xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/StackFrameLayoutAnalysisPass.cpp (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 //===-- StackFrameLayoutAnalysisPass.cpp
2 //------------------------------------===//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // StackFrameLayoutAnalysisPass implementation. Outputs information about the
11 // layout of the stack frame, using the remarks interface. On the CLI it prints
12 // a textual representation of the stack frame. When possible it prints the
13 // values that occupy a stack slot using any available debug information. Since
14 // output is remarks based, it is also available in a machine readable file
15 // format, such as YAML.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/SlotIndexes.h"
27 #include "llvm/CodeGen/StackProtector.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/PrintPasses.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/FormatVariadic.h"
35 #include "llvm/Support/raw_ostream.h"
36 
37 #include <sstream>
38 
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "stack-frame-layout"
42 
43 namespace {
44 
45 /// StackFrameLayoutAnalysisPass - This is a pass to dump the stack frame of a
46 /// MachineFunction.
47 ///
48 struct StackFrameLayoutAnalysisPass : public MachineFunctionPass {
49   using SlotDbgMap = SmallDenseMap<int, SetVector<const DILocalVariable *>>;
50   static char ID;
51 
52   enum SlotType {
53     Spill,          // a Spill slot
54     StackProtector, // Stack Protector slot
55     Variable,       // a slot used to store a local data (could be a tmp)
56     Invalid         // It's an error for a slot to have this type
57   };
58 
59   struct SlotData {
60     int Slot;
61     int Size;
62     int Align;
63     int Offset;
64     SlotType SlotTy;
65 
66     SlotData(const MachineFrameInfo &MFI, const int ValOffset, const int Idx)
67         : Slot(Idx), Size(MFI.getObjectSize(Idx)),
68           Align(MFI.getObjectAlign(Idx).value()),
69           Offset(MFI.getObjectOffset(Idx) - ValOffset), SlotTy(Invalid) {
70       if (MFI.isSpillSlotObjectIndex(Idx))
71         SlotTy = SlotType::Spill;
72       else if (Idx == MFI.getStackProtectorIndex())
73         SlotTy = SlotType::StackProtector;
74       else
75         SlotTy = SlotType::Variable;
76     }
77 
78     // we use this to sort in reverse order, so that the layout is displayed
79     // correctly
80     bool operator<(const SlotData &Rhs) const { return Offset > Rhs.Offset; }
81   };
82 
83   StackFrameLayoutAnalysisPass() : MachineFunctionPass(ID) {}
84 
85   StringRef getPassName() const override {
86     return "Stack Frame Layout Analysis";
87   }
88 
89   void getAnalysisUsage(AnalysisUsage &AU) const override {
90     AU.setPreservesAll();
91     MachineFunctionPass::getAnalysisUsage(AU);
92     AU.addRequired<MachineOptimizationRemarkEmitterPass>();
93   }
94 
95   bool runOnMachineFunction(MachineFunction &MF) override {
96     // TODO: We should implement a similar filter for remarks:
97     //   -Rpass-func-filter=<regex>
98     if (!isFunctionInPrintList(MF.getName()))
99       return false;
100 
101     LLVMContext &Ctx = MF.getFunction().getContext();
102     if (!Ctx.getDiagHandlerPtr()->isAnalysisRemarkEnabled(DEBUG_TYPE))
103       return false;
104 
105     MachineOptimizationRemarkAnalysis Rem(DEBUG_TYPE, "StackLayout",
106                                           MF.getFunction().getSubprogram(),
107                                           &MF.front());
108     Rem << ("\nFunction: " + MF.getName()).str();
109     emitStackFrameLayoutRemarks(MF, Rem);
110     getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE().emit(Rem);
111     return false;
112   }
113 
114   std::string getTypeString(SlotType Ty) {
115     switch (Ty) {
116     case SlotType::Spill:
117       return "Spill";
118     case SlotType::StackProtector:
119       return "Protector";
120     case SlotType::Variable:
121       return "Variable";
122     default:
123       llvm_unreachable("bad slot type for stack layout");
124     }
125   }
126 
127   void emitStackSlotRemark(const MachineFunction &MF, const SlotData &D,
128                            MachineOptimizationRemarkAnalysis &Rem) {
129     // To make it easy to understand the stack layout from the CLI, we want to
130     // print each slot like the following:
131     //
132     //   Offset: [SP+8], Type: Spill, Align: 8, Size: 16
133     //       foo @ /path/to/file.c:25
134     //       bar @ /path/to/file.c:35
135     //
136     // Which prints the size, alignment, and offset from the SP at function
137     // entry.
138     //
139     // But we also want the machine readable remarks data to be nicely
140     // organized. So we print some additional data as strings for the CLI
141     // output, but maintain more structured data for the YAML.
142     //
143     // For example we store the Offset in YAML as:
144     //    ...
