1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass inserts stack protectors into functions which need them. A variable 10 // with a random value in it is stored onto the stack before the local variables 11 // are allocated. Upon exiting the block, the stored value is checked. If it's 12 // changed, then there was some sort of violation and the program aborts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/StackProtector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/MemoryLocation.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/EHPersonalities.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/User.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include <optional> 52 #include <utility> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "stack-protector" 57 58 STATISTIC(NumFunProtected, "Number of functions protected"); 59 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 60 " taken."); 61 62 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 63 cl::init(true), cl::Hidden); 64 static cl::opt<bool> DisableCheckNoReturn("disable-check-noreturn-call", 65 cl::init(false), cl::Hidden); 66 67 char StackProtector::ID = 0; 68 69 StackProtector::StackProtector() : FunctionPass(ID) { 70 initializeStackProtectorPass(*PassRegistry::getPassRegistry()); 71 } 72 73 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 74 "Insert stack protectors", false, true) 75 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 76 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 77 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 78 "Insert stack protectors", false, true) 79 80 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 81 82 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 83 AU.addRequired<TargetPassConfig>(); 84 AU.addPreserved<DominatorTreeWrapperPass>(); 85 } 86 87 bool StackProtector::runOnFunction(Function &Fn) { 88 F = &Fn; 89 M = F->getParent(); 90 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 91 DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy); 92 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 93 Trip = TM->getTargetTriple(); 94 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 95 HasPrologue = false; 96 HasIRCheck = false; 97 98 SSPBufferSize = Fn.getFnAttributeAsParsedInteger( 99 "stack-protector-buffer-size", DefaultSSPBufferSize); 100 if (!requiresStackProtector(F, &Layout)) 101 return false; 102 103 // TODO(etienneb): Functions with funclets are not correctly supported now. 104 // Do nothing if this is funclet-based personality. 105 if (Fn.hasPersonalityFn()) { 106 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 107 if (isFuncletEHPersonality(Personality)) 108 return false; 109 } 110 111 ++NumFunProtected; 112 bool Changed = InsertStackProtectors(); 113 #ifdef EXPENSIVE_CHECKS 114 assert((!DTU || 115 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full)) && 116 "Failed to maintain validity of domtree!"); 117 #endif 118 DTU.reset(); 119 return Changed; 120 } 121 122 /// \param [out] IsLarge is set to true if a protectable array is found and 123 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 124 /// multiple arrays, this gets set if any of them is large. 125 static bool ContainsProtectableArray(Type *Ty, Module *M, unsigned SSPBufferSize, 126 bool &IsLarge, bool Strong, 127 bool InStruct) { 128 if (!Ty) 129 return false; 130 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 131 if (!AT->getElementType()->isIntegerTy(8)) { 132 // If we're on a non-Darwin platform or we're inside of a structure, don't 133 // add stack protectors unless the array is a character array. 134 // However, in strong mode any array, regardless of type and size, 135 // triggers a protector. 136 if (!Strong && (InStruct || !Triple(M->getTargetTriple()).isOSDarwin())) 137 return false; 138 } 139 140 // If an array has more than SSPBufferSize bytes of allocated space, then we 141 // emit stack protectors. 142 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 143 IsLarge = true; 144 return true; 145 } 146 147 if (Strong) 148 // Require a protector for all arrays in strong mode 149 return true; 150 } 151 152 const StructType *ST = dyn_cast<StructType>(Ty); 153 if (!ST) 154 return false; 155 156 bool NeedsProtector = false; 157 for (Type *ET : ST->elements()) 158 if (ContainsProtectableArray(ET, M, SSPBufferSize, IsLarge, Strong, true)) { 159 // If the element is a protectable array and is large (>= SSPBufferSize) 160 // then we are done. If the protectable array is not large, then 161 // keep looking in case a subsequent element is a large array. 