character buffers larger than SSPBufferSize, and functions 268 /// with aggregates containing character buffers larger than SSPBufferSize. The 269 /// strong heuristic will add a guard variables to functions that call alloca 270 /// regardless of size, functions with any buffer regardless of type and size, 271 /// functions with aggregates that contain any buffer regardless of type and 272 /// size, and functions that contain stack-based variables that have had their 273 /// address taken. 274 bool StackProtector::RequiresStackProtector() { 275 bool Strong = false; 276 bool NeedsProtector = false; 277 278 if (F->hasFnAttribute(Attribute::SafeStack)) 279 return false; 280 281 // We are constructing the OptimizationRemarkEmitter on the fly rather than 282 // using the analysis pass to avoid building DominatorTree and LoopInfo which 283 // are not available this late in the IR pipeline. 284 OptimizationRemarkEmitter ORE(F); 285 286 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 287 ORE.emit([&]() { 288 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 289 << "Stack protection applied to function " 290 << ore::NV("Function", F) 291 << " due to a function attribute or command-line switch"; 292 }); 293 NeedsProtector = true; 294 Strong = true; // Use the same heuristic as strong to determine SSPLayout 295 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 296 Strong = true; 297 else if (!F->hasFnAttribute(Attribute::StackProtect)) 298 return false; 299 300 for (const BasicBlock &BB : *F) { 301 for (const Instruction &I : BB) { 302 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 303 if (AI->isArrayAllocation()) { 304 auto RemarkBuilder = [&]() { 305 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 306 &I) 307 << "Stack protection applied to function " 308 << ore::NV("Function", F) 309 << " due to a call to alloca or use of a variable length " 310 "array"; 311 }; 312 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 313 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 314 // A call to alloca with size >= SSPBufferSize requires 315 // stack protectors. 316 Layout.insert(std::make_pair(AI, 317 MachineFrameInfo::SSPLK_LargeArray)); 318 ORE.emit(RemarkBuilder); 319 NeedsProtector = true; 320 } else if (Strong) { 321 // Require protectors for all alloca calls in strong mode. 322 Layout.insert(std::make_pair(AI, 323 MachineFrameInfo::SSPLK_SmallArray)); 324 ORE.emit(RemarkBuilder); 325 NeedsProtector = true; 326 } 327 } else { 328 // A call to alloca with a variable size requires protectors. 329 Layout.insert(std::make_pair(AI, 330 MachineFrameInfo::SSPLK_LargeArray)); 331 ORE.emit(RemarkBuilder); 332 NeedsProtector = true; 333 } 334 continue; 335 } 336 337 bool IsLarge = false; 338 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 339 Layout.insert(std::make_pair(AI, IsLarge 340 ? MachineFrameInfo::SSPLK_LargeArray 341 : MachineFrameInfo::SSPLK_SmallArray)); 342 ORE.emit([&]() { 343 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 344 << "Stack protection applied to function " 345 << ore::NV("Function", F) 346 << " due to a stack allocated buffer or struct containing a " 347 "buffer"; 348 }); 349 NeedsProtector = true; 350 continue; 351 } 352 353 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize( 354 AI->getAllocatedType()))) { 355 ++NumAddrTaken; 356 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); 357 ORE.emit([&]() { 358 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 359 &I) 360 << "Stack protection applied to function " 361 << ore::NV("Function", F) 362 << " due to the address of a local variable being taken"; 363 }); 364 NeedsProtector = true; 365 } 366 // Clear any PHIs that we visited, to make sure we examine all uses of 367 // any subsequent allocas that we look at. 368 VisitedPHIs.clear(); 369 } 370 } 371 } 372 373 return NeedsProtector; 374 } 375 376 /// Create a stack guard loading and populate whether SelectionDAG SSP is 377 /// supported. 378 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 379 IRBuilder<> &B, 380 bool *SupportsSelectionDAGSP = nullptr) { 381 Value *Guard = TLI->getIRStackGuard(B); 382 auto GuardMode = TLI->getTargetMachine().Options.StackProtectorGuard; 383 if ((GuardMode == llvm::StackProtectorGuards::TLS || 384 GuardMode == llvm::StackProtectorGuards::None) && Guard) 385 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard"); 386 387 // Use SelectionDAG SSP handling, since there isn't an IR guard. 