1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass inserts stack protectors into functions which need them. A variable 10 // with a random value in it is stored onto the stack before the local variables 11 // are allocated. Upon exiting the block, the stored value is checked. If it's 12 // changed, then there was some sort of violation and the program aborts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/StackProtector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/Analysis/MemoryLocation.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/User.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50 #include <optional> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "stack-protector" 56 57 STATISTIC(NumFunProtected, "Number of functions protected"); 58 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 59 " taken."); 60 61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 62 cl::init(true), cl::Hidden); 63 static cl::opt<bool> DisableCheckNoReturn("disable-check-noreturn-call", 64 cl::init(false), cl::Hidden); 65 66 char StackProtector::ID = 0; 67 68 StackProtector::StackProtector() : FunctionPass(ID) { 69 initializeStackProtectorPass(*PassRegistry::getPassRegistry()); 70 } 71 72 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 73 "Insert stack protectors", false, true) 74 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 75 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 76 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 77 "Insert stack protectors", false, true) 78 79 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 80 81 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 82 AU.addRequired<TargetPassConfig>(); 83 AU.addPreserved<DominatorTreeWrapperPass>(); 84 } 85 86 bool StackProtector::runOnFunction(Function &Fn) { 87 F = &Fn; 88 M = F->getParent(); 89 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 90 DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy); 91 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 92 Trip = TM->getTargetTriple(); 93 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 94 HasPrologue = false; 95 HasIRCheck = false; 96 97 SSPBufferSize = Fn.getFnAttributeAsParsedInteger( 98 "stack-protector-buffer-size", DefaultSSPBufferSize); 99 if (!RequiresStackProtector()) 100 return false; 101 102 // TODO(etienneb): Functions with funclets are not correctly supported now. 103 // Do nothing if this is funclet-based personality. 104 if (Fn.hasPersonalityFn()) { 105 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 106 if (isFuncletEHPersonality(Personality)) 107 return false; 108 } 109 110 ++NumFunProtected; 111 bool Changed = InsertStackProtectors(); 112 #ifdef EXPENSIVE_CHECKS 113 assert((!DTU || 114 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full)) && 115 "Failed to maintain validity of domtree!"); 116 #endif 117 DTU.reset(); 118 return Changed; 119 } 120 121 /// \param [out] IsLarge is set to true if a protectable array is found and 122 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 123 /// multiple arrays, this gets set if any of them is large. 124 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 125 bool Strong, 126 bool InStruct) const { 127 if (!Ty) 128 return false; 129 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 130 if (!AT->getElementType()->isIntegerTy(8)) { 131 // If we're on a non-Darwin platform or we're inside of a structure, don't 132 // add stack protectors unless the array is a character array. 133 // However, in strong mode any array, regardless of type and size, 134 // triggers a protector. 135 if (!Strong && (InStruct || !Trip.isOSDarwin())) 136 return false; 137 } 138 139 // If an array has more than SSPBufferSize bytes of allocated space, then we 140 // emit stack protectors. 141 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 142 IsLarge = true; 143 return true; 144 } 145 146 if (Strong) 147 // Require a protector for all arrays in strong mode 148 return true; 149 } 150 151 const StructType *ST = dyn_cast<StructType>(Ty); 152 if (!ST) 153 return false; 154 155 bool NeedsProtector = false; 156 for (Type *ET : ST->elements()) 157 if (ContainsProtectableArray(ET, IsLarge, Strong, true)) { 158 // If the element is a protectable array and is large (>= SSPBufferSize) 159 // then we are done. If the protectable array is not large, then 160 // keep looking in case a subsequent element is a large array. 