162 if (IsLarge) 163 return true; 164 NeedsProtector = true; 165 } 166 167 return NeedsProtector; 168 } 169 170 /// Check whether a stack allocation has its address taken. 171 static bool HasAddressTaken(const Instruction *AI, TypeSize AllocSize, 172 Module *M, 173 SmallPtrSet<const PHINode *, 16> &VisitedPHIs) { 174 const DataLayout &DL = M->getDataLayout(); 175 for (const User *U : AI->users()) { 176 const auto *I = cast<Instruction>(U); 177 // If this instruction accesses memory make sure it doesn't access beyond 178 // the bounds of the allocated object. 179 std::optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I); 180 if (MemLoc && MemLoc->Size.hasValue() && 181 !TypeSize::isKnownGE(AllocSize, 182 TypeSize::getFixed(MemLoc->Size.getValue()))) 183 return true; 184 switch (I->getOpcode()) { 185 case Instruction::Store: 186 if (AI == cast<StoreInst>(I)->getValueOperand()) 187 return true; 188 break; 189 case Instruction::AtomicCmpXchg: 190 // cmpxchg conceptually includes both a load and store from the same 191 // location. So, like store, the value being stored is what matters. 192 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand()) 193 return true; 194 break; 195 case Instruction::PtrToInt: 196 if (AI == cast<PtrToIntInst>(I)->getOperand(0)) 197 return true; 198 break; 199 case Instruction::Call: { 200 // Ignore intrinsics that do not become real instructions. 201 // TODO: Narrow this to intrinsics that have store-like effects. 202 const auto *CI = cast<CallInst>(I); 203 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd()) 204 return true; 205 break; 206 } 207 case Instruction::Invoke: 208 return true; 209 case Instruction::GetElementPtr: { 210 // If the GEP offset is out-of-bounds, or is non-constant and so has to be 211 // assumed to be potentially out-of-bounds, then any memory access that 212 // would use it could also be out-of-bounds meaning stack protection is 213 // required. 214 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 215 unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType()); 216 APInt Offset(IndexSize, 0); 217 if (!GEP->accumulateConstantOffset(DL, Offset)) 218 return true; 219 TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue()); 220 if (!TypeSize::isKnownGT(AllocSize, OffsetSize)) 221 return true; 222 // Adjust AllocSize to be the space remaining after this offset. 223 // We can't subtract a fixed size from a scalable one, so in that case 224 // assume the scalable value is of minimum size. 225 TypeSize NewAllocSize = 226 TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize; 227 if (HasAddressTaken(I, NewAllocSize, M, VisitedPHIs)) 228 return true; 229 break; 230 } 231 case Instruction::BitCast: 232 case Instruction::Select: 233 case Instruction::AddrSpaceCast: 234 if (HasAddressTaken(I, AllocSize, M, VisitedPHIs)) 235 return true; 236 break; 237 case Instruction::PHI: { 238 // Keep track of what PHI nodes we have already visited to ensure 239 // they are only visited once. 240 const auto *PN = cast<PHINode>(I); 241 if (VisitedPHIs.insert(PN).second) 242 if (HasAddressTaken(PN, AllocSize, M, VisitedPHIs)) 243 return true; 244 break; 245 } 246 case Instruction::Load: 247 case Instruction::AtomicRMW: 248 case Instruction::Ret: 249 // These instructions take an address operand, but have load-like or 250 // other innocuous behavior that should not trigger a stack protector. 251 // atomicrmw conceptually has both load and store semantics, but the 252 // value being stored must be integer; so if a pointer is being stored, 253 // we'll catch it in the PtrToInt case above. 254 break; 255 default: 256 // Conservatively return true for any instruction that takes an address 257 // operand, but is not handled above. 258 return true; 259 } 260 } 261 return false; 262 } 263 264 /// Search for the first call to the llvm.stackprotector intrinsic and return it 265 /// if present. 266 static const CallInst *findStackProtectorIntrinsic(Function &F) { 267 for (const BasicBlock &BB : F) 268 for (const Instruction &I : BB) 269 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) 270 if (II->getIntrinsicID() == Intrinsic::stackprotector) 271 return II; 272 return nullptr; 273 } 274 275 /// Check whether or not this function needs a stack protector based 276 /// upon the stack protector level. 