xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/StackProtector.cpp (revision 04eeddc0aa8e0a417a16eaf9d7d095207f4a8623)
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "stack-protector"
56 
57 STATISTIC(NumFunProtected, "Number of functions protected");
58 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59                         " taken.");
60 
61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62                                           cl::init(true), cl::Hidden);
63 
64 char StackProtector::ID = 0;
65 
66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
67   initializeStackProtectorPass(*PassRegistry::getPassRegistry());
68 }
69 
70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
71                       "Insert stack protectors", false, true)
72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
74 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
75                     "Insert stack protectors", false, true)
76 
77 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
78 
79 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
80   AU.addRequired<TargetPassConfig>();
81   AU.addPreserved<DominatorTreeWrapperPass>();
82 }
83 
84 bool StackProtector::runOnFunction(Function &Fn) {
85   F = &Fn;
86   M = F->getParent();
87   DominatorTreeWrapperPass *DTWP =
88       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
89   DT = DTWP ? &DTWP->getDomTree() : nullptr;
90   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
91   Trip = TM->getTargetTriple();
92   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
93   HasPrologue = false;
94   HasIRCheck = false;
95 
96   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
97   if (Attr.isStringAttribute() &&
98       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
99     return false; // Invalid integer string
100 
101   if (!RequiresStackProtector())
102     return false;
103 
104   // TODO(etienneb): Functions with funclets are not correctly supported now.
105   // Do nothing if this is funclet-based personality.
106   if (Fn.hasPersonalityFn()) {
107     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
108     if (isFuncletEHPersonality(Personality))
109       return false;
110   }
111 
112   ++NumFunProtected;
113   return InsertStackProtectors();
114 }
115 
116 /// \param [out] IsLarge is set to true if a protectable array is found and
117 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
118 /// multiple arrays, this gets set if any of them is large.
119 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
120                                               bool Strong,
121                                               bool InStruct) const {
122   if (!Ty)
123     return false;
124   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
125     if (!AT->getElementType()->isIntegerTy(8)) {
126       // If we're on a non-Darwin platform or we're inside of a structure, don't
127       // add stack protectors unless the array is a character array.
128       // However, in strong mode any array, regardless of type and size,
129       // triggers a protector.
130       if (!Strong && (InStruct || !Trip.isOSDarwin()))
131         return false;
132     }
133 
134     // If an array has more than SSPBufferSize bytes of allocated space, then we
135     // emit stack protectors.
136     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
137       IsLarge = true;
138       return true;
139     }
140 
141     if (Strong)
142       // Require a protector for all arrays in strong mode
143       return true;
144   }
145 
146   const StructType *ST = dyn_cast<StructType>(Ty);
147   if (!ST)
148     return false;
149 
150   bool NeedsProtector = false;
151   for (Type *ET : ST->elements())
152     if (ContainsProtectableArray(ET, IsLarge, Strong, true)) {
153       // If the element is a protectable array and is large (>= SSPBufferSize)
154       // then we are done.  If the protectable array is not large, then
155       // keep looking in case a subsequent element is a large array.
156       if (IsLarge)
157         return true;
158       NeedsProtector = true;
159     }
160 
161   return NeedsProtector;
162 }
163 
164 bool StackProtector::HasAddressTaken(const Instruction *AI,
165                                      TypeSize AllocSize) {
166   const DataLayout &DL = M->getDataLayout();
167   for (const User *U : AI->users()) {
168     const auto *I = cast<Instruction>(U);
169     // If this instruction accesses memory make sure it doesn't access beyond
170     // the bounds of the allocated object.
171     Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
172     if (MemLoc.hasValue() && MemLoc->Size.hasValue() &&
173         !TypeSize::isKnownGE(AllocSize,
174                              TypeSize::getFixed(MemLoc->Size.getValue())))
175       return true;
176     switch (I->getOpcode()) {
177     case Instruction::Store:
178       if (AI == cast<StoreInst>(I)->getValueOperand())
179         return true;
180       break;
181     case Instruction::AtomicCmpXchg:
182       // cmpxchg conceptually includes both a load and store from the same
183       // location. So, like store, the value being stored is what matters.
184       if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
185         return true;
186       break;
187     case Instruction::PtrToInt:
188       if (AI == cast<PtrToIntInst>(I)->getOperand(0))
189         return true;
190       break;
191     case Instruction::Call: {
192       // Ignore intrinsics that do not become real instructions.
193       // TODO: Narrow this to intrinsics that have store-like effects.
194       const auto *CI = cast<CallInst>(I);
195       if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
196         return true;
197       break;
198     }
199     case Instruction::Invoke:
200       return true;
201     case Instruction::GetElementPtr: {
202       // If the GEP offset is out-of-bounds, or is non-constant and so has to be
203       // assumed to be potentially out-of-bounds, then any memory access that
204       // would use it could also be out-of-bounds meaning stack protection is
205       // required.