161 if (IsLarge) 162 return true; 163 NeedsProtector = true; 164 } 165 166 return NeedsProtector; 167 } 168 169 bool StackProtector::HasAddressTaken(const Instruction *AI, 170 TypeSize AllocSize) { 171 const DataLayout &DL = M->getDataLayout(); 172 for (const User *U : AI->users()) { 173 const auto *I = cast<Instruction>(U); 174 // If this instruction accesses memory make sure it doesn't access beyond 175 // the bounds of the allocated object. 176 std::optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I); 177 if (MemLoc && MemLoc->Size.hasValue() && 178 !TypeSize::isKnownGE(AllocSize, 179 TypeSize::getFixed(MemLoc->Size.getValue()))) 180 return true; 181 switch (I->getOpcode()) { 182 case Instruction::Store: 183 if (AI == cast<StoreInst>(I)->getValueOperand()) 184 return true; 185 break; 186 case Instruction::AtomicCmpXchg: 187 // cmpxchg conceptually includes both a load and store from the same 188 // location. So, like store, the value being stored is what matters. 189 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand()) 190 return true; 191 break; 192 case Instruction::PtrToInt: 193 if (AI == cast<PtrToIntInst>(I)->getOperand(0)) 194 return true; 195 break; 196 case Instruction::Call: { 197 // Ignore intrinsics that do not become real instructions. 198 // TODO: Narrow this to intrinsics that have store-like effects. 199 const auto *CI = cast<CallInst>(I); 200 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd()) 201 return true; 202 break; 203 } 204 case Instruction::Invoke: 205 return true; 206 case Instruction::GetElementPtr: { 207 // If the GEP offset is out-of-bounds, or is non-constant and so has to be 208 // assumed to be potentially out-of-bounds, then any memory access that 209 // would use it could also be out-of-bounds meaning stack protection is 210 // required. 211 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 212 unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType()); 213 APInt Offset(IndexSize, 0); 214 if (!GEP->accumulateConstantOffset(DL, Offset)) 215 return true; 216 TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue()); 217 if (!TypeSize::isKnownGT(AllocSize, OffsetSize)) 218 return true; 219 // Adjust AllocSize to be the space remaining after this offset. 220 // We can't subtract a fixed size from a scalable one, so in that case 221 // assume the scalable value is of minimum size. 222 TypeSize NewAllocSize = 223 TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize; 224 if (HasAddressTaken(I, NewAllocSize)) 225 return true; 226 break; 227 } 228 case Instruction::BitCast: 229 case Instruction::Select: 230 case Instruction::AddrSpaceCast: 231 if (HasAddressTaken(I, AllocSize)) 232 return true; 233 break; 234 case Instruction::PHI: { 235 // Keep track of what PHI nodes we have already visited to ensure 236 // they are only visited once. 237 const auto *PN = cast<PHINode>(I); 238 if (VisitedPHIs.insert(PN).second) 239 if (HasAddressTaken(PN, AllocSize)) 240 return true; 241 break; 242 } 243 case Instruction::Load: 244 case Instruction::AtomicRMW: 245 case Instruction::Ret: 246 // These instructions take an address operand, but have load-like or 247 // other innocuous behavior that should not trigger a stack protector. 248 // atomicrmw conceptually has both load and store semantics, but the 249 // value being stored must be integer; so if a pointer is being stored, 250 // we'll catch it in the PtrToInt case above. 251 break; 252 default: 253 // Conservatively return true for any instruction that takes an address 254 // operand, but is not handled above. 255 return true; 256 } 257 } 258 return false; 259 } 260 261 /// Search for the first call to the llvm.stackprotector intrinsic and return it 262 /// if present. 263 static const CallInst *findStackProtectorIntrinsic(Function &F) { 264 for (const BasicBlock &BB : F) 265 for (const Instruction &I : BB) 266 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) 267 if (II->getIntrinsicID() == Intrinsic::stackprotector) 268 return II; 269 return nullptr; 270 } 271 272 /// Check whether or not this function needs a stack protector based 273 /// upon the stack protector level. 