277 /// 278 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 279 /// The standard heuristic which will add a guard variable to functions that 280 /// call alloca with a either a variable size or a size >= SSPBufferSize, 281 /// functions with character buffers larger than SSPBufferSize, and functions 282 /// with aggregates containing character buffers larger than SSPBufferSize. The 283 /// strong heuristic will add a guard variables to functions that call alloca 284 /// regardless of size, functions with any buffer regardless of type and size, 285 /// functions with aggregates that contain any buffer regardless of type and 286 /// size, and functions that contain stack-based variables that have had their 287 /// address taken. 288 bool StackProtector::requiresStackProtector(Function *F, SSPLayoutMap *Layout) { 289 Module *M = F->getParent(); 290 bool Strong = false; 291 bool NeedsProtector = false; 292 293 // The set of PHI nodes visited when determining if a variable's reference has 294 // been taken. This set is maintained to ensure we don't visit the same PHI 295 // node multiple times. 296 SmallPtrSet<const PHINode *, 16> VisitedPHIs; 297 298 unsigned SSPBufferSize = F->getFnAttributeAsParsedInteger( 299 "stack-protector-buffer-size", DefaultSSPBufferSize); 300 301 if (F->hasFnAttribute(Attribute::SafeStack)) 302 return false; 303 304 // We are constructing the OptimizationRemarkEmitter on the fly rather than 305 // using the analysis pass to avoid building DominatorTree and LoopInfo which 306 // are not available this late in the IR pipeline. 307 OptimizationRemarkEmitter ORE(F); 308 309 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 310 if (!Layout) 311 return true; 312 ORE.emit([&]() { 313 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 314 << "Stack protection applied to function " 315 << ore::NV("Function", F) 316 << " due to a function attribute or command-line switch"; 317 }); 318 NeedsProtector = true; 319 Strong = true; // Use the same heuristic as strong to determine SSPLayout 320 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 321 Strong = true; 322 else if (!F->hasFnAttribute(Attribute::StackProtect)) 323 return false; 324 325 for (const BasicBlock &BB : *F) { 326 for (const Instruction &I : BB) { 327 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 328 if (AI->isArrayAllocation()) { 329 auto RemarkBuilder = [&]() { 330 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 331 &I) 332 << "Stack protection applied to function " 333 << ore::NV("Function", F) 334 << " due to a call to alloca or use of a variable length " 335 "array"; 336 }; 337 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 338 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 339 // A call to alloca with size >= SSPBufferSize requires 340 // stack protectors. 341 if (!Layout) 342 return true; 343 Layout->insert( 344 std::make_pair(AI, MachineFrameInfo::SSPLK_LargeArray)); 345 ORE.emit(RemarkBuilder); 346 NeedsProtector = true; 347 } else if (Strong) { 348 // Require protectors for all alloca calls in strong mode. 349 if (!Layout) 350 return true; 351 Layout->insert( 352 std::make_pair(AI, MachineFrameInfo::SSPLK_SmallArray)); 353 ORE.emit(RemarkBuilder); 354 NeedsProtector = true; 355 } 356 } else { 357 // A call to alloca with a variable size requires protectors. 358 if (!Layout) 359 return true; 360 Layout->insert( 361 std::make_pair(AI, MachineFrameInfo::SSPLK_LargeArray)); 362 ORE.emit(RemarkBuilder); 363 NeedsProtector = true; 364 } 365 continue; 366 } 367 368 bool IsLarge = false; 369 if (ContainsProtectableArray(AI->getAllocatedType(), M, SSPBufferSize, 370 IsLarge, Strong, false)) { 371 if (!Layout) 372 return true; 373 Layout->insert(std::make_pair( 374 AI, IsLarge ? MachineFrameInfo::SSPLK_LargeArray 375 : MachineFrameInfo::SSPLK_SmallArray)); 376 ORE.emit([&]() { 377 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 378 << "Stack protection applied to function " 379 << ore::NV("Function", F) 380 << " due to a stack allocated buffer or struct containing a " 381 "buffer"; 382 }); 383 NeedsProtector = true; 384 continue; 385 } 386 387 if (Strong && 388 HasAddressTaken( 389 AI, M->getDataLayout().getTypeAllocSize(AI->getAllocatedType()), 390 M, VisitedPHIs)) { 391 ++NumAddrTaken; 392 if (!Layout) 393 return true; 394 Layout->insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); 395 ORE.emit([&]() { 396 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 397 &I) 398 << "Stack protection applied to function " 399 << ore::NV("Function", F) 400 << " due to the address of a local variable being taken"; 401 }); 402 NeedsProtector = true; 403 } 404 // Clear any PHIs that we visited, to make sure we examine all uses of 405 // any subsequent allocas that we look at. 406 VisitedPHIs.clear(); 407 } 408 } 409 } 410 411 return NeedsProtector; 412 } 413 414 /// Create a stack guard loading and populate whether SelectionDAG SSP is 415 /// supported. 