xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/StackProtector.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/EHPersonalities.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/User.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include <optional>
52 #include <utility>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "stack-protector"
57 
58 STATISTIC(NumFunProtected, "Number of functions protected");
59 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
60                         " taken.");
61 
62 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
63                                           cl::init(true), cl::Hidden);
64 static cl::opt<bool> DisableCheckNoReturn("disable-check-noreturn-call",
65                                           cl::init(false), cl::Hidden);
66 
67 char StackProtector::ID = 0;
68 
69 StackProtector::StackProtector() : FunctionPass(ID) {
70   initializeStackProtectorPass(*PassRegistry::getPassRegistry());
71 }
72 
73 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
74                       "Insert stack protectors", false, true)
75 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
76 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
77 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
78                     "Insert stack protectors", false, true)
79 
80 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
81 
82 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
83   AU.addRequired<TargetPassConfig>();
84   AU.addPreserved<DominatorTreeWrapperPass>();
85 }
86 
87 bool StackProtector::runOnFunction(Function &Fn) {
88   F = &Fn;
89   M = F->getParent();
90   if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
91     DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy);
92   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
93   Trip = TM->getTargetTriple();
94   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
95   HasPrologue = false;
96   HasIRCheck = false;
97 
98   SSPBufferSize = Fn.getFnAttributeAsParsedInteger(
99       "stack-protector-buffer-size", DefaultSSPBufferSize);
100   if (!requiresStackProtector(F, &Layout))
101     return false;
102 
103   // TODO(etienneb): Functions with funclets are not correctly supported now.
104   // Do nothing if this is funclet-based personality.
105   if (Fn.hasPersonalityFn()) {
106     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
107     if (isFuncletEHPersonality(Personality))
108       return false;
109   }
110 
111   ++NumFunProtected;
112   bool Changed = InsertStackProtectors();
113 #ifdef EXPENSIVE_CHECKS
114   assert((!DTU ||
115           DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full)) &&
116          "Failed to maintain validity of domtree!");
117 #endif
118   DTU.reset();
119   return Changed;
120 }
121 
122 /// \param [out] IsLarge is set to true if a protectable array is found and
123 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
124 /// multiple arrays, this gets set if any of them is large.
125 static bool ContainsProtectableArray(Type *Ty, Module *M, unsigned SSPBufferSize,
126                                      bool &IsLarge, bool Strong,
127                                      bool InStruct) {
128   if (!Ty)
129     return false;
130   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
131     if (!AT->getElementType()->isIntegerTy(8)) {
132       // If we're on a non-Darwin platform or we're inside of a structure, don't
133       // add stack protectors unless the array is a character array.
134       // However, in strong mode any array, regardless of type and size,
135       // triggers a protector.
136       if (!Strong && (InStruct || !Triple(M->getTargetTriple()).isOSDarwin()))
137         return false;
138     }
139 
140     // If an array has more than SSPBufferSize bytes of allocated space, then we
141     // emit stack protectors.
142     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
143       IsLarge = true;
144       return true;
145     }
146 
147     if (Strong)
148       // Require a protector for all arrays in strong mode
149       return true;
150   }
151 
152   const StructType *ST = dyn_cast<StructType>(Ty);
153   if (!ST)
154     return false;
155 
156   bool NeedsProtector = false;
157   for (Type *ET : ST->elements())
158     if (ContainsProtectableArray(ET, M, SSPBufferSize, IsLarge, Strong, true)) {
159       // If the element is a protectable array and is large (>= SSPBufferSize)
160       // then we are done.  If the protectable array is not large, then
161       // keep looking in case a subsequent element is a large array.
162       if (IsLarge)
163         return true;
164       NeedsProtector = true;
165     }
166 
167   return NeedsProtector;
168 }
169 
170 /// Check whether a stack allocation has its address taken.
171 static bool HasAddressTaken(const Instruction *AI, TypeSize AllocSize,
172                             Module *M,
173                             SmallPtrSet<const PHINode *, 16> &VisitedPHIs) {
174   const DataLayout &DL = M->getDataLayout();
175   for (const User *U : AI->users()) {
176     const auto *I = cast<Instruction>(U);
177     // If this instruction accesses memory make sure it doesn't access beyond
178     // the bounds of the allocated object.