274 /// 275 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 276 /// The standard heuristic which will add a guard variable to functions that 277 /// call alloca with a either a variable size or a size >= SSPBufferSize, 278 /// functions with character buffers larger than SSPBufferSize, and functions 279 /// with aggregates containing character buffers larger than SSPBufferSize. The 280 /// strong heuristic will add a guard variables to functions that call alloca 281 /// regardless of size, functions with any buffer regardless of type and size, 282 /// functions with aggregates that contain any buffer regardless of type and 283 /// size, and functions that contain stack-based variables that have had their 284 /// address taken. 285 bool StackProtector::RequiresStackProtector() { 286 bool Strong = false; 287 bool NeedsProtector = false; 288 289 if (F->hasFnAttribute(Attribute::SafeStack)) 290 return false; 291 292 // We are constructing the OptimizationRemarkEmitter on the fly rather than 293 // using the analysis pass to avoid building DominatorTree and LoopInfo which 294 // are not available this late in the IR pipeline. 295 OptimizationRemarkEmitter ORE(F); 296 297 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 298 ORE.emit([&]() { 299 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 300 << "Stack protection applied to function " 301 << ore::NV("Function", F) 302 << " due to a function attribute or command-line switch"; 303 }); 304 NeedsProtector = true; 305 Strong = true; // Use the same heuristic as strong to determine SSPLayout 306 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 307 Strong = true; 308 else if (!F->hasFnAttribute(Attribute::StackProtect)) 309 return false; 310 311 for (const BasicBlock &BB : *F) { 312 for (const Instruction &I : BB) { 313 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 314 if (AI->isArrayAllocation()) { 315 auto RemarkBuilder = [&]() { 316 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 317 &I) 318 << "Stack protection applied to function " 319 << ore::NV("Function", F) 320 << " due to a call to alloca or use of a variable length " 321 "array"; 322 }; 323 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 324 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 325 // A call to alloca with size >= SSPBufferSize requires 326 // stack protectors. 327 Layout.insert(std::make_pair(AI, 328 MachineFrameInfo::SSPLK_LargeArray)); 329 ORE.emit(RemarkBuilder); 330 NeedsProtector = true; 331 } else if (Strong) { 332 // Require protectors for all alloca calls in strong mode. 333 Layout.insert(std::make_pair(AI, 334 MachineFrameInfo::SSPLK_SmallArray)); 335 ORE.emit(RemarkBuilder); 336 NeedsProtector = true; 337 } 338 } else { 339 // A call to alloca with a variable size requires protectors. 340 Layout.insert(std::make_pair(AI, 341 MachineFrameInfo::SSPLK_LargeArray)); 342 ORE.emit(RemarkBuilder); 343 NeedsProtector = true; 344 } 345 continue; 346 } 347 348 bool IsLarge = false; 349 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 350 Layout.insert(std::make_pair(AI, IsLarge 351 ? MachineFrameInfo::SSPLK_LargeArray 352 : MachineFrameInfo::SSPLK_SmallArray)); 353 ORE.emit([&]() { 354 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 355 << "Stack protection applied to function " 356 << ore::NV("Function", F) 357 << " due to a stack allocated buffer or struct containing a " 358 "buffer"; 359 }); 360 NeedsProtector = true; 361 continue; 362 } 363 364 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize( 365 AI->getAllocatedType()))) { 366 ++NumAddrTaken; 367 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); 368 ORE.emit([&]() { 369 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 370 &I) 371 << "Stack protection applied to function " 372 << ore::NV("Function", F) 373 << " due to the address of a local variable being taken"; 374 }); 375 NeedsProtector = true; 376 } 377 // Clear any PHIs that we visited, to make sure we examine all uses of 378 // any subsequent allocas that we look at. 379 VisitedPHIs.clear(); 380 } 381 } 382 } 383 384 return NeedsProtector; 385 } 386 387 /// Create a stack guard loading and populate whether SelectionDAG SSP is 388 /// supported. 389 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 390 IRBuilder<> &B, 391 bool *SupportsSelectionDAGSP = nullptr) { 392 Value *Guard = TLI->getIRStackGuard(B); 393 StringRef GuardMode = M->getStackProtectorGuard(); 394 if ((GuardMode == "tls" || GuardMode.empty()) && Guard) 395 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard"); 396 397 // Use SelectionDAG SSP handling, since there isn't an IR guard. 