206       const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
207       unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
208       APInt Offset(IndexSize, 0);
209       if (!GEP->accumulateConstantOffset(DL, Offset))
210         return true;
211       TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
212       if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
213         return true;
214       // Adjust AllocSize to be the space remaining after this offset.
215       // We can't subtract a fixed size from a scalable one, so in that case
216       // assume the scalable value is of minimum size.
217       TypeSize NewAllocSize =
218           TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
219       if (HasAddressTaken(I, NewAllocSize))
220         return true;
221       break;
222     }
223     case Instruction::BitCast:
224     case Instruction::Select:
225     case Instruction::AddrSpaceCast:
226       if (HasAddressTaken(I, AllocSize))
227         return true;
228       break;
229     case Instruction::PHI: {
230       // Keep track of what PHI nodes we have already visited to ensure
231       // they are only visited once.
232       const auto *PN = cast<PHINode>(I);
233       if (VisitedPHIs.insert(PN).second)
234         if (HasAddressTaken(PN, AllocSize))
235           return true;
236       break;
237     }
238     case Instruction::Load:
239     case Instruction::AtomicRMW:
240     case Instruction::Ret:
241       // These instructions take an address operand, but have load-like or
242       // other innocuous behavior that should not trigger a stack protector.
243       // atomicrmw conceptually has both load and store semantics, but the
244       // value being stored must be integer; so if a pointer is being stored,
245       // we'll catch it in the PtrToInt case above.
246       break;
247     default:
248       // Conservatively return true for any instruction that takes an address
249       // operand, but is not handled above.
250       return true;
251     }
252   }
253   return false;
254 }
255 
256 /// Search for the first call to the llvm.stackprotector intrinsic and return it
257 /// if present.
258 static const CallInst *findStackProtectorIntrinsic(Function &F) {
259   for (const BasicBlock &BB : F)
260     for (const Instruction &I : BB)
261       if (const auto *II = dyn_cast<IntrinsicInst>(&I))
262         if (II->getIntrinsicID() == Intrinsic::stackprotector)
263           return II;
264   return nullptr;
265 }
266 
267 /// Check whether or not this function needs a stack protector based
268 /// upon the stack protector level.
269 ///
270 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
271 /// The standard heuristic which will add a guard variable to functions that
272 /// call alloca with a either a variable size or a size >= SSPBufferSize,
273 /// functions with character buffers larger than SSPBufferSize, and functions
274 /// with aggregates containing character buffers larger than SSPBufferSize. The
275 /// strong heuristic will add a guard variables to functions that call alloca
276 /// regardless of size, functions with any buffer regardless of type and size,
277 /// functions with aggregates that contain any buffer regardless of type and
278 /// size, and functions that contain stack-based variables that have had their
279 /// address taken.
280 bool StackProtector::RequiresStackProtector() {
281   bool Strong = false;
282   bool NeedsProtector = false;
283 
284   if (F->hasFnAttribute(Attribute::SafeStack))
285     return false;
286 
287   // We are constructing the OptimizationRemarkEmitter on the fly rather than
288   // using the analysis pass to avoid building DominatorTree and LoopInfo which
289   // are not available this late in the IR pipeline.
290   OptimizationRemarkEmitter ORE(F);
291 
292   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
293     ORE.emit([&]() {
294       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
295              << "Stack protection applied to function "
296              << ore::NV("Function", F)
297              << " due to a function attribute or command-line switch";
298     });
299     NeedsProtector = true;
300     Strong = true; // Use the same heuristic as strong to determine SSPLayout
301   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
302     Strong = true;
303   else if (!F->hasFnAttribute(Attribute::StackProtect))
304     return false;
305 
306   for (const BasicBlock &BB : *F) {
307     for (const Instruction &I : BB) {
308       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
309         if (AI->isArrayAllocation()) {
310           auto RemarkBuilder = [&]() {
311             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
312                                       &I)
313                    << "Stack protection applied to function "
314                    << ore::NV("Function", F)
315                    << " due to a call to alloca or use of a variable length "
316                       "array";
317           };
318           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
319             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
320               // A call to alloca with size >= SSPBufferSize requires
321               // stack protectors.
322               Layout.insert(std::make_pair(AI,
323                                            MachineFrameInfo::SSPLK_LargeArray));
324               ORE.emit(RemarkBuilder);
325               NeedsProtector = true;
326             } else if (Strong) {
327               // Require protectors for all alloca calls in strong mode.