179     std::optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
180     if (MemLoc && MemLoc->Size.hasValue() &&
181         !TypeSize::isKnownGE(AllocSize,
182                              TypeSize::getFixed(MemLoc->Size.getValue())))
183       return true;
184     switch (I->getOpcode()) {
185     case Instruction::Store:
186       if (AI == cast<StoreInst>(I)->getValueOperand())
187         return true;
188       break;
189     case Instruction::AtomicCmpXchg:
190       // cmpxchg conceptually includes both a load and store from the same
191       // location. So, like store, the value being stored is what matters.
192       if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
193         return true;
194       break;
195     case Instruction::PtrToInt:
196       if (AI == cast<PtrToIntInst>(I)->getOperand(0))
197         return true;
198       break;
199     case Instruction::Call: {
200       // Ignore intrinsics that do not become real instructions.
201       // TODO: Narrow this to intrinsics that have store-like effects.
202       const auto *CI = cast<CallInst>(I);
203       if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
204         return true;
205       break;
206     }
207     case Instruction::Invoke:
208       return true;
209     case Instruction::GetElementPtr: {
210       // If the GEP offset is out-of-bounds, or is non-constant and so has to be
211       // assumed to be potentially out-of-bounds, then any memory access that
212       // would use it could also be out-of-bounds meaning stack protection is
213       // required.
214       const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
215       unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
216       APInt Offset(IndexSize, 0);
217       if (!GEP->accumulateConstantOffset(DL, Offset))
218         return true;
219       TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
220       if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
221         return true;
222       // Adjust AllocSize to be the space remaining after this offset.
223       // We can't subtract a fixed size from a scalable one, so in that case
224       // assume the scalable value is of minimum size.
225       TypeSize NewAllocSize =
226           TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
227       if (HasAddressTaken(I, NewAllocSize, M, VisitedPHIs))
228         return true;
229       break;
230     }
231     case Instruction::BitCast:
232     case Instruction::Select:
233     case Instruction::AddrSpaceCast:
234       if (HasAddressTaken(I, AllocSize, M, VisitedPHIs))
235         return true;
236       break;
237     case Instruction::PHI: {
238       // Keep track of what PHI nodes we have already visited to ensure
239       // they are only visited once.
240       const auto *PN = cast<PHINode>(I);
241       if (VisitedPHIs.insert(PN).second)
242         if (HasAddressTaken(PN, AllocSize, M, VisitedPHIs))
243           return true;
244       break;
245     }
246     case Instruction::Load:
247     case Instruction::AtomicRMW:
248     case Instruction::Ret:
249       // These instructions take an address operand, but have load-like or
250       // other innocuous behavior that should not trigger a stack protector.
251       // atomicrmw conceptually has both load and store semantics, but the
252       // value being stored must be integer; so if a pointer is being stored,
253       // we'll catch it in the PtrToInt case above.
254       break;
255     default:
256       // Conservatively return true for any instruction that takes an address
257       // operand, but is not handled above.
258       return true;
259     }
260   }
261   return false;
262 }
263 
264 /// Search for the first call to the llvm.stackprotector intrinsic and return it
265 /// if present.
266 static const CallInst *findStackProtectorIntrinsic(Function &F) {
267   for (const BasicBlock &BB : F)
268     for (const Instruction &I : BB)
269       if (const auto *II = dyn_cast<IntrinsicInst>(&I))
270         if (II->getIntrinsicID() == Intrinsic::stackprotector)
271           return II;
272   return nullptr;
273 }
274 
275 /// Check whether or not this function needs a stack protector based
276 /// upon the stack protector level.
277 ///
278 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
279 /// The standard heuristic which will add a guard variable to functions that
280 /// call alloca with a either a variable size or a size >= SSPBufferSize,
281 /// functions with character buffers larger than SSPBufferSize, and functions
282 /// with aggregates containing character buffers larger than SSPBufferSize. The
283 /// strong heuristic will add a guard variables to functions that call alloca
284 /// regardless of size, functions with any buffer regardless of type and size,
285 /// functions with aggregates that contain any buffer regardless of type and
286 /// size, and functions that contain stack-based variables that have had their
287 /// address taken.
288 bool StackProtector::requiresStackProtector(Function *F, SSPLayoutMap *Layout) {
289   Module *M = F->getParent();
290   bool Strong = false;
291   bool NeedsProtector = false;
292 
293   // The set of PHI nodes visited when determining if a variable's reference has
294   // been taken.  This set is maintained to ensure we don't visit the same PHI
295   // node multiple times.