398 // 399 // This is more or less weird, since we optionally output whether we 400 // should perform a SelectionDAG SP here. The reason is that it's strictly 401 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 402 // mutating. There is no way to get this bit without mutating the IR, so 403 // getting this bit has to happen in this right time. 404 // 405 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 406 // will put more burden on the backends' overriding work, especially when it 407 // actually conveys the same information getIRStackGuard() already gives. 408 if (SupportsSelectionDAGSP) 409 *SupportsSelectionDAGSP = true; 410 TLI->insertSSPDeclarations(*M); 411 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 412 } 413 414 /// Insert code into the entry block that stores the stack guard 415 /// variable onto the stack: 416 /// 417 /// entry: 418 /// StackGuardSlot = alloca i8* 419 /// StackGuard = <stack guard> 420 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 421 /// 422 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 423 /// node. 424 static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc, 425 const TargetLoweringBase *TLI, AllocaInst *&AI) { 426 bool SupportsSelectionDAGSP = false; 427 IRBuilder<> B(&F->getEntryBlock().front()); 428 PointerType *PtrTy = Type::getInt8PtrTy(CheckLoc->getContext()); 429 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 430 431 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 432 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 433 {GuardSlot, AI}); 434 return SupportsSelectionDAGSP; 435 } 436 437 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 438 /// function. 439 /// 440 /// - The prologue code loads and stores the stack guard onto the stack. 441 /// - The epilogue checks the value stored in the prologue against the original 442 /// value. It calls __stack_chk_fail if they differ. 443 bool StackProtector::InsertStackProtectors() { 444 // If the target wants to XOR the frame pointer into the guard value, it's 445 // impossible to emit the check in IR, so the target *must* support stack 446 // protection in SDAG. 447 bool SupportsSelectionDAGSP = 448 TLI->useStackGuardXorFP() || 449 (EnableSelectionDAGSP && !TM->Options.EnableFastISel); 450 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 451 BasicBlock *FailBB = nullptr; 452 453 for (BasicBlock &BB : llvm::make_early_inc_range(*F)) { 454 // This is stack protector auto generated check BB, skip it. 455 if (&BB == FailBB) 456 continue; 457 Instruction *CheckLoc = dyn_cast<ReturnInst>(BB.getTerminator()); 458 if (!CheckLoc && !DisableCheckNoReturn) 459 for (auto &Inst : BB) 460 if (auto *CB = dyn_cast<CallBase>(&Inst)) 461 // Do stack check before noreturn calls that aren't nounwind (e.g: 462 // __cxa_throw). 463 if (CB->doesNotReturn() && !CB->doesNotThrow()) { 464 CheckLoc = CB; 465 break; 466 } 467 468 if (!CheckLoc) 469 continue; 470 471 // Generate prologue instrumentation if not already generated. 472 if (!HasPrologue) { 473 HasPrologue = true; 474 SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI); 475 } 476 477 // SelectionDAG based code generation. Nothing else needs to be done here. 478 // The epilogue instrumentation is postponed to SelectionDAG. 479 if (SupportsSelectionDAGSP) 480 break; 481 482 // Find the stack guard slot if the prologue was not created by this pass 483 // itself via a previous call to CreatePrologue(). 484 if (!AI) { 485 const CallInst *SPCall = findStackProtectorIntrinsic(*F); 486 assert(SPCall && "Call to llvm.stackprotector is missing"); 487 AI = cast<AllocaInst>(SPCall->getArgOperand(1)); 488 } 489 490 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 491 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 492 // instrumentation has already been generated. 