416 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 417 IRBuilder<> &B, 418 bool *SupportsSelectionDAGSP = nullptr) { 419 Value *Guard = TLI->getIRStackGuard(B); 420 StringRef GuardMode = M->getStackProtectorGuard(); 421 if ((GuardMode == "tls" || GuardMode.empty()) && Guard) 422 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard"); 423 424 // Use SelectionDAG SSP handling, since there isn't an IR guard. 425 // 426 // This is more or less weird, since we optionally output whether we 427 // should perform a SelectionDAG SP here. The reason is that it's strictly 428 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 429 // mutating. There is no way to get this bit without mutating the IR, so 430 // getting this bit has to happen in this right time. 431 // 432 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 433 // will put more burden on the backends' overriding work, especially when it 434 // actually conveys the same information getIRStackGuard() already gives. 435 if (SupportsSelectionDAGSP) 436 *SupportsSelectionDAGSP = true; 437 TLI->insertSSPDeclarations(*M); 438 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 439 } 440 441 /// Insert code into the entry block that stores the stack guard 442 /// variable onto the stack: 443 /// 444 /// entry: 445 /// StackGuardSlot = alloca i8* 446 /// StackGuard = <stack guard> 447 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 448 /// 449 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 450 /// node. 451 static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc, 452 const TargetLoweringBase *TLI, AllocaInst *&AI) { 453 bool SupportsSelectionDAGSP = false; 454 IRBuilder<> B(&F->getEntryBlock().front()); 455 PointerType *PtrTy = Type::getInt8PtrTy(CheckLoc->getContext()); 456 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 457 458 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 459 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 460 {GuardSlot, AI}); 461 return SupportsSelectionDAGSP; 462 } 463 464 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 465 /// function. 466 /// 467 /// - The prologue code loads and stores the stack guard onto the stack. 468 /// - The epilogue checks the value stored in the prologue against the original 469 /// value. It calls __stack_chk_fail if they differ. 470 bool StackProtector::InsertStackProtectors() { 471 // If the target wants to XOR the frame pointer into the guard value, it's 472 // impossible to emit the check in IR, so the target *must* support stack 473 // protection in SDAG. 474 bool SupportsSelectionDAGSP = 475 TLI->useStackGuardXorFP() || 476 (EnableSelectionDAGSP && !TM->Options.EnableFastISel); 477 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 478 BasicBlock *FailBB = nullptr; 479 480 for (BasicBlock &BB : llvm::make_early_inc_range(*F)) { 481 // This is stack protector auto generated check BB, skip it. 482 if (&BB == FailBB) 483 continue; 484 Instruction *CheckLoc = dyn_cast<ReturnInst>(BB.getTerminator()); 485 if (!CheckLoc && !DisableCheckNoReturn) 486 for (auto &Inst : BB) 487 if (auto *CB = dyn_cast<CallBase>(&Inst)) 488 // Do stack check before noreturn calls that aren't nounwind (e.g: 489 // __cxa_throw). 490 if (CB->doesNotReturn() && !CB->doesNotThrow()) { 491 CheckLoc = CB; 492 break; 493 } 494 495 if (!CheckLoc) 496 continue; 497 498 // Generate prologue instrumentation if not already generated. 499 if (!HasPrologue) { 500 HasPrologue = true; 501 SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI); 502 } 503 504 // SelectionDAG based code generation. Nothing else needs to be done here. 505 // The epilogue instrumentation is postponed to SelectionDAG. 506 if (SupportsSelectionDAGSP) 507 break; 508 509 // Find the stack guard slot if the prologue was not created by this pass 510 // itself via a previous call to CreatePrologue(). 511 if (!AI) { 512 const CallInst *SPCall = findStackProtectorIntrinsic(*F); 513 assert(SPCall && "Call to llvm.stackprotector is missing"); 514 AI = cast<AllocaInst>(SPCall->getArgOperand(1)); 515 } 516 517 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 518 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 519 // instrumentation has already been generated. 