328               Layout.insert(std::make_pair(AI,
329                                            MachineFrameInfo::SSPLK_SmallArray));
330               ORE.emit(RemarkBuilder);
331               NeedsProtector = true;
332             }
333           } else {
334             // A call to alloca with a variable size requires protectors.
335             Layout.insert(std::make_pair(AI,
336                                          MachineFrameInfo::SSPLK_LargeArray));
337             ORE.emit(RemarkBuilder);
338             NeedsProtector = true;
339           }
340           continue;
341         }
342 
343         bool IsLarge = false;
344         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
345           Layout.insert(std::make_pair(AI, IsLarge
346                                        ? MachineFrameInfo::SSPLK_LargeArray
347                                        : MachineFrameInfo::SSPLK_SmallArray));
348           ORE.emit([&]() {
349             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
350                    << "Stack protection applied to function "
351                    << ore::NV("Function", F)
352                    << " due to a stack allocated buffer or struct containing a "
353                       "buffer";
354           });
355           NeedsProtector = true;
356           continue;
357         }
358 
359         if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
360                                               AI->getAllocatedType()))) {
361           ++NumAddrTaken;
362           Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
363           ORE.emit([&]() {
364             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
365                                       &I)
366                    << "Stack protection applied to function "
367                    << ore::NV("Function", F)
368                    << " due to the address of a local variable being taken";
369           });
370           NeedsProtector = true;
371         }
372         // Clear any PHIs that we visited, to make sure we examine all uses of
373         // any subsequent allocas that we look at.
374         VisitedPHIs.clear();
375       }
376     }
377   }
378 
379   return NeedsProtector;
380 }
381 
382 /// Create a stack guard loading and populate whether SelectionDAG SSP is
383 /// supported.
384 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
385                             IRBuilder<> &B,
386                             bool *SupportsSelectionDAGSP = nullptr) {
387   Value *Guard = TLI->getIRStackGuard(B);
388   StringRef GuardMode = M->getStackProtectorGuard();
389   if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
390     return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
391 
392   // Use SelectionDAG SSP handling, since there isn't an IR guard.
393   //
394   // This is more or less weird, since we optionally output whether we
395   // should perform a SelectionDAG SP here. The reason is that it's strictly
396   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
397   // mutating. There is no way to get this bit without mutating the IR, so
398   // getting this bit has to happen in this right time.
399   //
400   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
401   // will put more burden on the backends' overriding work, especially when it
402   // actually conveys the same information getIRStackGuard() already gives.
403   if (SupportsSelectionDAGSP)
404     *SupportsSelectionDAGSP = true;
405   TLI->insertSSPDeclarations(*M);
406   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
407 }
408 
409 /// Insert code into the entry block that stores the stack guard
410 /// variable onto the stack:
411 ///
412 ///   entry:
413 ///     StackGuardSlot = alloca i8*
414 ///     StackGuard = <stack guard>
415 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
416 ///
417 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
418 /// node.
419 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
420                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
421   bool SupportsSelectionDAGSP = false;
422   IRBuilder<> B(&F->getEntryBlock().front());
423   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
424   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
425 
426   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
427   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
428                {GuardSlot, AI});
429   return SupportsSelectionDAGSP;
430 }
431 
432 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
433 /// function.
434 ///
435 ///  - The prologue code loads and stores the stack guard onto the stack.
436 ///  - The epilogue checks the value stored in the prologue against the original
437 ///    value. It calls __stack_chk_fail if they differ.
438 bool StackProtector::InsertStackProtectors() {
439   // If the target wants to XOR the frame pointer into the guard value, it's
440   // impossible to emit the check in IR, so the target *must* support stack
441   // protection in SDAG.
442   bool SupportsSelectionDAGSP =
443       TLI->useStackGuardXorFP() ||
444       (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
445   AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
446 
447   for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
448     ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
449     if (!RI)
450       continue;
451 
452     // Generate prologue instrumentation if not already generated.
453     if (!HasPrologue) {
454       HasPrologue = true;
455       SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
456     }
457 
458     // SelectionDAG based code generation. Nothing else needs to be done here.
459     // The epilogue instrumentation is postponed to SelectionDAG.
460     if (SupportsSelectionDAGSP)
461       break;
462 
463     // Find the stack guard slot if the prologue was not created by this pass
464     // itself via a previous call to CreatePrologue().
465     if (!AI) {
466       const CallInst *SPCall = findStackProtectorIntrinsic(*F);
467       assert(SPCall && "Call to llvm.stackprotector is missing");
468       AI = cast<AllocaInst>(SPCall->getArgOperand(1));
469     }
470 
471     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
472     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
473     // instrumentation has already been generated.