296   SmallPtrSet<const PHINode *, 16> VisitedPHIs;
297 
298   unsigned SSPBufferSize = F->getFnAttributeAsParsedInteger(
299       "stack-protector-buffer-size", DefaultSSPBufferSize);
300 
301   if (F->hasFnAttribute(Attribute::SafeStack))
302     return false;
303 
304   // We are constructing the OptimizationRemarkEmitter on the fly rather than
305   // using the analysis pass to avoid building DominatorTree and LoopInfo which
306   // are not available this late in the IR pipeline.
307   OptimizationRemarkEmitter ORE(F);
308 
309   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
310     if (!Layout)
311       return true;
312     ORE.emit([&]() {
313       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
314              << "Stack protection applied to function "
315              << ore::NV("Function", F)
316              << " due to a function attribute or command-line switch";
317     });
318     NeedsProtector = true;
319     Strong = true; // Use the same heuristic as strong to determine SSPLayout
320   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
321     Strong = true;
322   else if (!F->hasFnAttribute(Attribute::StackProtect))
323     return false;
324 
325   for (const BasicBlock &BB : *F) {
326     for (const Instruction &I : BB) {
327       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
328         if (AI->isArrayAllocation()) {
329           auto RemarkBuilder = [&]() {
330             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
331                                       &I)
332                    << "Stack protection applied to function "
333                    << ore::NV("Function", F)
334                    << " due to a call to alloca or use of a variable length "
335                       "array";
336           };
337           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
338             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
339               // A call to alloca with size >= SSPBufferSize requires
340               // stack protectors.
341               if (!Layout)
342                 return true;
343               Layout->insert(
344                   std::make_pair(AI, MachineFrameInfo::SSPLK_LargeArray));
345               ORE.emit(RemarkBuilder);
346               NeedsProtector = true;
347             } else if (Strong) {
348               // Require protectors for all alloca calls in strong mode.
349               if (!Layout)
350                 return true;
351               Layout->insert(
352                   std::make_pair(AI, MachineFrameInfo::SSPLK_SmallArray));
353               ORE.emit(RemarkBuilder);
354               NeedsProtector = true;
355             }
356           } else {
357             // A call to alloca with a variable size requires protectors.
358             if (!Layout)
359               return true;
360             Layout->insert(
361                 std::make_pair(AI, MachineFrameInfo::SSPLK_LargeArray));
362             ORE.emit(RemarkBuilder);
363             NeedsProtector = true;
364           }
365           continue;
366         }
367 
368         bool IsLarge = false;
369         if (ContainsProtectableArray(AI->getAllocatedType(), M, SSPBufferSize,
370                                      IsLarge, Strong, false)) {
371           if (!Layout)
372             return true;
373           Layout->insert(std::make_pair(
374               AI, IsLarge ? MachineFrameInfo::SSPLK_LargeArray
375                           : MachineFrameInfo::SSPLK_SmallArray));
376           ORE.emit([&]() {
377             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
378                    << "Stack protection applied to function "
379                    << ore::NV("Function", F)
380                    << " due to a stack allocated buffer or struct containing a "
381                       "buffer";
382           });
383           NeedsProtector = true;
384           continue;
385         }
386 
387         if (Strong &&
388             HasAddressTaken(
389                 AI, M->getDataLayout().getTypeAllocSize(AI->getAllocatedType()),
390                 M, VisitedPHIs)) {
391           ++NumAddrTaken;
392           if (!Layout)
393             return true;
394           Layout->insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
395           ORE.emit([&]() {
396             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
397                                       &I)
398                    << "Stack protection applied to function "
399                    << ore::NV("Function", F)
400                    << " due to the address of a local variable being taken";
401           });
402           NeedsProtector = true;
403         }
404         // Clear any PHIs that we visited, to make sure we examine all uses of
405         // any subsequent allocas that we look at.
406         VisitedPHIs.clear();
407       }
408     }
409   }
410 
411   return NeedsProtector;
412 }
413 
414 /// Create a stack guard loading and populate whether SelectionDAG SSP is
415 /// supported.