493 HasIRCheck = true; 494 495 // If we're instrumenting a block with a tail call, the check has to be 496 // inserted before the call rather than between it and the return. The 497 // verifier guarantees that a tail call is either directly before the 498 // return or with a single correct bitcast of the return value in between so 499 // we don't need to worry about many situations here. 500 Instruction *Prev = CheckLoc->getPrevNonDebugInstruction(); 501 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall()) 502 CheckLoc = Prev; 503 else if (Prev) { 504 Prev = Prev->getPrevNonDebugInstruction(); 505 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall()) 506 CheckLoc = Prev; 507 } 508 509 // Generate epilogue instrumentation. The epilogue intrumentation can be 510 // function-based or inlined depending on which mechanism the target is 511 // providing. 512 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 513 // Generate the function-based epilogue instrumentation. 514 // The target provides a guard check function, generate a call to it. 515 IRBuilder<> B(CheckLoc); 516 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard"); 517 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 518 Call->setAttributes(GuardCheck->getAttributes()); 519 Call->setCallingConv(GuardCheck->getCallingConv()); 520 } else { 521 // Generate the epilogue with inline instrumentation. 522 // If we do not support SelectionDAG based calls, generate IR level 523 // calls. 524 // 525 // For each block with a return instruction, convert this: 526 // 527 // return: 528 // ... 529 // ret ... 530 // 531 // into this: 532 // 533 // return: 534 // ... 535 // %1 = <stack guard> 536 // %2 = load StackGuardSlot 537 // %3 = icmp ne i1 %1, %2 538 // br i1 %3, label %CallStackCheckFailBlk, label %SP_return 539 // 540 // SP_return: 541 // ret ... 542 // 543 // CallStackCheckFailBlk: 544 // call void @__stack_chk_fail() 545 // unreachable 546 547 // Create the FailBB. We duplicate the BB every time since the MI tail 548 // merge pass will merge together all of the various BB into one including 549 // fail BB generated by the stack protector pseudo instruction. 550 if (!FailBB) 551 FailBB = CreateFailBB(); 552 553 IRBuilder<> B(CheckLoc); 554 Value *Guard = getStackGuard(TLI, M, B); 555 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true); 556 auto *Cmp = cast<ICmpInst>(B.CreateICmpNE(Guard, LI2)); 557 auto SuccessProb = 558 BranchProbabilityInfo::getBranchProbStackProtector(true); 559 auto FailureProb = 560 BranchProbabilityInfo::getBranchProbStackProtector(false); 561 MDNode *Weights = MDBuilder(F->getContext()) 562 .createBranchWeights(FailureProb.getNumerator(), 563 SuccessProb.getNumerator()); 564 565 SplitBlockAndInsertIfThen(Cmp, CheckLoc, 566 /*Unreachable=*/false, Weights, 567 DTU ? &*DTU : nullptr, 568 /*LI=*/nullptr, /*ThenBlock=*/FailBB); 569 570 auto *BI = cast<BranchInst>(Cmp->getParent()->getTerminator()); 571 BasicBlock *NewBB = BI->getSuccessor(1); 572 NewBB->setName("SP_return"); 573 NewBB->moveAfter(&BB); 574 575 Cmp->setPredicate(Cmp->getInversePredicate()); 576 BI->swapSuccessors(); 577 } 578 } 579 580 // Return if we didn't modify any basic blocks. i.e., there are no return 581 // statements in the function. 582 return HasPrologue; 583 } 584 585 /// CreateFailBB - Create a basic block to jump to when the stack protector 586 /// check fails. 587 BasicBlock *StackProtector::CreateFailBB() { 588 LLVMContext &Context = F->getContext(); 589 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 590 IRBuilder<> B(FailBB); 591 if (F->getSubprogram()) 592 B.SetCurrentDebugLocation( 593 DILocation::get(Context, 0, 0, F->getSubprogram())); 594 if (Trip.isOSOpenBSD()) { 595 FunctionCallee StackChkFail = M->getOrInsertFunction( 596 "__stack_smash_handler", Type::getVoidTy(Context), 597 Type::getInt8PtrTy(Context)); 598 599 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 600 } else { 601 FunctionCallee StackChkFail = 602 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 603 604 B.CreateCall(StackChkFail, {}); 605 } 606 B.CreateUnreachable(); 607 return FailBB; 608 } 609 610 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 611 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator()); 612 } 613 614 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { 615 if (Layout.empty()) 616 return; 617 618 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 619 if (MFI.isDeadObjectIndex(I)) 620 continue; 621 622 const AllocaInst *AI = MFI.getObjectAllocation(I); 623 if (!AI) 624 continue; 625 626 SSPLayoutMap::const_iterator LI = Layout.find(AI); 627 if (LI == Layout.end()) 628 continue; 629 630 MFI.setObjectSSPLayout(I, LI->second); 631 } 632 } 633