474     HasIRCheck = true;
475 
476     // If we're instrumenting a block with a musttail call, the check has to be
477     // inserted before the call rather than between it and the return. The
478     // verifier guarantees that a musttail call is either directly before the
479     // return or with a single correct bitcast of the return value in between so
480     // we don't need to worry about many situations here.
481     Instruction *CheckLoc = RI;
482     Instruction *Prev = RI->getPrevNonDebugInstruction();
483     if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
484       CheckLoc = Prev;
485     else if (Prev) {
486       Prev = Prev->getPrevNonDebugInstruction();
487       if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
488         CheckLoc = Prev;
489     }
490 
491     // Generate epilogue instrumentation. The epilogue intrumentation can be
492     // function-based or inlined depending on which mechanism the target is
493     // providing.
494     if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
495       // Generate the function-based epilogue instrumentation.
496       // The target provides a guard check function, generate a call to it.
497       IRBuilder<> B(CheckLoc);
498       LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
499       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
500       Call->setAttributes(GuardCheck->getAttributes());
501       Call->setCallingConv(GuardCheck->getCallingConv());
502     } else {
503       // Generate the epilogue with inline instrumentation.
504       // If we do not support SelectionDAG based calls, generate IR level
505       // calls.
506       //
507       // For each block with a return instruction, convert this:
508       //
509       //   return:
510       //     ...
511       //     ret ...
512       //
513       // into this:
514       //
515       //   return:
516       //     ...
517       //     %1 = <stack guard>
518       //     %2 = load StackGuardSlot
519       //     %3 = cmp i1 %1, %2
520       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
521       //
522       //   SP_return:
523       //     ret ...
524       //
525       //   CallStackCheckFailBlk:
526       //     call void @__stack_chk_fail()
527       //     unreachable
528 
529       // Create the FailBB. We duplicate the BB every time since the MI tail
530       // merge pass will merge together all of the various BB into one including
531       // fail BB generated by the stack protector pseudo instruction.
532       BasicBlock *FailBB = CreateFailBB();
533 
534       // Split the basic block before the return instruction.
535       BasicBlock *NewBB =
536           BB.splitBasicBlock(CheckLoc->getIterator(), "SP_return");
537 
538       // Update the dominator tree if we need to.
539       if (DT && DT->isReachableFromEntry(&BB)) {
540         DT->addNewBlock(NewBB, &BB);
541         DT->addNewBlock(FailBB, &BB);
542       }
543 
544       // Remove default branch instruction to the new BB.
545       BB.getTerminator()->eraseFromParent();
546 
547       // Move the newly created basic block to the point right after the old
548       // basic block so that it's in the "fall through" position.
549       NewBB->moveAfter(&BB);
550 
551       // Generate the stack protector instructions in the old basic block.
552       IRBuilder<> B(&BB);
553       Value *Guard = getStackGuard(TLI, M, B);
554       LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
555       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
556       auto SuccessProb =
557           BranchProbabilityInfo::getBranchProbStackProtector(true);
558       auto FailureProb =
559           BranchProbabilityInfo::getBranchProbStackProtector(false);
560       MDNode *Weights = MDBuilder(F->getContext())
561                             .createBranchWeights(SuccessProb.getNumerator(),
562                                                  FailureProb.getNumerator());
563       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
564     }
565   }
566 
567   // Return if we didn't modify any basic blocks. i.e., there are no return
568   // statements in the function.
569   return HasPrologue;
570 }
571 
572 /// CreateFailBB - Create a basic block to jump to when the stack protector
573 /// check fails.
574 BasicBlock *StackProtector::CreateFailBB() {
575   LLVMContext &Context = F->getContext();
576   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
577   IRBuilder<> B(FailBB);
578   if (F->getSubprogram())
579     B.SetCurrentDebugLocation(
580         DILocation::get(Context, 0, 0, F->getSubprogram()));
581   if (Trip.isOSOpenBSD()) {
582     FunctionCallee StackChkFail = M->getOrInsertFunction(
583         "__stack_smash_handler", Type::getVoidTy(Context),
584         Type::getInt8PtrTy(Context));
585 
586     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
587   } else {
588     FunctionCallee StackChkFail =
589         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
590 
591     B.CreateCall(StackChkFail, {});
592   }
593   B.CreateUnreachable();
594   return FailBB;
595 }
596 
597 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
598   return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
599 }
600 
601 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
602   if (Layout.empty())
603     return;
604 
605   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
606     if (MFI.isDeadObjectIndex(I))
607       continue;
608 
609     const AllocaInst *AI = MFI.getObjectAllocation(I);
610     if (!AI)
611       continue;
612 
613     SSPLayoutMap::const_iterator LI = Layout.find(AI);
614     if (LI == Layout.end())
615       continue;
616 
617     MFI.setObjectSSPLayout(I, LI->second);
618   }
619 }
620