416 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
417                             IRBuilder<> &B,
418                             bool *SupportsSelectionDAGSP = nullptr) {
419   Value *Guard = TLI->getIRStackGuard(B);
420   StringRef GuardMode = M->getStackProtectorGuard();
421   if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
422     return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
423 
424   // Use SelectionDAG SSP handling, since there isn't an IR guard.
425   //
426   // This is more or less weird, since we optionally output whether we
427   // should perform a SelectionDAG SP here. The reason is that it's strictly
428   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
429   // mutating. There is no way to get this bit without mutating the IR, so
430   // getting this bit has to happen in this right time.
431   //
432   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
433   // will put more burden on the backends' overriding work, especially when it
434   // actually conveys the same information getIRStackGuard() already gives.
435   if (SupportsSelectionDAGSP)
436     *SupportsSelectionDAGSP = true;
437   TLI->insertSSPDeclarations(*M);
438   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
439 }
440 
441 /// Insert code into the entry block that stores the stack guard
442 /// variable onto the stack:
443 ///
444 ///   entry:
445 ///     StackGuardSlot = alloca i8*
446 ///     StackGuard = <stack guard>
447 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
448 ///
449 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
450 /// node.
451 static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc,
452                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
453   bool SupportsSelectionDAGSP = false;
454   IRBuilder<> B(&F->getEntryBlock().front());
455   PointerType *PtrTy = Type::getInt8PtrTy(CheckLoc->getContext());
456   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
457 
458   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
459   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
460                {GuardSlot, AI});
461   return SupportsSelectionDAGSP;
462 }
463 
464 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
465 /// function.
466 ///
467 ///  - The prologue code loads and stores the stack guard onto the stack.
468 ///  - The epilogue checks the value stored in the prologue against the original
469 ///    value. It calls __stack_chk_fail if they differ.
470 bool StackProtector::InsertStackProtectors() {
471   // If the target wants to XOR the frame pointer into the guard value, it's
472   // impossible to emit the check in IR, so the target *must* support stack
473   // protection in SDAG.
474   bool SupportsSelectionDAGSP =
475       TLI->useStackGuardXorFP() ||
476       (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
477   AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
478   BasicBlock *FailBB = nullptr;
479 
480   for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
481     // This is stack protector auto generated check BB, skip it.
482     if (&BB == FailBB)
483       continue;
484     Instruction *CheckLoc = dyn_cast<ReturnInst>(BB.getTerminator());
485     if (!CheckLoc && !DisableCheckNoReturn)
486       for (auto &Inst : BB)
487         if (auto *CB = dyn_cast<CallBase>(&Inst))
488           // Do stack check before noreturn calls that aren't nounwind (e.g:
489           // __cxa_throw).
490           if (CB->doesNotReturn() && !CB->doesNotThrow()) {
491             CheckLoc = CB;
492             break;
493           }
494 
495     if (!CheckLoc)
496       continue;
497 
498     // Generate prologue instrumentation if not already generated.
499     if (!HasPrologue) {
500       HasPrologue = true;
501       SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI);
502     }
503 
504     // SelectionDAG based code generation. Nothing else needs to be done here.
505     // The epilogue instrumentation is postponed to SelectionDAG.
506     if (SupportsSelectionDAGSP)
507       break;
508 
509     // Find the stack guard slot if the prologue was not created by this pass
510     // itself via a previous call to CreatePrologue().
511     if (!AI) {
512       const CallInst *SPCall = findStackProtectorIntrinsic(*F);
513       assert(SPCall && "Call to llvm.stackprotector is missing");
514       AI = cast<AllocaInst>(SPCall->getArgOperand(1));
515     }
516 
517     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
518     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
519     // instrumentation has already been generated.
520     HasIRCheck = true;
521 
522     // If we're instrumenting a block with a tail call, the check has to be
523     // inserted before the call rather than between it and the return. The
524     // verifier guarantees that a tail call is either directly before the
525     // return or with a single correct bitcast of the return value in between so
526     // we don't need to worry about many situations here.
527     Instruction *Prev = CheckLoc->getPrevNonDebugInstruction();
528     if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
529       CheckLoc = Prev;
530     else if (Prev) {
531       Prev = Prev->getPrevNonDebugInstruction();
532       if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
533         CheckLoc = Prev;
534     }
535 
536     // Generate epilogue instrumentation. The epilogue intrumentation can be
537     // function-based or inlined depending on which mechanism the target is
538     // providing.
539     if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
540       // Generate the function-based epilogue instrumentation.