388 // 389 // This is more or less weird, since we optionally output whether we 390 // should perform a SelectionDAG SP here. The reason is that it's strictly 391 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 392 // mutating. There is no way to get this bit without mutating the IR, so 393 // getting this bit has to happen in this right time. 394 // 395 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 396 // will put more burden on the backends' overriding work, especially when it 397 // actually conveys the same information getIRStackGuard() already gives. 398 if (SupportsSelectionDAGSP) 399 *SupportsSelectionDAGSP = true; 400 TLI->insertSSPDeclarations(*M); 401 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 402 } 403 404 /// Insert code into the entry block that stores the stack guard 405 /// variable onto the stack: 406 /// 407 /// entry: 408 /// StackGuardSlot = alloca i8* 409 /// StackGuard = <stack guard> 410 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 411 /// 412 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 413 /// node. 414 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 415 const TargetLoweringBase *TLI, AllocaInst *&AI) { 416 bool SupportsSelectionDAGSP = false; 417 IRBuilder<> B(&F->getEntryBlock().front()); 418 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 419 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 420 421 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 422 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 423 {GuardSlot, AI}); 424 return SupportsSelectionDAGSP; 425 } 426 427 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 428 /// function. 429 /// 430 /// - The prologue code loads and stores the stack guard onto the stack. 431 /// - The epilogue checks the value stored in the prologue against the original 432 /// value. It calls __stack_chk_fail if they differ. 433 bool StackProtector::InsertStackProtectors() { 434 // If the target wants to XOR the frame pointer into the guard value, it's 435 // impossible to emit the check in IR, so the target *must* support stack 436 // protection in SDAG. 437 bool SupportsSelectionDAGSP = 438 TLI->useStackGuardXorFP() || 439 (EnableSelectionDAGSP && !TM->Options.EnableFastISel && 440 !TM->Options.EnableGlobalISel); 441 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 442 443 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 444 BasicBlock *BB = &*I++; 445 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 446 if (!RI) 447 continue; 448 449 // Generate prologue instrumentation if not already generated. 450 if (!HasPrologue) { 451 HasPrologue = true; 452 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 453 } 454 455 // SelectionDAG based code generation. Nothing else needs to be done here. 456 // The epilogue instrumentation is postponed to SelectionDAG. 457 if (SupportsSelectionDAGSP) 458 break; 459 460 // Find the stack guard slot if the prologue was not created by this pass 461 // itself via a previous call to CreatePrologue(). 462 if (!AI) { 463 const CallInst *SPCall = findStackProtectorIntrinsic(*F); 464 assert(SPCall && "Call to llvm.stackprotector is missing"); 465 AI = cast<AllocaInst>(SPCall->getArgOperand(1)); 466 } 467 468 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 469 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 470 // instrumentation has already been generated. 471 HasIRCheck = true; 472 473 // If we're instrumenting a block with a musttail call, the check has to be 474 // inserted before the call rather than between it and the return. The 475 // verifier guarantees that a musttail call is either directly before the 476 // return or with a single correct bitcast of the return value in between so 477 // we don't need to worry about many situations here. 478 Instruction *CheckLoc = RI; 479 Instruction *Prev = RI->getPrevNonDebugInstruction(); 480 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall()) 481 CheckLoc = Prev; 482 else if (Prev) { 483 Prev = Prev->getPrevNonDebugInstruction(); 484 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall()) 485 CheckLoc = Prev; 486 } 487 488 // Generate epilogue instrumentation. The epilogue intrumentation can be 489 // function-based or inlined depending on which mechanism the target is 490 // providing. 