145     //    - Offset: -8
146     //
147     // But we print it to the CLI as
148     //   Offset: [SP-8]
149 
150     // Negative offsets will print a leading `-`, so only add `+`
151     std::string Prefix =
152         formatv("\nOffset: [SP{0}", (D.Offset < 0) ? "" : "+").str();
153     Rem << Prefix << ore::NV("Offset", D.Offset)
154         << "], Type: " << ore::NV("Type", getTypeString(D.SlotTy))
155         << ", Align: " << ore::NV("Align", D.Align)
156         << ", Size: " << ore::NV("Size", D.Size);
157   }
158 
159   void emitSourceLocRemark(const MachineFunction &MF, const DILocalVariable *N,
160                            MachineOptimizationRemarkAnalysis &Rem) {
161     std::string Loc =
162         formatv("{0} @ {1}:{2}", N->getName(), N->getFilename(), N->getLine())
163             .str();
164     Rem << "\n    " << ore::NV("DataLoc", Loc);
165   }
166 
167   void emitStackFrameLayoutRemarks(MachineFunction &MF,
168                                    MachineOptimizationRemarkAnalysis &Rem) {
169     const MachineFrameInfo &MFI = MF.getFrameInfo();
170     if (!MFI.hasStackObjects())
171       return;
172 
173     // ValOffset is the offset to the local area from the SP at function entry.
174     // To display the true offset from SP, we need to subtract ValOffset from
175     // MFI's ObjectOffset.
176     const TargetFrameLowering *FI = MF.getSubtarget().getFrameLowering();
177     const int ValOffset = (FI ? FI->getOffsetOfLocalArea() : 0);
178 
179     LLVM_DEBUG(dbgs() << "getStackProtectorIndex =="
180                       << MFI.getStackProtectorIndex() << "\n");
181 
182     std::vector<SlotData> SlotInfo;
183 
184     const unsigned int NumObj = MFI.getNumObjects();
185     SlotInfo.reserve(NumObj);
186     // initialize slot info
187     for (int Idx = MFI.getObjectIndexBegin(), EndIdx = MFI.getObjectIndexEnd();
188          Idx != EndIdx; ++Idx) {
189       if (MFI.isDeadObjectIndex(Idx))
190         continue;
191       SlotInfo.emplace_back(MFI, ValOffset, Idx);
192     }
193 
194     // sort the ordering, to match the actual layout in memory
195     llvm::sort(SlotInfo);
196 
197     SlotDbgMap SlotMap = genSlotDbgMapping(MF);
198 
199     for (const SlotData &Info : SlotInfo) {
200       emitStackSlotRemark(MF, Info, Rem);
201       for (const DILocalVariable *N : SlotMap[Info.Slot])
202         emitSourceLocRemark(MF, N, Rem);
203     }
204   }
205 
206   // We need to generate a mapping of slots to the values that are stored to
207   // them. This information is lost by the time we need to print out the frame,
208   // so we reconstruct it here by walking the CFG, and generating the mapping.
209   SlotDbgMap genSlotDbgMapping(MachineFunction &MF) {
210     SlotDbgMap SlotDebugMap;
211 
212     // add variables to the map
213     for (MachineFunction::VariableDbgInfo &DI :
214          MF.getInStackSlotVariableDbgInfo())
215       SlotDebugMap[DI.getStackSlot()].insert(DI.Var);
216 
217     // Then add all the spills that have debug data
218     for (MachineBasicBlock &MBB : MF) {
219       for (MachineInstr &MI : MBB) {
220         for (MachineMemOperand *MO : MI.memoperands()) {
221           if (!MO->isStore())
222             continue;
223           auto *FI = dyn_cast_or_null<FixedStackPseudoSourceValue>(
224               MO->getPseudoValue());
225           if (!FI)
226             continue;
227           int FrameIdx = FI->getFrameIndex();
228           SmallVector<MachineInstr *> Dbg;
229           MI.collectDebugValues(Dbg);
230 
231           for (MachineInstr *MI : Dbg)
232             SlotDebugMap[FrameIdx].insert(MI->getDebugVariable());
233         }
234       }
235     }
236 
237     return SlotDebugMap;
238   }
239 };
240 
241 char StackFrameLayoutAnalysisPass::ID = 0;
242 } // namespace
243 
244 char &llvm::StackFrameLayoutAnalysisPassID = StackFrameLayoutAnalysisPass::ID;
245 INITIALIZE_PASS(StackFrameLayoutAnalysisPass, "stack-frame-layout",
246                 "Stack Frame Layout", false, false)
247 
248 namespace llvm {
249 /// Returns a newly-created StackFrameLayout pass.
250 MachineFunctionPass *createStackFrameLayoutAnalysisPass() {
251   return new StackFrameLayoutAnalysisPass();
252 }
253 
254 } // namespace llvm
255