541       // The target provides a guard check function, generate a call to it.
542       IRBuilder<> B(CheckLoc);
543       LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
544       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
545       Call->setAttributes(GuardCheck->getAttributes());
546       Call->setCallingConv(GuardCheck->getCallingConv());
547     } else {
548       // Generate the epilogue with inline instrumentation.
549       // If we do not support SelectionDAG based calls, generate IR level
550       // calls.
551       //
552       // For each block with a return instruction, convert this:
553       //
554       //   return:
555       //     ...
556       //     ret ...
557       //
558       // into this:
559       //
560       //   return:
561       //     ...
562       //     %1 = <stack guard>
563       //     %2 = load StackGuardSlot
564       //     %3 = icmp ne i1 %1, %2
565       //     br i1 %3, label %CallStackCheckFailBlk, label %SP_return
566       //
567       //   SP_return:
568       //     ret ...
569       //
570       //   CallStackCheckFailBlk:
571       //     call void @__stack_chk_fail()
572       //     unreachable
573 
574       // Create the FailBB. We duplicate the BB every time since the MI tail
575       // merge pass will merge together all of the various BB into one including
576       // fail BB generated by the stack protector pseudo instruction.
577       if (!FailBB)
578         FailBB = CreateFailBB();
579 
580       IRBuilder<> B(CheckLoc);
581       Value *Guard = getStackGuard(TLI, M, B);
582       LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
583       auto *Cmp = cast<ICmpInst>(B.CreateICmpNE(Guard, LI2));
584       auto SuccessProb =
585           BranchProbabilityInfo::getBranchProbStackProtector(true);
586       auto FailureProb =
587           BranchProbabilityInfo::getBranchProbStackProtector(false);
588       MDNode *Weights = MDBuilder(F->getContext())
589                             .createBranchWeights(FailureProb.getNumerator(),
590                                                  SuccessProb.getNumerator());
591 
592       SplitBlockAndInsertIfThen(Cmp, CheckLoc,
593                                 /*Unreachable=*/false, Weights,
594                                 DTU ? &*DTU : nullptr,
595                                 /*LI=*/nullptr, /*ThenBlock=*/FailBB);
596 
597       auto *BI = cast<BranchInst>(Cmp->getParent()->getTerminator());
598       BasicBlock *NewBB = BI->getSuccessor(1);
599       NewBB->setName("SP_return");
600       NewBB->moveAfter(&BB);
601 
602       Cmp->setPredicate(Cmp->getInversePredicate());
603       BI->swapSuccessors();
604     }
605   }
606 
607   // Return if we didn't modify any basic blocks. i.e., there are no return
608   // statements in the function.
609   return HasPrologue;
610 }
611 
612 /// CreateFailBB - Create a basic block to jump to when the stack protector
613 /// check fails.
614 BasicBlock *StackProtector::CreateFailBB() {
615   LLVMContext &Context = F->getContext();
616   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
617   IRBuilder<> B(FailBB);
618   if (F->getSubprogram())
619     B.SetCurrentDebugLocation(
620         DILocation::get(Context, 0, 0, F->getSubprogram()));
621   FunctionCallee StackChkFail;
622   SmallVector<Value *, 1> Args;
623   if (Trip.isOSOpenBSD()) {
624     StackChkFail = M->getOrInsertFunction("__stack_smash_handler",
625                                           Type::getVoidTy(Context),
626                                           Type::getInt8PtrTy(Context));
627     Args.push_back(B.CreateGlobalStringPtr(F->getName(), "SSH"));
628   } else {
629     StackChkFail =
630         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
631   }
632   cast<Function>(StackChkFail.getCallee())->addFnAttr(Attribute::NoReturn);
633   B.CreateCall(StackChkFail, Args);
634   B.CreateUnreachable();
635   return FailBB;
636 }
637 
638 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
639   return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
640 }
641 
642 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
643   if (Layout.empty())
644     return;
645 
646   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
647     if (MFI.isDeadObjectIndex(I))
648       continue;
649 
650     const AllocaInst *AI = MFI.getObjectAllocation(I);
651     if (!AI)
652       continue;
653 
654     SSPLayoutMap::const_iterator LI = Layout.find(AI);
655     if (LI == Layout.end())
656       continue;
657 
658     MFI.setObjectSSPLayout(I, LI->second);
659   }
660 }
661