491 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 492 // Generate the function-based epilogue instrumentation. 493 // The target provides a guard check function, generate a call to it. 494 IRBuilder<> B(CheckLoc); 495 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard"); 496 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 497 Call->setAttributes(GuardCheck->getAttributes()); 498 Call->setCallingConv(GuardCheck->getCallingConv()); 499 } else { 500 // Generate the epilogue with inline instrumentation. 501 // If we do not support SelectionDAG based calls, generate IR level 502 // calls. 503 // 504 // For each block with a return instruction, convert this: 505 // 506 // return: 507 // ... 508 // ret ... 509 // 510 // into this: 511 // 512 // return: 513 // ... 514 // %1 = <stack guard> 515 // %2 = load StackGuardSlot 516 // %3 = cmp i1 %1, %2 517 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 518 // 519 // SP_return: 520 // ret ... 521 // 522 // CallStackCheckFailBlk: 523 // call void @__stack_chk_fail() 524 // unreachable 525 526 // Create the FailBB. We duplicate the BB every time since the MI tail 527 // merge pass will merge together all of the various BB into one including 528 // fail BB generated by the stack protector pseudo instruction. 529 BasicBlock *FailBB = CreateFailBB(); 530 531 // Split the basic block before the return instruction. 532 BasicBlock *NewBB = 533 BB->splitBasicBlock(CheckLoc->getIterator(), "SP_return"); 534 535 // Update the dominator tree if we need to. 536 if (DT && DT->isReachableFromEntry(BB)) { 537 DT->addNewBlock(NewBB, BB); 538 DT->addNewBlock(FailBB, BB); 539 } 540 541 // Remove default branch instruction to the new BB. 542 BB->getTerminator()->eraseFromParent(); 543 544 // Move the newly created basic block to the point right after the old 545 // basic block so that it's in the "fall through" position. 546 NewBB->moveAfter(BB); 547 548 // Generate the stack protector instructions in the old basic block. 549 IRBuilder<> B(BB); 550 Value *Guard = getStackGuard(TLI, M, B); 551 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true); 552 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 553 auto SuccessProb = 554 BranchProbabilityInfo::getBranchProbStackProtector(true); 555 auto FailureProb = 556 BranchProbabilityInfo::getBranchProbStackProtector(false); 557 MDNode *Weights = MDBuilder(F->getContext()) 558 .createBranchWeights(SuccessProb.getNumerator(), 559 FailureProb.getNumerator()); 560 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 561 } 562 } 563 564 // Return if we didn't modify any basic blocks. i.e., there are no return 565 // statements in the function. 566 return HasPrologue; 567 } 568 569 /// CreateFailBB - Create a basic block to jump to when the stack protector 570 /// check fails. 571 BasicBlock *StackProtector::CreateFailBB() { 572 LLVMContext &Context = F->getContext(); 573 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 574 IRBuilder<> B(FailBB); 575 if (F->getSubprogram()) 576 B.SetCurrentDebugLocation( 577 DILocation::get(Context, 0, 0, F->getSubprogram())); 578 if (Trip.isOSOpenBSD()) { 579 FunctionCallee StackChkFail = M->getOrInsertFunction( 580 "__stack_smash_handler", Type::getVoidTy(Context), 581 Type::getInt8PtrTy(Context)); 582 583 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 584 } else { 585 FunctionCallee StackChkFail = 586 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 587 588 B.CreateCall(StackChkFail, {}); 589 } 590 B.CreateUnreachable(); 591 return FailBB; 592 } 593 594 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 595 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator()); 596 } 597 598 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { 599 if (Layout.empty()) 600 return; 601 602 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 603 if (MFI.isDeadObjectIndex(I)) 604 continue; 605 606 const AllocaInst *AI = MFI.getObjectAllocation(I); 607 if (!AI) 608 continue; 609 610 SSPLayoutMap::const_iterator LI = Layout.find(AI); 611 if (LI == Layout.end()) 612 continue; 613 614 MFI.setObjectSSPLayout(I, LI->second); 615 } 616 } 617