520 HasIRCheck = true; 521 522 // If we're instrumenting a block with a tail call, the check has to be 523 // inserted before the call rather than between it and the return. The 524 // verifier guarantees that a tail call is either directly before the 525 // return or with a single correct bitcast of the return value in between so 526 // we don't need to worry about many situations here. 527 Instruction *Prev = CheckLoc->getPrevNonDebugInstruction(); 528 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall()) 529 CheckLoc = Prev; 530 else if (Prev) { 531 Prev = Prev->getPrevNonDebugInstruction(); 532 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall()) 533 CheckLoc = Prev; 534 } 535 536 // Generate epilogue instrumentation. The epilogue intrumentation can be 537 // function-based or inlined depending on which mechanism the target is 538 // providing. 539 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 540 // Generate the function-based epilogue instrumentation. 541 // The target provides a guard check function, generate a call to it. 542 IRBuilder<> B(CheckLoc); 543 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard"); 544 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 545 Call->setAttributes(GuardCheck->getAttributes()); 546 Call->setCallingConv(GuardCheck->getCallingConv()); 547 } else { 548 // Generate the epilogue with inline instrumentation. 549 // If we do not support SelectionDAG based calls, generate IR level 550 // calls. 551 // 552 // For each block with a return instruction, convert this: 553 // 554 // return: 555 // ... 556 // ret ... 557 // 558 // into this: 559 // 560 // return: 561 // ... 562 // %1 = <stack guard> 563 // %2 = load StackGuardSlot 564 // %3 = icmp ne i1 %1, %2 565 // br i1 %3, label %CallStackCheckFailBlk, label %SP_return 566 // 567 // SP_return: 568 // ret ... 569 // 570 // CallStackCheckFailBlk: 571 // call void @__stack_chk_fail() 572 // unreachable 573 574 // Create the FailBB. We duplicate the BB every time since the MI tail 575 // merge pass will merge together all of the various BB into one including 576 // fail BB generated by the stack protector pseudo instruction. 577 if (!FailBB) 578 FailBB = CreateFailBB(); 579 580 IRBuilder<> B(CheckLoc); 581 Value *Guard = getStackGuard(TLI, M, B); 582 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true); 583 auto *Cmp = cast<ICmpInst>(B.CreateICmpNE(Guard, LI2)); 584 auto SuccessProb = 585 BranchProbabilityInfo::getBranchProbStackProtector(true); 586 auto FailureProb = 587 BranchProbabilityInfo::getBranchProbStackProtector(false); 588 MDNode *Weights = MDBuilder(F->getContext()) 589 .createBranchWeights(FailureProb.getNumerator(), 590 SuccessProb.getNumerator()); 591 592 SplitBlockAndInsertIfThen(Cmp, CheckLoc, 593 /*Unreachable=*/false, Weights, 594 DTU ? &*DTU : nullptr, 595 /*LI=*/nullptr, /*ThenBlock=*/FailBB); 596 597 auto *BI = cast<BranchInst>(Cmp->getParent()->getTerminator()); 598 BasicBlock *NewBB = BI->getSuccessor(1); 599 NewBB->setName("SP_return"); 600 NewBB->moveAfter(&BB); 601 602 Cmp->setPredicate(Cmp->getInversePredicate()); 603 BI->swapSuccessors(); 604 } 605 } 606 607 // Return if we didn't modify any basic blocks. i.e., there are no return 608 // statements in the function. 609 return HasPrologue; 610 } 611 612 /// CreateFailBB - Create a basic block to jump to when the stack protector 613 /// check fails. 614 BasicBlock *StackProtector::CreateFailBB() { 615 LLVMContext &Context = F->getContext(); 616 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 617 IRBuilder<> B(FailBB); 618 if (F->getSubprogram()) 619 B.SetCurrentDebugLocation( 620 DILocation::get(Context, 0, 0, F->getSubprogram())); 621 FunctionCallee StackChkFail; 622 SmallVector<Value *, 1> Args; 623 if (Trip.isOSOpenBSD()) { 624 StackChkFail = M->getOrInsertFunction("__stack_smash_handler", 625 Type::getVoidTy(Context), 626 Type::getInt8PtrTy(Context)); 627 Args.push_back(B.CreateGlobalStringPtr(F->getName(), "SSH")); 628 } else { 629 StackChkFail = 630 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 631 } 632 cast<Function>(StackChkFail.getCallee())->addFnAttr(Attribute::NoReturn); 633 B.CreateCall(StackChkFail, Args); 634 B.CreateUnreachable(); 635 return FailBB; 636 } 637 638 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 639 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator()); 640 } 641 642 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { 643 if (Layout.empty()) 644 return; 645 646 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 647 if (MFI.isDeadObjectIndex(I)) 648 continue; 649 650 const AllocaInst *AI = MFI.getObjectAllocation(I); 651 if (!AI) 652 continue; 653 654 SSPLayoutMap::const_iterator LI = Layout.find(AI); 655 if (LI == Layout.end()) 656 continue; 657 658 MFI.setObjectSSPLayout(I, LI->second); 659 } 660 } 661